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A New Keynesian model

In this section, I present a relatively standard New Keynesian model and show that equilibria in
this economy are isomorphic to ZLB-constrained equilibria in the limit as prices become perfectly
sticky.

A.1 Households

Households i = S, B have period utility functions Ũ(Ci
0, hi

0, θi) (at date 0) and ũ(Ci
0, hi

0) (in subse-
quent periods), where Ci

t is consumption and hi
t is hours worked. I will be interested in a special

case where Ũ(C, h) = U(C − v(h), θ), ũ(C, h) = u(C − v(h)) and we define c = C − v(h) to be

net consumption. Each household’s real income, excluding transfers, is
Wt

Pt
hi

t + πt − Tt where Wt

is the nominal wage, Pt is a price index defined shortly, and πt − Tt is total real profits from the
monopolistically competitive firms, net of the lump sum transfer used to finance subsidies to the
firms. Households trade a nominal bond: di

t is the nominal face value of debt which household i
promises to repay in period t, and 1 + it is the nominal interest rate between periods t and t + 1.
(Since I consider perfect foresight equilibria in the baseline model, allowing households to trade
a real bond would make no difference.) Household i solves:

maxU0(Ci
0, hi

0, θi) +
∞

∑
t=1

βtŨ(Ci
t, hi

t) (1)

di
t+1

1 + it
= di

t + PtCi
t − Tt −Πt −Wthi

t

dB
0 = dS

0 = 0

di
t+1 ≤ Pt+1φt, t = 1, ...
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where Ũ, ũ are strictly concave, strictly increasing in C and decreasing in h, and satisfy Ũch > 0.
Consumption Ci

t is a Dixit-Stiglitz aggregate:

Ci
t =

[∫ 1

0
Ci

t(j)(ε−1)/ε dj
]ε/(ε−1)

(2)

with corresponding price index

Pt =

[∫ 1

0
pt(j)1−ε dj

]1/(1−ε)

(3)

Households’ demand for variety j is given by

Ci
t(j) = Ci

t

(
pt(j)

Pt

)−ε

(4)

Real interest rates are defined by the Fisher equation:

(1 + it) = (1 + rt)
Pt+1

Pt
(5)

Households’ labor supply decision satisfies

ũc +
Wt

Pt
ũh = 0,

replacing ũ with Ũ if t = 0.

A.2 Firms

There is a continuum of monopolistically competitive firms indexed by j ∈ [0, 1] who hire labor
and produce output using the linear technology yt(j) = ht(j). They receive an employment
subsidy τ = 1/ε. In each period t, a fraction α ∈ [0, 1] of firms are unable to change their price,
while 1− α can change their price. The probability of being able to change prices is independent
of the firm’s current price and the date on which it last adjusted prices. All firms who cannot
set prices in period 0 have the same price, P−1. I assume firms discount profits at the riskless
nominal interest rate it.

Firms who can set their price in period t solve

max
pt(j)

∞

∑
s=t

αs−tQt,s(pt(j)−Ws(1− τ))Ys

(
pt(j)

Ps

)−ε

(6)
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where Qt,s =

(
∏s−1

k=t
1

1 + ik

)
. The firm’s first order condition yields

pt(j) =
∑∞

s=t αs−tQt,sYs

(
Ps

Pt

)ε

Ws

∑∞
s=t αs−tQt,sYs

(
Ps

Pt

)ε

pt(j)
Pt

=
∑∞

s=t αs−tQt,sYs

(
Ps

Pt

)ε+1 Ws

Ps

∑∞
s=t αs−tQt,sYs

(
Ps

Pt

)ε

pt(j)
Pt

=
Kt

Ft

where we can define Kt and Ft recursively as

Kt = Yt
Wt

Pt
+

α

1 + it
Πε+1

t+1Kt+1 (7)

Ft = Yt +
α

1 + it
Πε

t+1Ft+1 (8)

The aggregate price level evolves according to

P1−ε
t = αP1−ε

t−1 + (1− α)(p∗t )
1−ε

1 = αΠε−1
t + (1− α)

(
p∗t
Pt

)1−ε

1 = αΠε−1
t + (1− α)

(
Kt

Ft

)1−ε

(9)

A.3 Monetary policy

The monetary authority sets interest rates according to a Taylor rule, modified to take account of
the zero lower bound:

1 + it = max
{
(1 + rn

t )Π
φπ

t , 1
}

(10)

where φπ > 1 and rn
t is the natural rate of interest, defined as the equilibrium real interest rate

in the economy with α = 0 (perfectly flexible prices).

A.4 Market clearing

Goods and labor markets clear (which ensures that the asset market also clears, by Walras’ Law):

CS
t + CB

t = 2Yt

= 2
[∫ 1

0
yt(j)(ε−1)/ε dj

]ε/(ε−1)

= 2
[∫ 1

0
ht(j)(ε−1)/ε dj

]ε/(ε−1)

2
∫ 1

0
ht(j)dj = hS

t + hB
t
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We can combine these conditions as

CS
t + CB

t = 2Yt =
hS

t + hB
t

∆t
(11)

where we define the measure of price dispersion

∆t =
∫ 1

0

(
pt(j)

Pt

)−ε

dj ≥ 1

which evolves according to

∆t = (1− α)

(
Kt

Ft

)−ε

+ α∆t−1Πε
t (12)

with initial condition ∆−1 = 1.

A.5 Equilibrium and isomorphism to ZLB-constrained equilibrium

I define equilibrium in the standard way.

Definition A.1. An equilibrium is a sequence {CS
t , CB

t , hS
t , hB

t , dS
t , dB

t ,
Wt

Pt
, Tt, Yt, ∆t, Πt, Ft, Kt}∞

t=0 such

that:

1. {Ci
t, hi

t, di
t} solves household i’s problem (1), for i = S, B

2. {∆t, Πt, Ft, Kt} satisfy (7), (8), (12), (9)

3. Interest rates {it} satisfy the modified Taylor rule (10)

4. The market clearing conditions (11) is satisfied.

I now present the main result of this Appendix, which states that equilibria of the New
Keynesian model are isomorphic to ZLB-constrained equilibrium when prices are fixed and there
is no wealth effect on labor supply.

Proposition A.2. Suppose preferences have the form Ũ(C, h) = U(C − v(h), θ), ũ(C, h) = u(C −
v(h)), and suppose α = 1. Then every equilibrium of the New Keynesian model is isomorphic to a
ZLB-constrained equilibrium with ci

t = Ci
t − v(hi

t), Πt = 1, yt = ht − v(ht), y∗ = h∗ − v(h∗), where
v′(h∗) = 1, and it = rt.

Proof. When α = 1, firms never change their prices, so Πt = ∆t = 1, ∀t. Since there is no inflation,
real interest rates equal nominal interest rates, and are given by

rt = max{rn
t , 0}

Using the definition of net consumption and the fact that ∆t = 1, we can write the resource
constraint

cS
t + cB

t = 2(ht − v(ht)) = 2yt

Note that by definition of y∗, we have yt ≤ y∗.

