
COMS 4721: Machine Learning for Data Science

Lecture 16, 3/28/2017

Prof. John Paisley

Department of Electrical Engineering
& Data Science Institute

Columbia University

SOFT CLUSTERING VS

HARD CLUSTERING MODELS

HARD CLUSTERING MODELS

Review: K-means clustering algorithm

Given: Data x1, . . . , xn, where x ∈ Rd

Goal: Minimize L =
∑n

i=1
∑K

k=1 1{ci = k}‖xi − µk‖2.

I Iterate until values no longer changing

1. Update c: For each i, set ci = arg mink ‖xi − µk‖2

2. Update µ: For each k, set µk =
(∑

i xi1{ci = k}
)
/
(∑

i 1{ci = k}
)

K-means is an example of a hard clustering algorithm because it assigns
each observation to only one cluster.

In other words, ci = k for some k ∈ {1, . . . ,K}. There is no accounting for
the “boundary cases” by hedging on the corresponding ci.

SOFT CLUSTERING MODELS

A soft clustering algorithm breaks the data across clusters intelligently.

(a)

0 0.5 1

0

0.5

1 (b)

0 0.5 1

0

0.5

1 (c)

0 0.5 1

0

0.5

1

(left) True cluster assignments of data from three Gaussians.
(middle) The data as we see it.

(right) A soft-clustering of the data accounting for borderline cases.

WEIGHTED K-MEANS (SOFT CLUSTERING EXAMPLE)

Weighted K-means clustering algorithm

Given: Data x1, . . . , xn, where x ∈ Rd

Goal: Minimize L =
∑n

i=1
∑K

k=1 φi(k)‖xi−µk‖2

β −
∑

iH(φi) over φi and µk

Conditions: φi(k) > 0,
∑K

k=1 φi(k) = 1,H(φi) = entropy. Set β > 0.

I Iterate the following

1. Update φ: For each i, update the cluster allocation weights

φi(k) =
exp{− 1

β
‖xi − µk‖2}∑

j exp{− 1
β
‖xi − µj‖2}

, for k = 1, . . . ,K

2. Update µ: For each k, update µk with the weighted average

µk =

∑
i xiφi(k)∑

i φi(k)

SOFT CLUSTERING WITH WEIGHTED K-MEANS

 ϕi = 0.75 on green cluster & 0.25 blue cluster

ϕi = 1 on blue cluster

x

μ1
β-defined region

When ϕi is binary,
we get back the hard
clustering model

MIXTURE MODELS

PROBABILISTIC SOFT CLUSTERING MODELS

Probabilistic vs non-probabilistic soft clustering
The weight vector φi is like a probability of xi being assigned to each cluster.

A mixture model is a probabilistic model where φi actually is a probability
distribution according to the model.

Mixture models work by defining:

I A prior distribution on the cluster assignment indicator ci

I A likelihood distribution on observation xi given the assignment ci

Intuitively we can connect a mixture model to the Bayes classifier:
I Class prior→ cluster prior. This time, we don’t know the “label”
I Class-conditional likelihood→ cluster-conditional likelihood

MIXTURE MODELS

(a) A probability distribution on R2. (b) Data sampled from this distribution.

Before introducing math, some key features of a mixture model are:

1. It is a generative model (defines a probability distribution on the data)

2. It is a weighted combination of simpler distributions.
I Each simple distribution is in the same distribution family (i.e., a Gaussian).
I The “weighting” is defined by a discrete probability distribution.

MIXTURE MODELS

Generating data from a mixture model
Data: x1, . . . , xn, where each xi ∈ X (can be complicated, but think X = Rd)

Model parameters: A K-dim distribution π and parameters θ1, . . . , θK .

Generative process: For observation number i = 1, . . . , n,

1. Generate cluster assignment: ci
iid∼ Discrete(π)⇒ Prob(ci = k|π) = πk.

2. Generate observation: xi ∼ p(x|θci).

Some observations about this procedure:
I First, each xi is randomly assigned to a cluster using distribution π.
I ci indexes the cluster assignment for xi

I This picks out the index of the parameter θ used to generate xi.
I If two x’s share a parameter, they are clustered together.

MIXTURE MODELS

(a) Uniform mixing weights (b) Data sampled from this distribution.

