COLLABORATIVE FILTERING
Matching consumers to products is an important practical problem.

We can often make these connections using user feedback about subsets of products. To give some prominent examples:

- Netflix lets users to rate movies
- Amazon lets users to rate products and write reviews about them
- Yelp lets users to rate businesses, write reviews, upload pictures
- YouTube lets users like/dislike a videos and write comments

Recommendation systems use this information to help recommend new things to customers that they may like.
One strategy for object recommendation is:

Content filtering: Use known information about the products and users to make recommendations. Create profiles based on

- **Products**: movie information, price information, product descriptions
- **Users**: demographic information, questionnaire information

Example: A fairly well known example is the online radio Pandora, which uses the “Music Genome Project.”

- An expert scores a song based on hundreds of characteristics
- A user also provides information about his/her music preferences
- Recommendations are made based on pairing these two sources
Collaborative filtering requires a lot of information that can be difficult and expensive to collect. Another strategy for object recommendation is:

Collaborative filtering (CF): Use previous users’ input/behavior to make future recommendations. Ignore any *a priori* user or object information.

- CF uses the ratings of similar users to predict my rating.
- CF is a domain-free approach. It doesn’t need to know what is being rated, just who rated what, and what the rating was.

One CF method uses a *neighborhood-based* approach. For example,

1. define a similarity score between me and other users based on how much our overlapping ratings agree, then
2. based on these scores, let others “vote” on what I would like.

These filtering approaches are not mutually exclusive. Content information can be built into a collaborative filtering system to improve performance.
Location-based CF methods (intuition)

Location-based approaches embed users and objects into points in \mathbb{R}^d.
Matrix factorization
Matrix factorization (MF) gives a way to learn user and object locations.

First, form the rating matrix M:

- Contains every user/object pair.
- Will have many missing values.
- The goal is to fill in these missing values.

MF and recommendation systems:

- We have prediction of every missing rating for user i.
- Recommend the highly rated objects among the predictions.
Our goal is to factorize the matrix M. We’ve discussed one method already.

\[M = U S V^T \]

Singular value decomposition: Every matrix M can be written as $M = U S V^T$, where $U^T U = I$, $V^T V = I$ and S is diagonal with $S_{ii} \geq 0$.

$r = \text{rank}(M)$. When it’s small, M has fewer “degrees of freedom.”

Collaborative filtering with matrix factorization is intuitively similar.
We will define a model for learning a low-rank factorization of M. It should:

1. Account for the fact that most values in M are missing
2. Be low-rank, where $d \ll \min\{N_1, N_2\}$ (e.g., $d \approx 10$)
3. Learn a location $u_i \in \mathbb{R}^d$ for user i and $v_j \in \mathbb{R}^d$ for object j
Low-rank matrix factorization

![Diagram showing N1 users and N2 objects with low-rank matrix factorization](image)

Why learn a low-rank matrix?

- We think that many columns should look similar. For example, movies like *Caddyshack* and *Animal House* should have **correlated** ratings.
- Low-rank means that the N_1-dimensional columns don’t “fill up” \mathbb{R}^{N_1}.
- Since > 95% of values may be missing, a low-rank restriction gives hope for filling in missing data because it models correlations.
Probabilistic matrix factorization
Some notation

- Let the set Ω contain the pairs (i, j) that are observed. In other words,
 \[\Omega = \{(i, j) : M_{ij} \text{ is measured}\}. \]
 So $(i, j) \in \Omega$ if user i rated object j.

- Let Ω_{ui} be the index set of objects rated by user i.

- Let Ω_{vj} be the index set of users who rated object j.

N_2 objects

N_1 users

(i,j)-th entry, M_{ij}, contains the rating for user i of object j
Generative model

For \(N_1 \) users and \(N_2 \) objects, generate

User locations: \(u_i \sim N(0, \lambda^{-1}I), \quad i = 1, \ldots, N_1 \)

Object locations: \(v_j \sim N(0, \lambda^{-1}I), \quad j = 1, \ldots, N_2 \)

Given these locations the distribution on the data is

\[
M_{ij} \sim N(u_i^T v_j, \sigma^2), \quad \text{for each } (i, j) \in \Omega.
\]

Comments:

- Since \(M_{ij} \) is a rating, the Gaussian assumption is clearly wrong.
- However, the Gaussian is a convenient assumption. The algorithm will be easy to implement, and the model works well.
Q: There are many missing values in the matrix M. Do we need some sort of EM algorithm to learn all the u’s and v’s?

- Let M_o be the part of M that is observed and M_m the missing part. Then

$$p(M_o|U, V) = \int p(M_o, M_m|U, V) dM_m.$$

- Recall that EM is a \textit{tool} for maximizing $p(M_o|U, V)$ over U and V.

- Therefore, it is only needed when
 1. $p(M_o|U, V)$ is hard to maximize,
 2. $p(M_o, M_m|U, V)$ is easy to work with, and
 3. the posterior $p(M_m|M_o, U, V)$ is known.

A: If $p(M_o|U, V)$ doesn’t present any problems for inference, then no.

