
COMS 4721: Machine Learning for Data Science

Lecture 22, 4/18/2017

Prof. John Paisley

Department of Electrical Engineering
& Data Science Institute

Columbia University

MARKOV MODELS

s1 s2 s3 s4

The sequence (s1, s2, s3, . . .) has the Markov property, if for all t

p(st|st−1, . . . , s1) = p(st|st−1).

Our first encounter with Markov models assumed a finite state space,
meaning we can define an indexing such that s ∈ {1, . . . , S}.

This allowed us to represent the transition probabilities in a matrix,

Aij ⇔ p(st = j|st−1 = i).

HIDDEN MARKOV MODELS

sn−1 sn sn+1

xn−1 xn xn+1

s1 s2

x1 x2

The hidden Markov model modified this by assuming the sequence of states
was a latent process (i.e., unobserved).

An observation xt is associated with each st, where xt | st ∼ p(x|θst).

Like a mixture model, this allowed for a few distributions to generate the
data. It adds an extra transition rule between distributions.

DISCRETE STATE SPACES

In both cases, the state space was discrete and
relatively small in number.

I For the Markov chain, we gave an example
where states correspond to positions in Rd.

I A continuous hidden Markov model might
perturb the latent state of the Markov chain.

I For example, each si can be modified by
continuous-valued noise, xi = si + εi.

I But s1:T is still a discrete Markov chain.

A12

A23

A31

A21

A32

A13

A11

A22

A33

k = 1

k = 2

k = 3

k =1

k =2

k =3

0 0.5 1
0

0.5

1

DISCRETE VS CONTINUOUS STATE SPACES

Markov and hidden Markov models both assume a discrete state space.

For Markov models:
I The state could be a data point xi (Markov Chain classifier)
I The state could be an object (object ranking)
I The state could be the destination of a link (internet search engines)

For hidden Markov models we can simplify complex data:

I Sequences of discrete data may come from a few discrete distributions.

I Sequences of continuous data may come from a few distributions.

What if we model the states as continuous too?

CONTINUOUS-STATE MARKOV MODEL

Continuous Markov models extend the state space to a continuous domain.
Instead of s ∈ {1, . . . , S}, s can take any value in Rd.

Again compare:
I Discrete-state Markov models: The states live in a discrete space.
I Continuous-state Markov models: The states live in a continuous space.

The simplest example is the process

st = st−1 + εt, εt ∼ N(0, aI).

Each successive state is a perturbed version of the current state.

LINEAR GAUSSIAN MARKOV MODEL

The most basic continuous-state version of the hidden Markov model is
called a linear Gaussian Markov model (also called the Kalman filter).

st = Cst−1 + εt−1︸ ︷︷ ︸
latent process

, xt = Dst + εt︸ ︷︷ ︸
observed process

I st ∈ Rp is a continuous-state latent (unobserved) Markov process

I xt ∈ Rd is a continuous-valued observation

I The process noise εt ∼ N(0,Q)

I The measurement noise εt ∼ N(0,V)

EXAMPLE APPLICATIONS

sn−1 sn sn+1

xn−1 xn xn+1

s1 s2

x1 x2

Difference from HMM: st and xt are both from continuous distributions.

The linear Gaussian Markov model (and its variants) has many applications.

I Tracking moving objects
I Automatic control systems
I Economics and finance (e.g., stock modeling)
I etc.

EXAMPLE: TRACKING

We get (very) noisy measurements of an object’s position in time, xt ∈ R2.

The time-varying state vector is s = [pos1 vel1 accel1 pos2 vel2 accel2]T .

Motivated by the underlying physics, we model this as:

st+1 =



1 ∆t 1
2 (∆t)2 0 0 0

0 1 ∆t 0 0 0
0 0 e−α∆t 0 0 0
0 0 0 1 ∆t 1

2 (∆t)2

0 0 0 0 1 ∆t
0 0 0 0 0 e−α∆t


︸ ︷︷ ︸

≡ C

st + εt

xt+1 =

[
1 0 0 0 0 0
0 0 0 1 0 0

]
︸ ︷︷ ︸

≡ D

st+1 + εt+1

Therefore, st not only approximates where the target is, but where it’s going.