(c) Uneven mixing weights (d) Data sampled from this distribution.

GAUSSIAN MIXTURE MODELS

ILLUSTRATION

Gaussian mixture models are mixture models where p(x|θ) is Gaussian.

Mixture of two Gaussians
The red line is the density function.

π = [0.5, 0.5]

(µ1, σ
2
1) = (0, 1)

(µ2, σ
2
2) = (2, 0.5)

Influence of mixing weights

The red line is the density function.

π = [0.8, 0.2]

(µ1, σ
2
1) = (0, 1)

(µ2, σ
2
2) = (2, 0.5)

GAUSSIAN MIXTURE MODELS (GMM)

The model
Parameters: Let π be a K-dimensional probability distribution and (µk,Σk)
be the mean and covariance of the kth Gaussian in Rd.

Generate data: For the ith observation,
1. Assign the ith observation to a cluster, ci ∼ Discrete(π)

2. Generate the value of the observation, xi ∼ N(µci ,Σci)

Definitions: µ = {µ1, . . . , µK} and Σ = {Σ1, . . . ,Σk}.

Goal: We want to learn π,µ and Σ.

GAUSSIAN MIXTURE MODELS (GMM)

Maximum likelihood
Objective: Maximize the likelihood over model parameters π, µ and Σ by
treating the ci as auxiliary data using the EM algorithm.

p(x1, . . . , xn|π,µ,Σ) =

n∏
i=1

p(xi|π,µ,Σ) =

n∏
i=1

K∑
k=1

p(xi, ci = k|π,µ,Σ)

The summation over values of each ci “integrates out” this variable.

We can’t simply take derivatives with respect to π, µk and Σk and set to zero
to maximize this because there’s no closed form solution.

We could use gradient methods, but EM is cleaner.

EM ALGORITHM

Q: Why not instead just include each ci and maximize
∏n

i=1 p(xi, ci|π,µ,Σ)
since (we can show) this is easy to do using coordinate ascent?

A: We would end up with a hard-clustering model where ci ∈ {1, . . . ,K}.
Our goal here is to have soft clustering, which EM does.

EM and the GMM
We will not derive everything from scratch. However, we can treat c1, . . . , cn

as the auxiliary data that we integrate out.

Therefore, we use EM to

maximize
n∑

i=1

ln p(xi|π,µ,Σ) by using
n∑

i=1

ln p(xi, ci|π,µ,Σ)

Let’s look at the outlines of how to derive this.

THE EM ALGORITHM AND THE GMM

From the last lecture, the generic EM objective is

ln p(x|θ1) =

∫
q(θ2) ln

p(x, θ2|θ1)

q(θ2)
dθ2 +

∫
q(θ2) ln

q(θ2)

p(θ2|x, θ1)
dθ2

The EM objective for the Gaussian mixture model is

n∑
i=1

ln p(xi|π,µ,Σ) =

n∑
i=1

K∑
k=1

q(ci = k) ln
p(xi, ci = k|π,µ,Σ)

q(ci = k)
+

n∑
i=1

K∑
k=1

q(ci = k) ln
q(ci = k)

p(ci|xi, π,µ,Σ)

Because ci is discrete, the integral becomes a sum.

EM SETUP (ONE ITERATION)

First: Set q(ci = k) ⇐ p(ci = k|xi, π,µ,Σ) using Bayes rule:

p(ci = k|xi, π,µ,Σ) ∝ p(ci = k|π)p(xi|ci = k,µ,Σ)

We can solve the posterior of ci given π, µ and Σ:

q(ci = k) =
πkN(xi|µk,Σk)∑

j πjN(xi|µj,Σj)
=⇒ φi(k)

E-step: Take the expectation using the updated q’s

L =

n∑
i=1

K∑
k=1

φi(k) ln p(xi, ci = k|π, µk,Σk) + constant w.r.t. π, µ, Σ

M-step: Maximize L with respect to π and each µk, Σk.

M-STEP CLOSE UP

Aside: How has EM made this easier?

Original objective function:

L =

n∑
i=1

ln
K∑

k=1

p(xi, ci = k|π, µk,Σk) =

n∑
i=1

ln
K∑

k=1

πkN(xi|µk,Σk).