Real wages satisfy
Wt

Pt
= v′(ht), where ht = hS

t = hB
t is the number of hours supplied by

each household. In an economy with α = 0, we would have
Wt

Pt
= v′(ht) = 1, i.e. ht = h∗ and
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yt = y∗. We know that whenever rn
t ≥ 0, rt = rn

t and yt = y∗. It follows that rt(y∗ − yt) = 0, as
required.

Given our assumption that the central bank follows a Taylor rule, equilibrium in the New
Keynesian model would almost be isomorphic to the ZLB-constrained equilibrium even if α < 1.
Any equilibrium of the New Keynesian model with zero inflation (Πt = 1, ∀t) is isomorphic to
a ZLB-constrained equilibrium. However, whenever the ZLB binds at date 1, and output falls
below potential, there is deflation. This causes relative prices to become dispersed. Under Calvo
pricing, this dispersion in relative prices is only eliminated in the limit as t→ ∞. For this reason,
if nothing else, output is below potential even at date 2, and the economy does not immediately
reach steady state: y2 < y∗, yt → y∗ as t→ ∞.

Note also that with α = 1 and the quasilinear preferences considered here, this Taylor rule is,
trivially, optimal monetary policy. Since prices never adjust, the best that monetary policy can
do is to set real interest rates equal to the natural rate, ensuring yt = y∗, whenever this does not
violate the zero lower bound. There is no advantage to setting yt < y∗ for any t ≥ 2: this only
makes the ZLB tighter.

B Alternative microfoundations

In this section I present two alternative economies providing a microfoundation for this equilib-
rium concept. The first draws on the extensive literature on rationing or non-Walrasian equilibria.
The second is an economy with downward nominal wage rigidity drawing on Schmitt-Grohé and
Uríbe [2011].

B.1 Non-Walrasian equilibrium

I briefly show how the ZLB-constrained equilibrium presented in the main text can be interpreted
as a rationing or non-Walrasian equilibria (see e.g. Benassy [1993] for a survey of this extensive
literature).

As in the main text, households solve

maxU(ci
0, θi) +

∞

∑
t=1

βtu(ci
t) (13)

s.t. ci
t = yi

t − di
t +

di
t+1

1 + rt
(14)

di
0 = 0, ∀i (15)

di
t+1 ≤ φt, t = 1, ... (16)

In a non-Walrasian equilibrium, prices are usually treated as exogenously fixed. Agents send
quantity signals indicating how much they would like to supply and demand. They take as
given not only prices, but also perceived quantity constraints operating on various markets. In
equilibrium, the quantity of each good actually transacted is equal to the minimum of desired
supply and desired demand. Agents’ perceived quantity constraints are consistent with the
amount actually transacted: the total amount of each good sold is rationed between all sellers
according to an exogenously given rationing scheme (and the same goes for buyers).
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In this economy, households always inelastically supply their total potential output y∗.1 They
receive quantity signals yS

t , yB
t indicating how much they are able to sell in each period; given

these signals and the path of interest rates, they choose consumption, and send demand signals
cS

t , cB
t . Output is the minimum of demand and supply:

2yt = min{cS
t + cB

t , 2y∗}

I assume a proportional rationing scheme: in equilibrium, the perceived quantity constraints are
yB

t = yB
t := yt. Finally, I assume that interest rates clear markets whenever this does not violate

the ZLB. Formally:

Definition B.1. A non-Walrasian equilibrium is {ci
t, di

t, yt, rt} such that

1. agents maximize (13) s.t. (14), (15), (16)

2. output is the minimum of demand and supply:

2yB
t = 2yS

t = 2yt = min{cS
t + cB

t , 2y∗}

3. rt ≥ 0. If rt > 0, cS
t + cB

t = 2yt = 2y∗.

When interest rates can adjust to clear markets, they do, and agents sell all of their endow-
ment. When the ZLB prevents interest rates from falling enough to clear markets, agents sell less
than their total endowment, and income yt is the variable that adjusts to clear markets. Clearly,
this definition of equilibrium is isomorphic to the ZLB-constrained equilibrium defined in the
main text.

B.2 Economy with rigid wages

I now show how the ZLB-constrained equilibrium can be interpreted as an economy with down-
ward nominal wage rigidity.

Households have preferences as in the main text, but now inelastically supply labor h̄. Com-
petitive firms hire labor and produce the consumption good using a linear technology, yt = ht.
Nominal wages are downwardly rigid as in Schmitt-Grohé and Uríbe [2011]:

Wt ≥ γWt−1, ht ≤ h̄, (h̄− ht)(Wt − γWt−1) (17)

where γ > 0 indexes the degree of nominal rigidity. When the wage rigidity constraint binds,
households are equally rationed in the labor market: hS

t = hB
t = ht. Since firms are competitive,

they set Pt = Wt. We define Πt =
Pt

Pt−1
. Households solve

maxU(ci
0, θi) +

∞

∑
t=1

βtu(ci
t) (18)

di
t+1

1 + it
= di

t + Ptci
t −Wtht

dB
0 = dS

0 = 0

di
t+1 ≤ Pt+1φt, t = 1, ...

1I assume that each borrower (or saver) cannot consume her own output, but can consume the endowment of other
borrowers and savers.
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The monetary authority sets interest rates according to a Taylor rule, modified to take account
of the zero lower bound:

1 + it = max
{
(1 + rn

t )Π
φπ

t , 1
}

(19)

where φπ > 1 and rn
t is the natural rate of interest, defined as the equilibrium real interest rate

in the economy with γ = 0 (no nominal wage rigidity).
The market clearing condition is

cS
t + cB

t = 2ht (20)

Definition B.2. An equilibrium is a collection {cS
t , cB

t , dS
t , dB

t , ht, Πt,
Wt

Pt
, it} such that

1. {Ci
t, hi

t, di
t} solves household i’s problem (18), for i = S, B

2. Firms maximize profits:
Wt

Pt
= 1

3. Wages satisfy (17)

4. Interest rates {it} satisfy the modified Taylor rule (19)

5. The market clearing condition (20) is satisfied.

Proposition B.3. When γ = 1, every ZLB-constrained equilibrium is an equilibrium of the rigid wage
economy, with y∗ = h̄.

Proof. Take any ZLB-constrained equilibrium {cS
t , cB

t , dS
t , dB

t , yt, rt}. Set it = rt, ht = yt, Πt =

1,
Wt

Pt
= 1. Since there is no inflation, (17) is satisfied. Since it = rt, either interest rates are zero,

or they are at a level which ensures ht = h̄, as in the economy with γ = 0. So the modified
taylor rule (19) is satisfied. Finally, by definition of a ZLB constrained equilibrium, households
optimize and markets clear.