EXAMPLE: TRACKING

THE LEARNING PROBLEM

As with the hidden Markov model, we’re given the sequence (x1, x2, x3, . . .),
where each x ∈ Rd. The goal is to learn state sequence (s1, s2, s3, . . .).

All distributions are Gaussian,

p(st+1 = s|st) = N(Cst,Q), p(xt = x|st) = N(Dst,V).

Notice that with the discrete HMM we wanted to learn π, A and B, where

I π is the initial state distribution

I A is the transition matrix among the discrete set of states

I B contains the state-dependent distributions on discrete-valued data

The situation here is very different.

THE LEARNING PROBLEM

No “B” to learn: In the linear Gaussian Markov model, each state is unique
and so the distribution on xt is different for each t.

No “A” to learn: In addition, each state transition is to a brand new state, so
each st has its own unique probability distribution.

What we can learn are the two posterior distributions.

1. p(st|x1, . . . , xt) : A distribution on the current state given the past.

2. p(st|x1, . . . , xT) : A distribution on each latent state in the sequence

I #1: Kalman filtering problem. We’ll focus on this one today.

I #2: Kalman smoothing problem. Requires extra step (not discussed).

THE KALMAN FILTER

Goal: Learn the sequence of distributions p(st|x1, . . . , xt) given a sequence
of data (x1, x2, x3, . . .) and the model

st+1 | st ∼ N(Cst,Q), xt | st ∼ N(Dst,V).

This is the (linear) Kalman filtering problem and is often used for tracking.

Setup: We can use Bayes rule to write

p(st|x1, . . . , xt) ∝ p(xt|st) p(st|x1, . . . xt−1)

and represent the prior as a marginal distribution

p(st|x1, . . . , xt−1) =

∫
p(st|st−1) p(st−1|x1, . . . , xt−1) dst−1

THE KALMAN FILTER

We’ve decomposed the problem into parts that we do and don’t know (yet)

p(st|x1, . . . , xt) ∝ p(xt|st)︸ ︷︷ ︸
N(Dst,V)

∫
p(st|st−1)︸ ︷︷ ︸
N(Cst−1,Q)

p(st−1|x1, . . . , xt−1)︸ ︷︷ ︸
?

dst−1

Observations and considerations:

1. The left is the posterior on st and the right has the posterior on st−1.

2. We want the integral to be in closed form and a known distribution.

3. We want the prior and likelihood terms to lead to a known posterior.

4. We want future calculations, e.g. for st+1, to be easy.

We will see how choosing the Gaussian distribution makes this all work.

THE KALMAN FILTER: STEP 1

Calculate the marginal for prior distribution
Hypothesize (temporarily) that the unknown distribution is Gaussian,

p(st|x1, . . . , xt) ∝ p(xt|st)︸ ︷︷ ︸
N(Dst,V)

∫
p(st|st−1)︸ ︷︷ ︸
N(Cst−1,Q)

p(st−1|x1, . . . , xt−1)︸ ︷︷ ︸
N(µ,Σ) by hypothesis

dst−1

A property of the Gaussian is that marginals are still Gaussian,∫
N(st|Cst−1,Q)N(st−1|µ,Σ)dst−1 = N(st|Cµ,Q + CΣCT).

We know C and Q (by design) and µ and Σ (by hypothesis).

THE KALMAN FILTER: STEP 2

Calculate the posterior
We plug in the marginal distribution for the prior and see that

p(st|x1, . . . , xt) ∝ N(xt|Dst,V) N(st|Cµ,Q + CΣCT).

Though the parameters look complicated, the posterior is just a Gaussian

p(st|x1, . . . , xt) = N(st|µ′,Σ′)

Σ′ =
[
(Q + CΣCT)−1 + DTV−1D

]−1

µ′ = Σ′
(
DTV−1xt + (Q + CΣCT)−1Cµ

)
We can plug the relevant values into these two equations.