The log-sum form makes optimizing π, and each µk and Σk difficult.

Using EM here, we have the M-Step:

L =

n∑
i=1

K∑
k=1

φi(k) {lnπk + ln N(xi|µk,Σk)}︸ ︷︷ ︸
ln p(xi,ci=k|π,µk,Σk)

+ constant w.r.t. π, µ, Σ

The sum-log form is easier to optimize. We can take derivatives and solve.

EM FOR THE GMM

Algorithm: Maximum likelihood EM for the GMM

Given: x1, . . . , xn where x ∈ Rd

Goal: Maximize L =
∑n

i=1 ln p(xi|π,µ,Σ).

I Iterate until incremental improvement to L is “small”

1. E-step: For i = 1, . . . , n, set

φi(k) =
πkN(xi|µk,Σk)∑

j πjN(xi|µj,Σj)
, for k = 1, . . . ,K

2. M-step: For k = 1, . . . ,K, define nk =
∑n

i=1 φi(k) and update the values

πk =
nk

n
, µk =

1
nk

n∑
i=1

φi(k)xi Σk =
1
nk

n∑
i=1

φi(k)(xi−µk)(xi−µk)
T

Comment: The updated value for µk is used when updating Σk.

GAUSSIAN MIXTURE MODEL: EXAMPLE RUN

(a)−2 0 2

−2

0

2

A random initialization

GAUSSIAN MIXTURE MODEL: EXAMPLE RUN

(b)−2 0 2

−2

0

2

Iteration 1 (E-step)

Assign data to clusters

GAUSSIAN MIXTURE MODEL: EXAMPLE RUN

(c)

L = 1

−2 0 2

−2

0

2

Iteration 1 (M-step)

Update the Gaussians

GAUSSIAN MIXTURE MODEL: EXAMPLE RUN

(d)

L = 2

−2 0 2

−2

0

2

Iteration 2

Assign data to clusters
and update the Gaussians

GAUSSIAN MIXTURE MODEL: EXAMPLE RUN

(e)

L = 5

−2 0 2

−2

0

2

Iteration 5 (skipping ahead)

Assign data to clusters
and update the Gaussians

GAUSSIAN MIXTURE MODEL: EXAMPLE RUN

(f)

L = 20

−2 0 2

−2

0

2

Iteration 20 (convergence)

Assign data to clusters
and update the Gaussians

GMM AND THE BAYES CLASSIFIER

The GMM feels a lot like a K-class Bayes classifier, where the label of xi is

label(xi) = arg max
k

πk N(xi|µk,Σk).

I πk = class prior, and N(µk,Σk) = class-conditional density function.
I We learned π, µ and Σ using maximum likelihood there too.

For the Bayes classifier, we could find π, µ and Σ with a single equation
because the class label was known. Compare with the GMM update:

πk =
nk

n
, µk =

1
nk

n∑
i=1

φi(k)xi Σk =
1
nk

n∑
i=1

φi(k)(xi − µk)(xi − µk)
T

They’re almost identical. But since φi(k) is changing we have to update these
values. With the Bayes classifier, “φi” encodes the label, so it was known.

CHOOSING THE NUMBER OF CLUSTERS

Maximum likelihood for the Gaussian mixture model can overfit the data. It
will learn as many Gaussians as it’s given.

There are a set of techniques for this based on the Dirichlet distribution.

A Dirichlet prior is used on π which encourages many Gaussians to
disappear (i.e., not have any data assigned to them).

EM FOR A GENERIC MIXTURE MODEL

Algorithm: Maximum likelihood EM for mixture models
Given: Data x1, . . . , xn where x ∈ X
Goal: Maximize L =

∑n
i=1 ln p(xi|π,θ), where p(x|θk) is problem-specific.

I Iterate until incremental improvement to L is “small”

1. E-step: For i = 1, . . . , n, set

φi(k) =
πk p(xi|θk)∑

j πj p(xi|θj)
, for k = 1, . . . ,K

2. M-step: For k = 1, . . . ,K, define nk =
∑n

i=1 φi(k) and set

πk =
nk

n
, θk = arg max

θ

n∑
i=1

φi(k) ln p(xi|θ)

Comment: Similar to generalization of the Bayes classifier for any p(x|θk).