Note that unlike in the New Keynesian economy with α = 1, here the Taylor rule is not
optimal monetary policy. In the economy with rigid wages, there are no costs associated with

inflation, and the monetary authority could costlessly circumvent the ZLB by setting Π2 =
1

1 + rn
1

.

The remainder of this online appendix presents proofs of Propositions and Lemmas in the
main text.

C Proof of Proposition 2.3.

Suppose dB
1 ≤ φ. I claim that the liquidity constraint never binds. In this case, equilibrium must

satisfy each agent’s Euler equations and market clearing:

u′(ci
t) = β(1 + rt)u′(ci

t+1), i = S, B, t = 1, 2, ...

cS
t + cB

t = 2y∗, t = 1, 2, ...

The proposed allocation satisfies all these constraints, and has di
t = di

1 ≤ φ, ∀t > 1, so the
liquidity constraint is indeed slack.
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Even if dB
1 > φ, then since dB

2 ≤ φ, an identical argument shows that there exists an equilib-
rium in which the economy enters steady state at date 2. Clearly, borrowers must be constrained
at date 1: if not, we know they would attempt to keep debt constant, dB

2 = dB
1 , which violates the

liquidity constraint since dB
1 > φ. Substituting the binding liquidity constraint into borrowers’

budget constraint, we have

cB
1 = y∗ − dB

1 +
φ

1 + r1

Market clearing means that

cS
1 = y∗ + dB

1 −
φ

1 + r1
, cS

2 = y∗ +
r∗

1 + r∗
φ

Since savers are unconstrained, their Euler equation must hold with equality:

u′(cS
1) = β(1 + r1)u′(cS

2)

u′
(

y∗ + dB
1 −

φ

1 + r1

)
= β(1 + r1)u′ (y∗ + (1− β)φ)

This implicitly defines r1, as claimed. So we are done.

D Proof of Proposition 3.2.

Combining borrowers’ and savers’ date 0 Euler equations, we have

Uc(cB
0 , θB)

u′(cB
1 )

=
Uc(cS

0 , θS)

u′(cS
1)

As θB → ∞, cB
1 → 0, and Assumption 3.1 guarantees that the ZLB binds.

E Proof of Proposition 3.7.

Part 3. is immediate: if the ZLB does not bind in equilibrium, the transfer required to restore full
employment is zero, which is (trivially) incentive compatible.

To prove parts 1 and 2, I show that if the transfer is not incentive compatible given θB, it is
not incentive compatible given θ′B > θB. It is sufficient to show that cB

0 (θ
′
B) > cB

0 (θB). Suppose
not, and cS

0(θ
′
B) > cS

0(θB); then r0(θ′B) < r0(θB), since we know the ZLB binds in both regimes.

1 + r0 =
Uc(cS

0 , θS)

βu′(c̄S
1)

Consequently, d1(θ
′
B) = (1 + r0(θ′B))(y

∗ − cS
0(θ
′
B)) < (1 + r0(θB))(y∗ − cS

0(θB)) = d1(θB). In a
ZLB-constrained equilibrium, cB

1 = c̄S
1 + 2φ − 2d1, so cB

1 (θ
′
B) > cB

1 (θB). But this contradicts the
equilibrium condition

Uc(cB
0 , θB)

u′(cB
1 )

=
Uc(cS

0 , θS)

u′(cS
1)

So cB
0 is increasing in θB.
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S’s gain from mimicking B, given that B receives a transfer which restores full employment
and gives him consumption 2y∗ − c̄S

1 , is

U(cB
0 , θS)−U(2y∗− cB

0 , θS) + β[u(2y∗− c̄S
1)− u(c̄S

1)] +
β2

1− β
[u(y∗− (1− β)φ)− u(y∗+ (1− β)φ)]

which is increasing in cB
0 . It follows that if the transfer is not incentive compatible given θB, it is

not incentive compatible given θ′B > θB.
Finally,

lim
β→1

u(y∗ − (1− β)φ)− u(y∗ + (1− β)φ)

1− β
= −2u′(y∗)φ

so the last two terms in the above expression go to zero as β→ 1, φ→ 0. By continuity, part 4 of
the Proposition follows.5

F Proof of Proposition 4.1.

The Pareto problem is

max α

{
U(cS

0 , θS) + βu(cS
1) +

β2

1− β
u(cS

2)

}
+ (1− α)

{
U(cB

0 , θB) + βu(cB
1 ) +

β2

1− β
u(cB

2 )

}
(21)

s.t. cS
0 + cB

0 ≤ 2y∗ (RC0)

cS
1 + cB

1 ≤ 2y∗ (RC1)

cS
2 + cB

2 = 2y∗ (RC2)

cB
2 ≥ y∗ − (1− β)φ (BC)

u′(cS
1) ≥ βu′(cS

2) (ZLB)

U(cS
0 , θS) + βu(cS

1) +
β2

1− β
u(cS

2) ≥ U(cB
0 , θS) + βu(cB

1 ) +
β2

1− β
u(cB

2 ) (ICS)

U(cB
0 , θB) + βu(cB

1 ) +
β2

1− β
u(cB

2 ) ≥ U(cS
0 , θB) + βu(cS

1) +
β2

1− β
u(cS

2) (ICB)

Lemma F.1. (RC2) binds.

Proof. Suppose not: consider the following deviation. Increase both cS
2 and cB

2 , keeping u(cS
2)−

u(cB
2 ) fixed; this satisfies all constraints, and increases utility, a contradiction. A corollary is that

cS
2 ≥ cB

2 .

Lemma F.2. u′(ci
1) > βu′(ci

2) for at least one agent.

Proof. If not, then ci
1 > ci

2 for i = S, B; summing, we have cS
1 + cB

1 > cS
2 + cB

2 = 2y∗ (by the above
result), which is infeasible.

Lemma F.3. If (ZLB) binds, (BC) binds.

Proof. Suppose by contradiction that (ZLB) binds but (BC) does not. Consider the following
deviation: increase cS

2 by ε > 0 and reduce cB
2 by the same amount, and increase cB

1 by δ and
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reduce cB
2 by the same amount. This deviation is feasible. Choose ε and δ so that

u(cS
1 − δ)+

β

1− β
u(cS

2 + ε)− [u(cB
1 + δ)+

β

1− β
u(cS

2 − ε)] = u(cS
1)+

β

1− β
u(cS

2)− [u(cB
1 )+

β

1− β
u(cS

2)]

By the Implicit Function Theorem, this defines δ as an increasing function of ε in the neighbor-
hood of (δ, ε) = (0, 0). To first order, we have

δ ≈ β

1− β

u′(cS
2) + u′(cB

2 )

u′(cS
1) + u′(cB

1 )

To first order, the effect on S’s utility is

β

1− β
u′(cS

1)

[
u′(cS

2)

u′(cS
1)
− u′(cS

2) + u′(cB
2 )

u′(cS
1) + u′(cB

1 )

]

By assumption,
u′(cS

2)

u′(cS
1)

=
1
β

, which implies that
u′(cB

2 )

u′(cB
1 )

<
1
β

. Thus the change in S’s utility is

positive. Since by construction the difference between S’s utility and B’s utility is unchanged, B’s
utility also increases. Thus the deviation yields a strictly higher value of the objective function,
which contradicts the original allocation being optimal.