ADDRESSING THE GAUSSIAN ASSUMPTION

By making the assumption of a Gaussian in the prior,

p(st|x1, . . . , xt) ∝ p(xt|st)︸ ︷︷ ︸
N(xt|Dst,V)

∫
p(st|st−1)︸ ︷︷ ︸

N(st|Cst−1,Q)

p(st−1|x1, . . . , xt−1)︸ ︷︷ ︸
N(µ,Σ) by hypothesis

dst−1

we found that the posterior is also Gaussian with a new mean and covariance.

I We therefore only need to define a Gaussian prior on the first state to
keep things moving forward. For example,

p(s0) ∼ N(0, I).

Once this is done, all future calculations are in closed form.

KALMAN FILTER: ONE FINAL QUANTITY

Making predictions
We know how to update the sequence of state posterior distributions

p(st|x1, . . . , xt).

What about predicting xt+1?

p(xt+1|x1, . . . , xt) =

∫
p(xt+1|st+1)p(st+1|x1, . . . , xt)dst+1

=

∫
p(xt+1|st+1)︸ ︷︷ ︸
N(xt+1|Dst+1,V)

∫
p(st+1|st)︸ ︷︷ ︸

N(st+1|Cst,Q)

p(st|x1, . . . , xt)︸ ︷︷ ︸
N(st|µ′,Σ′)

dst dst+1

Again, Gaussians are nice because these operations stay Gaussian.

This is a multivariate Gaussian that looks even more complicated than the
previous one (omitted). Simply perform the previous integral twice.

ALGORITHM: KALMAN FILTERING

The Kalman filtering algorithm can be run in real time.

0. Set the initial state distribution p(s0) = N(0, I)

1. Prior to observing each new xt ∈ Rd predict

xt ∼ N(µx
t ,Σ

x
t) (using previously discussed marginalization)

2. After observing each new xt ∈ Rd update

p(st|x1, . . . , xt) = N(µs
t ,Σ

s
t) (using equations on previous slide)

EXAMPLE

Learning state trajectory

Green: True trajectory

Blue: Observed trajectory

Red: State distribution

Intuitions about what this is doing:

I In the prior distribution notice that we add Q to the covariance,

p(st|x1, . . . , xt−1) = N(st|Cµ,Q + CΣCT).

This allows the state st to “drift” away from st−1.

I In the posterior p(st|x1, . . . , xt), xt “pulls” the distribution away.

SOME FINAL MODEL COMPARISONS

sn−1 sn sn+1

xn−1 xn xn+1

s1 s2

x1 x2

Gaussian mixture model

I st ∼ Discrete(π)

I xt|st ∼ N(µst ,Σst)

sn−1 sn sn+1

xn−1 xn xn+1

s1 s2

x1 x2

Continuous hidden Markov model

I st|st−1 ∼ Discrete(Ast−1)

I xt|st ∼ N(µst ,Σst)

We saw how the transition from GMM→ HMM involves using a Markov
chain to index the distribution on clusters.

SOME FINAL MODEL COMPARISONS

sn−1 sn sn+1

xn−1 xn xn+1

s1 s2

x1 x2

Probabilistic PCA

I st ∼ N(0,Q)

I xt|st ∼ N(Dst,V)

sn−1 sn sn+1

xn−1 xn xn+1

s1 s2

x1 x2

Linear Gaussian Markov model

I st|st−1 ∼ N(Cst−1,Q)

I xt|st ∼ N(Dst,V)

There is a similar relationship between probabilistic PCA and the Kalman
filter. (Probabilistic PCA also learns D, while the Kalman filter doesn’t).

EXTENSIONS

There are a variety of extensions to this framework. The equations in the
corresponding algorithms would all look familiar given our discussion.

Extended Kalman filter: Nonlinear Kalman filters use nonlinear function
of the state, h(st). The EKF approximates h(st) ≈ h(z) +∇h(z)(st − z)

st+1 | st ∼ N(Dst,Q), xt | st ∼ N(h(st),V).

Continuous time: Sometimes the time between observations varies. Let ∆t

be the time between observation xt and xt+1, then model

st+1 | st ∼ N(st,∆tQ), xt | st ∼ N(Dst,V).

Adding control: In dynamic models, we can add control to the state using a
vector ut whose values we choose (e.g., thrusters).

st+1 | st ∼ N(Cst + Gut,Q), xt | st ∼ N(Dst,V).

