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SEQUENTIAL DATA

So far, when thinking probabilistically we have focused on the i.i.d. setting.

I All data are independent given a model parameter.
I This is often a reasonable assumption, but was also done for convenience.

In some applications this assumption is bad:

I Modeling rainfall as a function of hour
I Daily value of currency exchange rate
I Acoustic features of speech audio

The distribution on the next value clearly
depends on the previous values.

A basic way to model sequential information
is with a discrete, first-order Markov chain.



MARKOV CHAINS



EXAMPLE: ZOMBIE WALKER1

Imagine you see a zombie in an alley. Each time it moves forward it steps

( left, straight, right ) with probability ( pl, ps, pr ),

unless it’s next to the wall, in which case it steps straight with probability pw
s

and toward the middle with probability pw
m.

The distribution on the next location only depends on the current location.

1This problem is often introduced with a “drunk,” so our maturity is textbook-level.



RANDOM WALK NOTATION

We simplify the problem by assuming there are only a finite number of
positions the zombie can be in, and we model it as a random walk.

position 4 position 20

The distribution on the next position only depends on the current position.
For example, for a position i away from the wall,

st+1 | {st = i} =

 i + 1 w.p. pr

i w.p. ps

i− 1 w.p. pl

This is called the first-order Markov property. It’s the simplest type. A
second-order model would depend on the previous two positions.



MATRIX NOTATION

A more compact notation uses a matrix.

For the random walk problem, imagine we have 6 different positions, called
states. We can write the transition matrix as

M =


pw

s pw
m 0 0 0 0

pl ps pr 0 0 0
0 pl ps pr 0 0
0 0 pl ps pr 0
0 0 0 pl ps pr

0 0 0 0 pw
m pw

s


Mij is the probability that the next position is j given the current position is i.

Of course we can jumble this matrix by moving rows and columns around in
a correct way, as long as we can map the rows and columns to a position.



FIRST-ORDER MARKOV CHAIN (GENERAL)

Let s ∈ {1, . . . , S}. A sequence (s1, . . . , st) is a first-order Markov chain if

p(s1, . . . , st)
(a)
= p(s1)

t∏
u=2

p(su|s1, . . . , su−1)
(b)
= p(s1)

t∏
u=2

p(su|su−1)

From the two equalities above:
(a) This equality is always true, regardless of the model (chain rule).
(b) This simplification results from the Markov property assumption.

Notice the difference from the i.i.d. assumption

p(s1, . . . , st) =

{
p(s1)

∏t
u=2 p(su|su−1) Markov assumption∏t

u=1 p(su) i.i.d. assumption

From a modeling standpoint, this is a significant difference.



FIRST-ORDER MARKOV CHAIN (GENERAL)

Again, we encode this more general probability distribution in a matrix:

Mij = p(st = j|st−1 = i)

We will adopt the notation that rows are distributions.

I M is a transition matrix, or Markov matrix.
I M is S× S and each row sums to one.
I Mij is the probability of transitioning to state j given we are in state i.

Given a starting state, s0, we generate a sequence (s1, . . . , st) by sampling

st | st−1 ∼ Discrete(Mst−1,:).

We can model the starting state with its own separate distribution.



MAXIMUM LIKELIHOOD

Given a sequence, we can approximate the transition matrix using ML,

MML = arg max
M

p(s1, . . . , st|M) = arg max
M

t−1∑
u=1

S∑
i,j

1(su = i, su+1 = j) ln Mij.

Since each row of M has to be a probability distribution, we can show that

MML(i, j) =

∑t−1
u=1 1(su = i, su+1 = j)∑t−1

u=1 1(su = i)
.

Empirically, count how many times we observe a transition from i→ j and
divide by the total number of transitions from i.

Example: Model probability it rains (r) tomorrow given it rained today with
observed fraction #{r→r}

#{r} . Notice that #{r} = #{r → r}+#{r → no-r}.



PROPERTY: STATE DISTRIBUTION

Q: Can we say at the beginning what state we’ll be in at step t + 1?

A: Imagine at step t that we have a probability distribution on which state
we’re in, call it p(st = u). Then the distribution on st+1 is

p(st+1 = j) =

S∑
u=1

p(st+1 = j|st = u)p(st = u)︸ ︷︷ ︸
p(st+1= j, st= u)

.

Represent p(st = u) with the row vector wt (the state distribution). Then

p(st+1 = j)︸ ︷︷ ︸
wt+1(j)

=

S∑
u=1

p(st+1 = j|st = u)︸ ︷︷ ︸
Muj

p(st = u)︸ ︷︷ ︸
wt(u)

.

We can calculate this for all j with the matrix-vector product wt+1 = wtM.
Therefore, wt+1 = w1Mt and w1 can be indicator if starting state is known.



PROPERTY: STATIONARY DISTRIBUTION

Given current state distribution wt, the distribution on the next state is

wt+1(j) =
S∑

u=1

Mujwt(u) ⇐⇒ wt+1 = wtM

What happens if we project an infinite number of steps out?

Definition: Let w∞ = limt→∞ wt. Then w∞ is the stationary distribution.

I There are many technical results that can be proved about w∞.
I Property: If the following are true, then w∞ is the same vector for all w0

1. We can eventually reach any state starting from any other state,
2. The sequence doesn’t loop between states in a pre-defined pattern.

I Clearly w∞ = w∞M since wt is converging and wt+1 = wtM.

This last property is related to the first eigenvector of MT :

MTq1 = λ1q1 =⇒ λ1 = 1, w∞ =
q1∑S

u=1 q1(u)



A RANKING ALGORITHM



EXAMPLE: RANKING OBJECTS

We show an example of using the stationary distribution of a Markov chain
to rank objects. The data are pairwise comparisons between objects.