Lemma F.4. cB
1 ≤ cS

1 .

Proof. Suppose by contradiction that cB
1 > cS

1 . Then cS
1 < y∗; since we know that cS

2 ≥ y∗, (ZLB)
cannot bind, and the following deviation is feasible.. Increase cS

1 by δ, decreasing cB
1 by the same

amount, and increase cB
1 by ε, decreasing cS

1 by the same amount. Choose ε and δ as before.
Again, this defines δ as an increasing function of ε in the neighborhood of (δ, ε) = (0, 0). To first
order, the effect on S’s utility is

β

1− β
u′(cS

1)

[
u′(cS

2) + u′(cB
2 )

u′(cS
1) + u′(cB

1 )
− u′(cS

2)

u′(cS
1)

]

Since cS
1 < cS

2 and cB
1 > cB

2 , this expression is positive. So utility increases for both S and B, which
contradicts the original allocation being optimal.

Lemma F.5. At most one incentive constraint binds.

Proof. If (by contradiction) (ICS) and (ICB) both hold with equality at an optimum, then subtract-
ing one constraint from the other, we have

U(cS
0 , θS)−U(cS

0 , θB) = U(cB
0 , θS)−U(cB

0 , θB)

Since Ucθ > 0, this implies cS
0 = cB

0 . Since cB
1 ≤ cS

1 , cB
2 ≤ cS

2 , we must have cS
1 = cB

1 and cS
2 = cB

2
(otherwise, B would clearly prefer S’s allocation). Thus (ZLB) is slack. To show that this allocation
is not optimal, consider the following deviation: increase cB

0 by ε > 0, decreasing cS
0 by the same

amount, and increase cS
1 by δ > 0, decreasing cB

1 by the same amount. Choose

Uc(cS
0 , θS)

βu′(cS
1)

<
δ

ε
<

Uc(cB
0 , θB)

βu′(cB
1 )
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This deviation increases utility for both agents, and is feasible, because it relaxes both incen-
tive compatibility constraints. This contradicts the assumption that the original allocation was
optimal.

Lemma F.6. (RC0) binds.

Proof. Forming the Lagrangian, the first order necessary conditions for a maximum are

αUc(cS
0 , θS)− λ0 + µSUc(cS

0 , θS)− µBUc(cS
0 , θB) = 0

(1− α)Uc(cB
0 , θB)− λ0 − µSUc(cB

0 , θS) + µBUc(cB
0 , θB) = 0

αu′(cS
1)− λ1 + ζu′′(cS

1) + (µS − µB)u′(cS
1) = 0

(1− α)u′(cB
1 )− λ1 − (µS − µB)u′(cB

1 ) = 0

αu′(cS
2)− λ2 − (1− β)ζu′′(cS

2) + (µS − µB)u′(cS
2) = 0

(1− α)u′(cB
2 )− λ2 + ψ− (µS − µB)u′(cB

2 ) = 0

where λ0, βλ1,
β2

1− β
λ2, ψ, βζ, µS, µB are the multipliers on (RC0), (RC1), (RC2), (BC), (ZLB), (ICS),

(ICB) respectively.
Since at most one incentive constraint binds, µS, µB ≥ 0, with at least one equality. It follows

that either αUc(cS
0 , θS)− λ0 ≥ 0, or (1− α)Uc(cB

0 , θB)− λ0 ≥ 0, or both. Since Uc > 0, this implies
λ0 > 0. Thus (RC0) binds.

Lemma F.7. If (RC1) is slack, (ICS) and (ZLB) both bind.

Proof. If(RC1) is slack, then λ1 = 0, and

αu′(cS
1) + ζu′′(cS

1) + (µS − µB)u′(cS
1) = 0

(1− α)u′(cB
1 )− (µS − µB)u′(cS

1) = 0

From the second equation, we must have µS > 0, so µB = 0. From the first equation, since
u′′(cS

1) < 0, we must have ζ > 0. Thus (ICS) and (ZLB) bind.

Supose the incentive constraints do not bind. Define the functions st(α), t = 0, 1, 2 to solve

αUc(s0(α), θS) = (1− α)Uc(2y∗ − s0(α), θB)

αu′(st(α)) = (1− α)u′(2y∗ − st(α)), t = 1, 2

It is straighforward to show that in a relaxed problem without incentive constraints,

cS
0 = 2y∗ − cB

0 = g0(α)

cS
1 = 2y∗ − cB

1 = min{g1(α), c̄S
1}

cS
2 = 2y∗ − cB

2 = min{g2(α), c̄S
2}

where c̄S
2 = y∗ + (1− β)φ, u′(c̄S

1) = βu′(c̄S
2). This defines cS

0 , cS
1 , cS

2 as increasing functions of α,
with cS

0 strictly increasing. S’s gain from mimicking B is therefore a decreasing function of α. As
α → 0, Uc(cS

0 , θS) → ∞ and U(cS
0 , θS) → −∞. So there exists αS > 0 such that (ICS) just holds

and (ICB) is slack. For all α < αS, this allocation would violate (ICS) but would satisfy (ICB). An
identical argument shows that there exists αB < 1 such that (ICB) just holds and (ICS) is slack.
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G Proof of Proposition 4.2.

Lemma G.1. Define the date 1 value function

V(ai
1) = max

{ci
t,d

i
t+1}∞

t=1

∞

∑
t=1

βt−1u(ci
t) (22)

s.t.ci
1 = y1 + ai

1 +
di

2
1 + r1

(23)

ci
t = yt − di

t +
di

t+1

1 + rt
, t ≥ 2 (24)

di
t ≤ φ, t ≥ 2 (25)

{ci
t, di

t+1}∞
t=0 solves i’s problem, given {yt, rt} and T(·), if and only if:

1. ci
0, di

1 solve

max
ci

0,di
1

U(ci
0, θi) + βV(T(di

1)− di
1)

s.t. ci
0 = y0 +

di
1

1 + r0

2. {ci
t, di

t+1}∞
t=1 solve (22), given ai

1 = T(di
1)− di

1.

Proof. The proof is standard, and is therefore omitted.

Lemma G.2. In any equilibrium with transfers, for all t ≥ 2 and for all i, rt = r∗ = β−1 − 1, di
t = di

2,
ci

t = ci
2 = y∗ − (1− β)di

2.

Proof. First, suppose that households solve a relaxed problem in which φt = ∞ for all t ≥ 3. In
this case, household first order conditions yield

u′(ci
t) = β(1 + rt)u′(ci

t+1)φ for all t ≥ 2

I will show that the borrowing constraint does not bind, so households are indeed liquidity
unconstrained after date 2.

