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MARKOV MODELS

51. 52‘ 53. 54.

The sequence (s1, 52, 3, . . . ) has the Markov property, if for all ¢

P(Sz|st—17 e asl) =p(sz|st_1).

Our first encounter with Markov models assumed a finite state space,
meaning we can define an indexing such that s € {1,...,S}.

This allowed us to represent the transition probabilities in a matrix,

Aij Aad P(St :j|5t—1 = i)-



HIDDEN MARKOV MODELS

S1 So

X1 X2

The hidden Markov model modified this by assuming the sequence of states
was a latent process (i.e., unobserved).

An observation x; is associated with each s,, where x; | s, ~ p(x|6,,).

Like a mixture model, this allowed for a few distributions to generate the
data. It adds an extra transition rule between distributions.



DISCRETE STATE SPACES

In both cases, the state space was discrete and
relatively small in number.

» For the Markov chain, we gave an example
where states correspond to positions in R?.

» A continuous hidden Markov model might

perturb the latent state of the Markov chain.

» For example, each s; can be modified by
continuous-valued noise, x; = s; + €;.

» But s;.7 is still a discrete Markov chain.




DISCRETE VS CONTINUOUS STATE SPACES

Markov and hidden Markov models both assume a discrete state space.

For Markov models:
» The state could be a data point x; (Markov Chain classifier)
» The state could be an object (object ranking)
» The state could be the destination of a link (internet search engines)

For hidden Markov models we can simplify complex data:
» Sequences of discrete data may come from a few discrete distributions.

» Sequences of continuous data may come from a few distributions.

What if we model the states as continuous too?



CONTINUOUS-STATE MARKOV MODEL

Continuous Markov models extend the state space to a continuous domain.
Instead of s € {1,...,S}, s can take any value in R,

Again compare:
» Discrete-state Markov models: The states live in a discrete space.

» Continuous-state Markov models: The states live in a continuous space.

The simplest example is the process
si=8—1+¢€, € ~N(0al).

Each successive state is a perturbed version of the current state.



LINEAR GAUSSIAN MARKOV MODEL

The most basic continuous-state version of the hidden Markov model is
called a linear Gaussian Markov model (also called the Kalman filter).

sy =Csi—1 + €1, X, = Ds; + &

latent process observed process

v

s; € R? is a continuous-state latent (unobserved) Markov process

x; € R4 is a continuous-valued observation

v

» The process noise ¢, ~ N(0, Q)

» The measurement noise ¢, ~ N(0, V)



EXAMPLE APPLICATIONS

S1 S2 Sn-1 Sn Sn+1
I X1 I X2 I Xn-1 I Xn I Xn+1

Difference from HMM.: s, and x, are both from continuous distributions.

The linear Gaussian Markov model (and its variants) has many applications.

» Tracking moving objects

» Automatic control systems

» Economics and finance (e.g., stock modeling)
> etc.



EXAMPLE: TRACKING

We get (very) noisy measurements of an object’s position in time, x, € R

The time-varying state vector is s = [pos, vel; accel; pos, vel, accelg]T.

Motivated by the underlying physics, we model this as:
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Therefore, s, not only approximates where the target is, but where it’s going.



: TRACKING

EXAMPLE




THE LEARNING PROBLEM

As with the hidden Markov model, we’re given the sequence (x1,x2,x3, ... ),
where each x € R?. The goal is to learn state sequence (si, 52,53, - - . ).

All distributions are Gaussian,
P(Sr+1 = S‘Sz) = N(Cs,, Q)a plx; = xlst) = N(Ds;, V)~

Notice that with the discrete HMM we wanted to learn 7, A and B, where
» 7 is the initial state distribution
> A is the transition matrix among the discrete set of states

» B contains the state-dependent distributions on discrete-valued data

The situation here is very different.



THE LEARNING PROBLEM

No “B” to learn: In the linear Gaussian Markov model, each state is unique
and so the distribution on x; is different for each ¢.

No “A” to learn: In addition, each state transition is to a brand new state, so
each s; has its own unique probability distribution.

What we can learn are the two posterior distributions.
1. p(s;|x1,...,x) : A distribution on the current state given the past.

2. p(si|x1, ..., xr) : A distribution on each latent state in the sequence

» #1: Kalman filtering problem. We’ll focus on this one today.

» #2: Kalman smoothing problem. Requires extra step (not discussed).



THE KALMAN FILTER

Goal: Learn the sequence of distributions p(s|xi, .. .,x,) given a sequence
of data (x1,x,,x3, ... ) and the model

St+1 |8 ~ N(Cs;, Q), X | sy ~ N(Ds;, V).

This is the (linear) Kalman filtering problem and is often used for tracking.

Setup: We can use Bayes rule to write
p(selxt, oo yxe) o< p(xelse) p(selxr, ..o x—1)

and represent the prior as a marginal distribution

plsidxi, . x—1) = /p(sl|s,_1)p(s,_1|x1,...,x,_l)ds,_l



THE KALMAN FILTER

We’ve decomposed the problem into parts that we do and don’t know (yet)

p(sixr, ..., x) o< p(x:ls;) /p(s,|s,_|) psitlxty ooy x1) dsi—y
——)
N(Ds;,V)  N(Csi—1,0) ?