(Similar conclusion in our MAP scenario, maximizing $p(M_o, U, V)$.)
To test how hard it is to maximize $p(M_o, U, V)$ over U and V, we have to

1. Write out the joint likelihood
2. Take its natural logarithm
3. Take derivatives with respect to u_i and v_j and see if we can solve

The joint likelihood of $p(M_o, U, V)$ can be factorized as follows:

$$p(M_o, U, V) = \left[\prod_{(i,j) \in \Omega} p(M_{ij}|u_i, v_j) \right] \times \left[\prod_{i=1}^{N_1} p(u_i) \right] \times \left[\prod_{j=1}^{N_2} p(v_j) \right].$$

By definition of the model, we can write out each of these distributions.
Log joint likelihood and MAP

The MAP solution for U and V is the maximum of the log joint likelihood

$$U_{\text{MAP}}, V_{\text{MAP}} = \arg \max_{U,V} \sum_{(i,j) \in \Omega} \ln p(M_{ij}|u_i, v_j) + \sum_{i=1}^{N_1} \ln p(u_i) + \sum_{j=1}^{N_2} \ln p(v_j)$$

Calling the MAP objective function \mathcal{L}, we want to maximize

$$\mathcal{L} = - \sum_{(i,j) \in \Omega} \frac{1}{2\sigma^2} \|M_{ij} - u_i^T v_j\|^2 - \sum_{i=1}^{N_1} \frac{\lambda}{2} \|u_i\|^2 - \sum_{j=1}^{N_2} \frac{\lambda}{2} \|v_j\|^2 + \text{constant}$$

The squared terms appear because all distributions are Gaussian.
To update each u_i and v_j, we take the derivative of \mathcal{L} and set to zero.

\[\nabla_{u_i} \mathcal{L} = \sum_{j \in \Omega_{u_i}} \frac{1}{\sigma^2} (M_{ij} - u_i^T v_j) v_j - \lambda u_i = 0 \]

\[\nabla_{v_j} \mathcal{L} = \sum_{i \in \Omega_{v_j}} \frac{1}{\sigma^2} (M_{ij} - v_j^T u_i) u_i - \lambda v_i = 0 \]

We can solve for each u_i and v_j individually (therefore EM isn’t required),

\[u_i = \left(\lambda \sigma^2 I + \sum_{j \in \Omega_{u_i}} v_j v_j^T \right)^{-1} \left(\sum_{j \in \Omega_{u_i}} M_{ij} v_j \right) \]

\[v_j = \left(\lambda \sigma^2 I + \sum_{i \in \Omega_{v_j}} u_i u_i^T \right)^{-1} \left(\sum_{i \in \Omega_{v_j}} M_{ij} u_i \right) \]

However, we can’t solve for all u_i and v_j at once to find the MAP solution. Thus, as with K-means and the GMM, we use a coordinate ascent algorithm.
Probabilistic matrix factorization

MAP inference coordinate ascent algorithm

Input: An incomplete ratings matrix M, as indexed by the set Ω. Rank d.

Output: N_1 user locations, $u_i \in \mathbb{R}^d$, and N_2 object locations, $v_j \in \mathbb{R}^d$.

Initialize each v_j. For example, generate $v_j \sim N(0, \lambda^{-1}I)$.

for each iteration **do**

- **for** $i = 1, \ldots, N_1$ **update user location**

 $$u_i = \left(\lambda \sigma^2 I + \sum_{j \in \Omega_{u_i}} v_j v_j^T \right)^{-1} \left(\sum_{j \in \Omega_{u_i}} M_{ij} v_j \right)$$

- **for** $j = 1, \ldots, N_2$ **update object location**

 $$v_j = \left(\lambda \sigma^2 I + \sum_{i \in \Omega_{v_j}} u_i u_i^T \right)^{-1} \left(\sum_{i \in \Omega_{v_j}} M_{ij} u_i \right)$$

Predict that user i rates object j as $u_i^T v_j$ rounded to closest rating option.
Hard to show in \mathbb{R}^2, but we get locations for movies and users. Their relative locations captures relationships (that can be hard to explicitly decipher).

Returning to *Animal House* \((j)\) and *Caddyshack* \((j')\), it’s easy to understand the relationship between their locations \(v_j\) and \(v_{j'}\):

- For these two movies to have similar rating patterns, their respective \(v\)’s must be similar (i.e., close to each other in \(\mathbb{R}^d\)).
- The same holds for users who have similar tastes across movies.
MATRIX FACTORIZATION AND RIDGE REGRESSION
There is a close relationship between this algorithm and ridge regression.

- Think from the perspective of object location v_j.
- Minimize the sum squared error $\frac{1}{\sigma^2} (M_{ij} - u_i^T v_j)^2$ with penalty $\lambda \|v_j\|^2$.
- This is ridge regression for v_j, as the update also shows:

$$v_j = \left(\lambda \sigma^2 I + \sum_{i \in \Omega_{v_j}} u_i u_i^T \right)^{-1} \left(\sum_{i \in \Omega_{v_j}} M_{ij} u_i \right)$$

- So this model is a set of $N_1 + N_2$ coupled ridge regression problems.
Matrix factorization and least squares

We can also connect it to least squares.

- Remove the Gaussian priors on u_i and v_j. The update for, e.g., v_j is then

 \[v_j = \left(\sum_{i \in \Omega_{v_j}} u_i u_i^T \right)^{-1} \left(\sum_{i \in \Omega_{v_j}} M_{ij} u_i \right) \]

- This is the least squares solution. It requires that every user has rated at least d objects and every object is rated by at least d users.
- This probably isn’t the case, so we see why a prior is necessary here.