It is straightforward to see that if rt = r∗, ∀t ≥ 2, the proposed allocation uniquely satisfies
these first order conditions. Suppose by contradiction that there is also an equilibrium with
rt > r∗ for some t ≥ 2. Then for each household i, ci

t < ci
t+1. Integrating, we have yt =

∫
ci

t di <∫
ci

t+1 di = y∗. So yt < y∗, which implies rt = 0 by the definition of ZLB-constrained equilibrium,
a contradiction.

Suppose by contradiction that rt < r∗. Then a similar argument implies that yt+1 =
∫

ci
t+1 di <

y∗ and rt+1 = 0. Iterating forward, we see that we must have rt+s = 0, yt+s < y∗ for all s ≥ 1.
This deflationary equilibrium is clearly Pareto inferior to an equilibrium with yt = y∗, so we can
rule this equilibrium out when considering optimal policy.2

From the budget constraints, it follows that ci
t = ci

2 = y∗ − (1− β)di
2, di

t+1 = di
t, for all t ≥ 2.

Since di
2 ≤ φ, households’ unconstrained borrowing decisions happen to satisfy the borrowing

constraint, as claimed.
2Equivalently, we could append to our definition of equilibrium the condition that limt→∞ yt = y∗.
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Lemma G.3. In the two-type economy, {ci
t} can be implemented as an equilibrium with transfers if and

only if there exists r1 such that

cS
0 + cB

0 ≤ 2y∗ (26)

r1 ≥ 0, cS
1 + cB

1 ≤ 2y∗, with at least one equality (27)

cS
2 + cB

2 = 2y∗ (28)

u′(ci
1) ≥ β(1 + r1)u′(ci

2), ci
2 ≥ y∗ − (1− β), with at least one equality, i = S, B (29)

U(cS
0 , θS) + βu(cS

1) +
β2

1− β
u(cS

2) ≥ U(cB
0 , θS) + βu(cB

1 ) +
β2

1− β
u(cB

2 ) (30)

U(cB
0 , θB) + βu(cB

1 ) +
β2

1− β
u(cB

2 ) ≥ U(cS
0 , θB) + βu(cS

1) +
β2

1− β
u(cS

2) (31)

Proof. First I show that these conditions are necessary for implementability. Suppose {ci
t, di

t+1, rt, yt}
is an equilibrium with transfers, given some policy T(·). (26) and (28) are satisfied by definition.
By Lemma G.2, the economy enters a steady state at date 2 with full employment, thus (27) is
satisfied. (29) describes necessary conditions for optimality in the household problem. Finally,
the incentive compatibility constraints (30), (31) follow from a standard mimicking argument.S’s
allocation, cS, is feasible for B. If cB is optimal for B, it must give at least as much utility to B as
he would get from cS, which is also feasible. The same argument applies for S.

Next, I show that conditions (26)-(31) are sufficient for implementability. Let {ci
t}, r1 satisfy

these conditions. Set 2yt = cS
t + cB

t for all t and set rt = r∗ for all t ≥ 2. Set di
t =

y∗ − ci
2

1− β
, ∀t ≥ 2.

If yt < y∗, set r0 = 0, otherwise choose any r0 ≥ 0.
It is clear that all equilibrium conditions are satisfied, except, possibly, the condition that for

i = S, B, ci
0, di

1 solve (22). Let Ui = U(ci
0, θi) + βu(ci

1) +
β2

1− β
u(ci

2) be the utility that each agent

gets from her allocation. Define ai
1 = ci

1 − y1 −
di

2
1 + r1

. For each i = S, B, define the set

V i = {(c, a) ∈ R2 : U(c, θi) + βV(a) ≤ Ui}

By construction, V i is a closed set and ci
0, ai

1 is contained in its boundary. Let

V = VS ∩ VB = {(c, a) ∈ R2 : U(c, θi) + βV(a) ≤ Ui, i = S, B}

be the set of allocations which both agents find weakly inferior to their equilibrium allocations.
By (30) and (31), the boundary of V contains cS

0 , aS
1 and cB

0 , aB
1 . To implement the desired equilib-

rium, we can offer households any subset of V which contains both their equilibrium allocations.
Let a(c) be any function satisfying

(c, a(c)) ∈ V , ∀x

ai
1 = a(ci

0), i = S, B

It is immediate that
ci

0 ∈ arg max
c

U(c, θi) + βV(a(c))

13



Define T(d) = d + a

(
y0 +

di
1

1 + r0

)
. We have immediately that

ci
0, di

1 ∈ arg max
c,a

U(c, θi) + βV(T(d)− d)

s.t. ci
0 = y0 +

di
1

1 + r0

Since it is clear that these transfer functions satisfy the government budget constraint, we are
done.

Lemma G.4. In any implementable allocation, cB
0 ≥ cS

0 , cB
t ≤ cS

t for t ≥ 1, and S is unconstrained at
date 1.

Proof. Combining the incentive constraints,

U(cB
0 , θB)−U(cB

0 , θS) ≥ U(cS
0 , θB)−U(cS

0 , θS)

Since Ucθ > 0 and θB > θS, this implies cB
0 ≥ cS

0 .
If no agent is constrained at date 1, then ci

1 = ci
t for i = S, B, t ≥ 1, and we cannot have

cB
1 > cS

1 : otherwise S would strictly prefer B’s allocation. Suppose B is constrained at date 1.
Then by Lemma (G.2),

cB
2 = y∗ − (1− β)φ ≤ y∗ + (1− β)φ = cS

2

Since B is constrained and S is not,

u′(cB
1 )

u′(cB
2 )

>
u′(cS

1)

u′(cS
2)

= β(1 + r1)

I claim that β(1 + r1) < 1. If not, then
u′(cB

1 )

u′(cB
2 )

> 1,
u′(cS

1)

u′(cS
2)
≥ 1, which implies cB

2 > cB
1 , cS

2 ≥ cS
1 .

Summing, we have y1 < y2 ≤ y∗. But this is a contradiction, since r1 > 0 and we must have
y1 = y∗.

Since β(1 + r1) < 1, it follows that cS
1 > cS

2 ≥ y∗. Since cS
1 + cB

1 ≤ y∗, we have immediately
that cB

1 < cS
1 .

Finally, suppose (by contradiction) that S is constrained at date 1. An identical argument
shows that cS

1 < cB
1 , cS

t ≤ cB
t for t ≥ 2. Since cB

0 ≥ cS
0 , this is a contradiction, because S would

strictly prefer B’s allocation.