Observations and considerations:
1. The left is the posterior on s, and the right has the posterior on s,_;.
2. We want the integral to be in closed form and a known distribution.
3. We want the prior and likelihood terms to lead to a known posterior.

4. We want future calculations, e.g. for s,4 |, to be easy.

We will see how choosing the Gaussian distribution makes this all work.



THE KALMAN FILTER: STEP 1

Calculate the marginal for prior distribution

Hypothesize (temporarily) that the unknown distribution is Gaussian,

P(selxt, oo x) o p(xt|st)/p(st|st—l)P(St—1|x17--~7xt—1) dsi—i
S~—~— Y
N(Ds;,V) N(Cs;—1,0) N(u,X) by hypothesis

A property of the Gaussian is that marginals are still Gaussian,
/N(s,\Cs,_l, Q)N(s;_1|p, X)ds;—y = N(s,|Cp, Q + CECT).

We know C and Q (by design) and p and X (by hypothesis).



THE KALMAN FILTER: STEP 2

Calculate the posterior

We plug in the marginal distribution for the prior and see that

p(silxi, ..., x;) o N(x,|Ds;, V) N(s;|Cu, Q + CECT).

Though the parameters look complicated, the posterior is just a Gaussian

p(silxry .o x) = N(s |, 2")

s [(Q+cnc)y ' +D"v'D]

o= ¥ (D'V7x+ (0+cuch) T cp)

We can plug the relevant values into these two equations.



ADDRESSING THE GAUSSIAN ASSUMPTION

By making the assumption of a Gaussian in the prior,

p(silxr, .o x) o< p(xils;) /p(szlsr_l) PS—1lxr, ..y x—1) dsi—
—— ——
N(x;|Ds,V) N(s|Cs;—1,0) N(u,X) by hypothesis

we found that the posterior is also Gaussian with a new mean and covariance.

» We therefore only need to define a Gaussian prior on the first state to
keep things moving forward. For example,

[)(So) ~ N(Ovl)'

Once this is done, all future calculations are in closed form.



KALMAN FILTER: ONE FINAL QUANTITY

Making predictions

We know how to update the sequence of state posterior distributions

pselxr, ..o x).

What about predicting x4 ?

s, o) / POt 5P s )1

- / PO ]see1) / P(saalse) plscbar, - xe) dsydsey
— —_— —
N(x;41|Dsi41,V) N(si+1|Cs,Q)  N(se|p',2")

Again, Gaussians are nice because these operations stay Gaussian.

This is a multivariate Gaussian that looks even more complicated than the
previous one (omitted). Simply perform the previous integral twice.



ALGORITHM: KALMAN FILTERING

The Kalman filtering algorithm can be run in real time.

0. Set the initial state distribution p(so) = N(0,I)

1. Prior to observing each new x;, € R? predict
X~ N(u;, 27) (using previously discussed marginalization)
2. After observing each new x, € R? update

psilxry .o yx) = N(u, X3) (using equations on previous slide)



EXAMPLE

Learning state trajectory v N\

Green: True trajectory @/ . ®\\‘
Blue: Observed trajectory @
Red: State distribution

Intuitions about what this is doing:

» In the prior distribution notice that we add Q to the covariance,
p(sl|x17 AR 7xt—1) = N(SZ|CIU/7 Q + CZCT)
This allows the state s, to “drift” away from s,_;.

» In the posterior p(s;|x1,. .., x), x; “pulls” the distribution away.



SOME FINAL MODEL COMPARISONS

s1 s Sn-1 Sn Sn+1 S1 2 Sn-1 Sn Sn+1
I X1 I X2 I Xn-1 I Xn I Xn+1 I X1 I X2 I Xn-1 I Xn I Xn+1

Gaussian mixture model Continuous hidden Markov model
» s, ~ Discrete(r) > s;|s;—1 ~ Discrete(Ay,_,)
> xt|stNN(:uSnEM) > xt|st NN(M‘Y"’E‘Y’)

We saw how the transition from GMM — HMM involves using a Markov
chain to index the distribution on clusters.



SOME FINAL MODEL COMPARISONS

1

S1 S2 Sn-1 Sn Sn+
I X1 I X2 I Xn-1 I Xn I Xn+1 X1 X2

Probabilistic PCA Linear Gaussian Markov model
> 5.~ N(0,0) > silsi—1 ~ N(Csi—1,0)
> X/|s; ~ N(Ds;, V) > x/|s; ~ N(Ds;, V)

There is a similar relationship between probabilistic PCA and the Kalman
filter. (Probabilistic PCA also learns D, while the Kalman filter doesn’t).



EXTENSIONS

There are a variety of extensions to this framework. The equations in the
corresponding algorithms would all look familiar given our discussion.

Extended Kalman filter: Nonlinear Kalman filters use nonlinear function
of the state, h(s,). The EKF approximates k(s,) ~ h(z) + VA(z)(s; — z)

st-‘rl |StNN(DstaQ)7 xl|sl‘NN(h(s1)’V)'

Continuous time: Sometimes the time between observations varies. Let A,
be the time between observation x; and x|, then model

S[+1 |S[ NN(S[,A[Q)7 xt|St NN(DS{, V).

Adding control: In dynamic models, we can add control to the state using a
vector u, whose values we choose (e.g., thrusters).

St+1 |8t ~ N(Cs; + Guy, Q), X | sy ~ N(Ds;, V).