For example, we might want to rank
I Sports teams or athletes competing against each other
I Objects being compared and selected by users
I Web pages based on popularity or relevance

Our goal is to rank objects from “best” to “worst.”

I We will construct a random walk matrix on the objects. The stationary
distribution will give us the ranking.

I Notice: We don’t consider the sequential information in the data itself.
The Markov chain is an artificial modeling construct.



EXAMPLE: TEAM RANKINGS

Problem setup
We want to construct a Markov chain where each team is a state.

I We encourage transitions from teams that lose to teams that win.

I Predicting the “state” (i.e., team) far in the future, we can interpret a
more probable state as a better team.

One specific approach to this specific problem:

I Transitions only occur between teams that play each other.

I If Team A beats Team B, there should be a high probability of
transitioning from B→A and small probability from A→B.

I The strength of the transition can be linked to the score of the game.



EXAMPLE: TEAM RANKINGS

How about this?
Initialize M̂ to a matrix of zeros. For a particular game, let j1 be the index of
Team A and j2 the index of Team B. Then update

M̂j1j1 ← M̂j1j1 + 1{Team A wins} +
pointsj1

pointsj1
+pointsj2

,

M̂j2j2 ← M̂j2j2 + 1{Team B wins} +
pointsj2

pointsj1
+pointsj2

,

M̂j1j2 ← M̂j1j2 + 1{Team B wins} +
pointsj2

pointsj1
+pointsj2

,

M̂j2j1 ← M̂j2j1 + 1{Team A wins} +
pointsj1

pointsj1
+pointsj2

.

After processing all games, let M be the matrix formed by normalizing the
rows of M̂ so they sum to 1.



EXAMPLE: 2016-2017 COLLEGE BASKETBALL SEASON

  

x

x

x
x

1,570 teams

22,426 games

SCORE = w∞

8 < 13 : Proof of intelligence?



A CLASSIFICATION ALGORITHM



SEMI-SUPERVISED LEARNING

Imagine we have data with very few labels.

We want to use the structure in the dataset to
help classify the unlabeled data.

We can do this with a Markov chain.

Semi-supervised learning uses partially labeled data to do classification.

I Many or most yi will be missing in the pair (xi, yi).

I Still, there is structure in x1, . . . , xn that we don’t want to throw away.

I In the example above, we might want the inner ring to be one class
(blue) and the outer ring another (red).



A RANDOM WALK CLASSIFIER

We will define a classifier where, starting from any data point xi,
I A “random walker” moves around from point to point
I A transition between nearby points has higher probability
I A transition to a labeled point terminates the walk
I The label of a point xi is the label of the terminal point

One possible random walk matrix

1. Let the unnormalized transition matrix be

M̂ij = exp
{
−
‖xi − xj‖2

b

}
2. Normalize rows of M̂ to get M

3. If xi has label yi, re-define Mii = 1

starting point

higher probability
transition

lower probability
transition



PROPERTY: ABSORBING STATES

Imagine we have S states. If p(st = i|st−1 = i) = 1, then the ith state is
called an absorbing state since we can never leave it.

Q: Given initial state s0 = j and set of absorbing states {i1, . . . , ik}, what is
the probability a Markov chain terminates at a particular absorbing state?

I Aside: For the semi-supervised classifier, the answer gives the
probability on the label of xj.

A: Start a random walk at j and keep track of the distribution on states.

I w0 is a vector of 0’s with a 1 in entry j because we know s0 = j

I If M is the transition matrix, we know that wt+1 = wtM.
I So we want w∞ = w0M∞.



PROPERTY: ABSORBING STATE DISTRIBUTION

Group the absorbing states and break up the transition matrix into quadrants:

M =

[
A B
0 I

]
The bottom half contains the self-transitions of the absorbing states.

Observation: wt+1 = wtM = wt−1M2 = · · · = w0Mt+1

So we need to understand what’s going on with Mt. For the first two we have

M2 =

[
A B
0 I

] [
A B
0 I

]
=

[
A2 AB + B
0 I

]

M3 =

[
A B
0 I

] [
A2 AB + B
0 I

]
=

[
A3 A2B + AB + B
0 I

]



GEOMETRIC SERIES

Detour: We will use the matrix version of the following scalar equality.

Definition: Let 0 < r < 1. Then
∑t−1

u=0 ru = 1−rt

1−r and so
∑∞

u=0 ru = 1
1−r .

Proof: First define the top equality and create the bottom equality

Ct = 1 + r + r2 + · · · + rt−1

r Ct = r + r2 + · · · + rt−1 + rt

and so
Ct − r Ct = 1− rt.

Therefore

Ct =

t−1∑
u=0

ru =
1− rt

1− r
and C∞ =

1
1− r

.



PROPERTY: ABSORBING STATE DISTRIBUTION

A matrix version of the geometric series appears here. We see the pattern

Mt =

[
At

(∑t−1
u=0 Au

)
B

0 I

]
.

Two key things that can be shown are:

A∞ = 0,
∞∑

u=0

Au = (I − A)−1

Summary:

I After an infinite # of steps, w∞ = w0 M∞ = w0

[
0 (I − A)−1B
0 I

]
.

I The non-zero dimension of w0 picks out a row of (I − A)−1B.

I The probability that a random walk started at xj terminates at the ith
absorbing state is [(I − A)−1B]ji.



CLASSIFICATION EXAMPLE

Using a Gaussian kernel normalized on the rows. The color indicates the
distribution on the terminal state for each starting point.

Kernel width was tuned to give this result.



CLASSIFICATION EXAMPLE

Using a Gaussian kernel normalized on the rows. The color indicates the
distribution on the terminal state for each starting point.

Kernel width is larger here. Therefore, purple points may leap to the center.