Corollary G.5. In the two-type economy, {ci
t} can be implemented as an equilibrium with transfers if

and only if (26), (28), (30), (ICB) are satisfied, together with

u′(cS
1) ≥ βu′(cS

2), cS
1 + cB

1 ≤ 2y∗, with at least one equality (32)

u′(cB
1 )

βu′(cB
2 )
≥

u′(cS
1)

βu′(cS
2)

, cB
2 ≥ y∗ − (1− β)φ, with at least one equality (33)

Proof. Since S is always unconstrained, r1 =
u′(cS

1)

βu′(cS
2)

, and (32) is equivalent to (27). For the same

reason, (33) is equivalent to (29) holding for B. Clearly if the allocation is implementable, then
S is unconstrained and cS

2 ≥ cB
2 ≥ y∗ − (1− β)φ. Take any allocation satisfying the equations: it

14



remains to show that (29) holds for S. By construction, the Euler equation inequality is satisfied,
so it is only necessary to show that cS

2 ≥ y∗ − (1− β)φ. Suppose not: then cB
2 > y∗ + (1− β)φ,

and so
u′(cB

1 )

βu′(cB
2 )

=
u′(cS

1)

βu′(cS
2)

by (33). Thus cB
2 > cS

2 implies cB
1 > cS

1 . But incentive compatibility

implies that cB
0 , cS

0 , so the allocation cannot satisfy (30), a contradiction.

I now show that we can neglect the first and last parts of (33), and the complementary slack-
ness condition in (32), in the Pareto problem.

Lemma G.6. Suppose {ci
t} solves the relaxed Pareto problem (21). Then it satisfies (33).

Proof. First, I show that we can never have a solution to (21) with
u′(cB

1 )

βu′(cB
2 )

<
u′(cB

1 )

βu′(cB
2 )

. Suppose by

contradiction that we have a solution in which this inequality holds. Then by Lemma (G.4), (ZLB)
cannot hold with equality, and ζ = 0 in the first order conditions for a maximum. Combining
these conditions, we have

u′(cB
1 )

u′(cB
2 )

=
λ1

λ2 − ψ
≥ λ1

λ2
=

u′(cS
1)

u′(cS
2)

,

a contradiction.

Next, I show that we can never have
u′(cB

1 )

βu′(cB
2 )

>
u′(cB

1 )

βu′(cB
2 )

and cB
2 > y∗ − (1− β)φ. If we had

such a solution, then by Lemma (F.3), (BC) and (ZLB) will both be slack, and the first order

conditions imply
u′(cS

1)

u′(cS
2)

=
u′(cB

1 )

u′(cB
2 )

.

Finally, we know by Lemma (F.7) that if (RC1) is slack, (ZLB) must bind, thus the comple-
mentary slackness condition in (32) is satisfied.

Proposition 4.2 follows.

H Proof of Proposition 4.4.

Lemma H.1. Suppose {ci
t} solves (21). Define ai

1 = ci
1 − y1 −

di
2

1 + r1
.

Take any transfer function T and interest rate r0 ≥ 0. Define the associated net wealth function

a(c) := T((1 + r0)(c− y∗))− (1 + r0)(c− y∗)

Sufficient conditions for T, r0 to implement {ci
t} are that:

1. a(ci
0) = ci

1 − y1 +
ci

2 − y∗

(1 + r1)(1− β)
for i = S, B, and

2. for all c,

(c, a(c)) ∈ V = VS ∩ VB = {(c, a) ∈ R2 : U(c, θi) + βV(a) ≤ Ui, i = S, B}

Proof. Suppose {ci
t} solves (21). Then by Proposition 4.2, for some transfer function T∗(·) and

some {r∗t , yt, di
t}, T∗, {ci

t, di
t+1, r∗t , yt} is an equilibrium with transfers. Let T, r0 satisfy the condi-

tions in the Lemma. I will show that if we replace T∗ with T and replace r∗0 with r0, keeping all
other variables the same, we have an equilibrium with transfers.
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If the conditions in the Lemma are satisfied, then for each i,

ci
0 ∈ arg max

c
U(c, θi) + βV(a(c))

In other words,

ci
0, di

1 ∈ arg max
c,a

U(c, θi) + βV(T(d)− d)

s.t. ci
0 = y0 +

di
1

1 + r0

Defining di
1 = (1 + r0)(ci

0 − y∗), we have

∑
i=S,B

T(di
1) = ∑

i=S,B
ai

1 + ∑
i=S,B

di
1

= ∑
i=S,B

(
ci

1 − y1 +
ci

2 − y∗

(1 + r1)(1− β)

)
+ ∑

i=S,B
(1 + r0)(ci

0 − y∗)

= 0

So the government budget constraint is satisfied. The remaining conditions are satisfied by
assumption.

Lemma H.2. Let (c, a), (c′, a′) be two allocations with c′ > c. If U(c, θS) + βV(a) ≥ U(c′, θS) +
βV(a′), then U(c, θB) + βV(a) > U(c′, θB) + βV(a′).

Proof. This is immediate, since Ucθ > 0 and θB > θS.

Lemma H.3. If (ICS) binds, the solution to (21) can be implemented with a debt relief transfer function.

Proof. The a(c) function associated with a debt relief transfer function has the form

a(c) = (1 + r0)(c− y∗)− T̄ if c ≤
¯
c
= (1 + r0)(¯

c− y∗)− T̄ if c ∈ [
¯
c, c̄]

= (1 + r0)(¯
c− y∗)− T̄ − (1 + τ)(1 + r0)(c− c̄) if c > c̄

for some T̄ > 0, c̄ >
¯
c.

Let {ci
t} be a solution to (21) in which (ICS) binds. Set y1 =

1
2
(cS

1 + cB
1 ), 1 + r1 =

u′(cS
1)

βu′(cS
2)

and

c̄ = cB
0

r0 =
Uc(cS

0 , θS)

βu′(cS
1)
− 1

τ =
Uc(cB

0 , θB)

β(1 + r0)u′(cB
1 )
− 1

T̄ = (1 + r0)(y∗ − cS
0) + y1 − cS

1 +
y∗ − cS

2
(1 + r1)(1− β)

Clearly neither agent will ever choose c ∈ (
¯
c, c̄). S prefers cS

0 to any other point c ≤
¯
c, since the

budget set is linear in this range and the objective function is concave. By the same arguments, B
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prefers cB
0 to any other c ≥ c̄. Since S is indifferent between cS

0 and cB
0 , S prefers cB

0 (and therefore
cS

0 ) to any c > c̄, by Lemma H.2. Since S is indifferent between these points, B strictly prefers cB
0

to cS
0 , and therefore to any c <

¯
c.

The following assumption is sufficient to ensure that the competitive equilibrium is unique.

Assumption H.4. −u′′(c)
u′(c)

is nonincreasing in c. If cB
0 > cS

0 , then −Ucc(cB
0 , θB)

Uc(cB
0 , θB)

< −Ucc(cS
0 , θS)

Uc(cS
0 , θS)

.

Lemma H.5. R(α) :=
Uc(cS

0(α), θS)

βu′(cS
1)

is decreasing in α on [αS, αB]. T(α) := R(α)(y∗ − cS
0(α))− aS

1(α)

is decreasing in α on [αS, αB]. T(αS) > 0 > T(αB). There exists ᾱ ∈ (αS, αB) such that T(ᾱ) = 0.

Proof. I will show that r = ln R is decreasing in a = ln α− ln(1− α). r(a) is defined by

r(a) = ln Uc(cS
0(a), θS)− ln u′(cS

1(a))

cS
0 , cS

1 are defined by

a + ln Uc(cS
0(a), θS) = ln Uc(2y ∗ −cS

0(a), θB)

a + ln u′(g1(a)) = ln u′(2y∗ − g1(a))

cS
1(a) = min{g1(a), c̄S

1}

Define Γ(c, θ) = −Ucc(c, θ)

Uc(c, θ)
and γ(c) = −u′′(c)

u′(c)
.

r′(a) =
γ(cS

1)

γ(cS
1) + γ(cB

1 )
1(g1(a) < c̄S

1)−
Γ(cS

0 , θS)

Γ(cS
0 , θS) + Γ(cB

0 , θB)

Under Assumption H.4, r′(a) ≤ 0, and R is decreasing in α. Since aS
1 and cS

1 are increasing in α,
and cS

0 < y∗, T(α) is increasing in α.
When α = αS, U(cS

0 , θS) + βV(aS
1) = U(cB

0 , θS) + βV(aB
1 ). Since these functions are concave,

Uc(cS
0 , θS)(cB

0 − cS
0) + βV ′(aS

1)(aB
1 − aS

1) > 0

Uc(cS
0 , θS)

βu′(cS
1)

(y∗ − cS
0)− aS

1 > 0

T(αS) > 0

An analogous argument establishes that T(αB) < 0. Finally, since T is clearly continuous, there
exists ᾱ such that T(α) = 0.

Lemma H.6. If neither incentive constraint binds and T(α) > 0, the solution to (21) can be implemented
with a debt relief transfer function.

Proof. The proof proceeds exactly as for Lemma H.3, noting that T̄ = T > 0.

This concludes the proof of Proposition 4.4. The proof of Proposition 4.6 is essentially identi-
cal, and is therefore omitted.
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I Proof of Proposition 4.7.

Suppose the ZLB does not bind in competitive equilibrium. Then we have full employment in all
periods and

Uc(cS
0 , θS)

βu′(cS
1)

=
Uc(cB

0 , θB)

βu′(cB
1 )

= 1 + r0

u′(cS
1) = β(1 + r1)u′(cS

2)

u′(cB
1 ) ≥ β(1 + r1)u′(cB

2 )

Choose α so that
α

1− α
=

Uc(cB
0 , θB)

Uc(cS
0 , θS)

. It follows that

αUc(cS
0 , θS) = (1− α)Uc(cB

0 , θB)

αu′(cS
1) = (1− α)u′(cB

1 )

αu′(cS
1) = (1− α)u′(cB

1 ) + ψ

for some ψ ≥ 0. So the allocation satisfies the first order sufficient conditions in (21), and is
Pareto optimal.

If θB > θZLB, we know the ZLB binds and there is underemployment in the non-Walrasian
equilibrium. We also know that neither incentive constraint binds in the non-Walrasian equi-
librium allocation. Each agent has strictly concave preferences, and strictly prefers her chosen
allocation to any other allocation in the budget set. In particular, S strictly prefers cS to cB. We
know from Proposition 4.1 that underemployment can only be optimal if (ICS) binds. So this
allocation cannot be Pareto optimal.

To show that debt relief is Pareto improving, consider the following deviation. Increase cB
1 un-

til either the resource constraint binds at date 1, cB
1 = c̄B

1 , or (ICS) binds. In the first case, this leads
to a Pareto optimal allocation, because any full employment, incentive compatible allocation with
cS

1 = c̄S
1 is Pareto optimal. We clearly have T(α) > 0, so the allocation can be implemented with

debt relief. In the second case, (ICS) binds, so the allocation can be implemented with debt relief.

J Proof of Proposition 4.9.

The borrower-optimal allocation solves

max
cS

0 ,cS
1 ,cS

2 ,cB
0 ,cB

1 ,cB
2

U(cB
0 , θB) + βu(cB

1 ) +
β2

1− β
u(cB

2 ) (34)

s.t. U(cS
0 , θS) + βu(cS

1) +
β2

1− β
u(cS

2) ≥ Ū(θS, θB, φ) (US)

(RC0), (RC1), (RC2), (BC), (ZLB), (ICS)

1. Obvious, since the equilibrium is constrained efficient.
2. The allocation is clearly feasible: by construction it satisfies (RC1), by assumption (ICS),

and clearly it satisfies the remaining constraints because the savers’ consumption, and everyone’s
date 0 and 2 consumption is the same as in equilibrium, so it is feasible. Any increase in cS

1 is not
feasible: it violates (ZLB). Decreasing cB

0 and increasing cB
1 while satisfying resource constraints
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and (US) would decrease the borrower’s utility: already in equilibrium the agents’ marginal
rates of substitution between dates 0 and 1 were equal, and now the borrower has more date 1
consumption, so he does not want to increase it further.

3,4,5. Consider the relaxed problem in which we ignore (RC1), (US). (ICS) must bind in the
relaxed program (since it corresponds to our regular Pareto problem with α = 0). Substiuting
constraints into the objective function, we have

max
cB

0

U(cB
0 , θB)−U(cB

0 , θS) + U(2y∗ − cB
0 , θS) + constants

By Assumption 4.8, this function is concave and the first order condition

Uc(ĉ, θB) = Uc(ĉ, θS) + Uc(2y∗ − ĉ, θS) (35)

is necessary and sufficient for a solution. So the solution to this program is ĉ(θB). If ĉ(θB) < ¯
c(φ),

this solution violates (RC1), so (RC1) must bind in the true program. If ĉ(θB) > cB
0 , this solution

violates (US), so (US) must bind. In the intermediate range, neither constraint binds.

K Proof of Proposition 5.1.

The Walrasian equilibrium allocation {ci
0(θN), ci

1(θN)}i∈[0,1], given a function θN mapping indi-
viduals to types, satisfies:

θN(i)u′(ci
0(θN))

u′(ci
1(θN))

=
u′(c0

0(θN))

u′(c0
1(θN))

, ∀i ∈ (0, 1] (36)

∫ 1

0
ci

0(θN)di = y∗ (37)∫ 1

0
ci

1(θN)di = y∗ (38)

We will show that we must have c0
1(θN)→ ∞ as N → ∞. The proof is by contradiction. Suppose

c0
1(θN) does not converge to ∞. Then lim infN→∞ c0

1(θN) = c∗ < ∞, and the denominator of the
right hand side of (36) does not converge to 0.

Suppose the numerator converges to ∞: then c0
0(θN) → 0. Consider the lifetime utility of

household 0:
v0(θN) = u(c0

0(θN)) + βu(c0
1(θN))

Since lim inf c0
0(θN) = 0 and lim inf c0

1(θN) = c∗ < ∞, it follows that lim inf v0(θN) < u(y∗) +
βu(y∗): for infinitely many N, household 0 gets lower utility than he would under autarky.
This cannot be the case in any competitive equilibrium, since autarky is in his budget set. This
contradicts the supposition that the numerator u′(c0

0(θN)) converges to ∞. So we have shown
that, under the assumption that c0

1(θN) does not converge to ∞, the right hand side of (36) does
not converge to ∞.

Since θN(i) → ∞ for every i ∈ (0, 1], it follows that
u′(ci

0(θN))

u′(ci
1(θN))

→ 0. There are two possibili-

ties: either ci
0(θN)→ ∞, or ci

1(θN)→ 0 (or both). If we define

S0 = {i ∈ (0, 1] : ci
0(θN)→ ∞}, S1 = {i ∈ (0, 1] : ci

1(θN)→ 0},
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we must have S0 ∪ S1 = (0, 1]. S0 must have measure zero: otherwise the resource constraint (37)
cannot be satisfied, given that consumption must be nonnegative. So S1 must have measure 1.
Given the date 1 resource constraint (38), this implies that c0

1(θN) → ∞.3 This contradicts our
original assumption. So we must have c0

1(θN)→ ∞.
This implies that for large enough N, the date 1 interest rate satisfying the most patient

household’s Euler equation, r1 =
u′(c0

1(θN))

βu′(y∗)
− 1, is negative.

L Proof of Lemma 5.2

1, 2 and 3 are standard results. 4 results from differentiating Ct(v1, r1) = Xt(E(v1, r1), r1) and
using the Envelope Theorem. To prove 5, note that C1, C2 are increasing in v1: thus there exists
v1 low enough that if we considered a relaxed problem without the borrowing constraint, it
would be optimal to set c2 <

¯
c2, thus the constraint must bind. The second half of 5 then

results from duality. To prove 6, note that the first order conditions yield the Euler equation
c−σ

1 = β(1 + r1)c−σ
2 when the borrowing constraint does not bind; substituting this into the

budget constraint yields the desired result. To prove 7, note that if X1 is concave, X2 is convex.
C2(v1, r1) = X2(E(v1, r1), r1) is the composition of two increasing, convex functions and is convex.

M Proof of Proposition 5.3.

Before proving Proposition 5.3, I verify that it is possible to express incentive compatibility as an
integral condition.

Lemma M.1. u0, v1 satisfies

θu(c0(θ)) + βv1(θ) ≥ θu(c0(θ̂)) + βv1(θ̂), ∀θ, θ̂ (39)

if and only if

v(θ) = v(
¯
θ) +

∫ θ

¯
θ

u0(z)dz (40)

and u0 is nondecreasing.

Proof. To show that (39) implies (40), we use Theorem 2 in Milgrom and Segal [2002]. Define

W(θ, θ̂) = θu0(θ̂) + βv1(θ̂)

and suppose W(θ, θ) = v(θ) = maxθ̂ W(θ, θ̂). For any fixed θ̂, W(θ, θ̂) is linear in θ, and therefore
differentiable and absolutely continuous. We must also show that there exists an integrable
function b : [1, θ̄] → R such that |Wθ(θ, θ̂)| ≤ b(θ) for all θ ∈ Θ and almost all θ̂ ∈ Θ. Since
Wθ(θ, θ̂) = u0(θ̂) is increasing in θ̂, we can set b(θ) = max{|u0(¯

θ)|, |u0(θ̄)|}, and this condition is
satisfied. By Theorem 2 in Milgrom and Segal [2002], we have that

v(θ) = v(
¯
θ) +

∫ θ

¯
θ

u0(z)dz

3Note that since ci
1(θN) is decreasing in i for any θN - lower types consume more at date 1 - if ci

1(θN)→ ∞ for any
type i, then c0

1(θN)→ ∞.
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as required.
Next, we show that (40) and u0 nondecreasing imply (39). (The proof follows Mirrlees [1986]

Lemma 6.3.) Take any θ̂, θ: we want to show that

v(θ) := θu0(θ) + βv1(θ) ≥ θu0(θ̂) + βv1(θ̂)

Since u0(θ) is nondecreasing, we have

v(θ)− v(θ̂) =
∫ θ

θ̂
u0(z)dz

≥
∫ θ

θ̂
u0(θ̂)dz = (θ − θ̂)u0(θ̂)

θu0(θ) + βv1(θ) ≥ θu0(θ̂) + βv1(θ̂)

This completes the proof.

I now proceed to prove Proposition 5.3. Recall that the social planner’s problem is

W∗ = max
u0∈Ω,

¯
v,r1 ¯

v +
∫
(1− A(θ))u0(θ)dθ (PP’)

s.t
∫

C0(u0(θ)) f (θ)dθ ≤ y∗ (RC0’)∫
C1

(
β−1

[
¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

]
, r1

)
f (θ)dθ ≤ y∗ (RC1’)∫

C2

(
β−1

[
¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

]
, r1

)
f (θ)dθ ≤ y∗ (RC2’)

r1 ≥ 0 (ZLB)

I need to show that u0,
¯
v, r1 solves (PP’) if and only if there exist Lagrange multipliers λ0, λ1, λ2

such that u0,
¯
v solve

W∗ = max
u0∈Ω,

¯
v¯
v +

∫
(1− A(θ))u0(θ)dθ − λ0

∫
C0(u0(θ)) f (θ)dθ (41)

−
∫

M
(

β−1
[

¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

]
|λ1, λ2, r1

)
f (θ)dθ

where
M(v1|λ1, λ2, r1) := λ1C1(v1, r1) + λ2C2(v1, r1)

and the Lagrange multipliers satisfy the following conditions. If the ZLB is slack,
λ1

λ2
= (1 +

r1)(1− β). If the ZLB binds,
λ1

λ2
< 1− β.

Overview. The proof has six steps. First we show that solutions to (PP’) also solve a modified
problem (PP”) in which we replace the date 1 resource constraint with the aggregate expendi-
ture function. Second, the modified problem can be solved in two stages: first maximize social
welfare given r1, yielding welfareW(r), and then choose r to maximizeW(r) subject to the ZLB.
Third, the first stage of this problem is concave, and Lagrangian theorems apply. Fourth, we can
also express the expenditure functions as maximized sub-Lagrangians. Substituting these sub-
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Lagrangians into the main Lagrangian, we see that W(r) is also the maximum of an expanded
Lagrangian. Fifth, returning to our two stage problem, we can switch the order of maximization,
first choosing r to minimize a certain function, subject to the ZLB, and then choosing utilities to
maximize social welfare. Sixth, and finally, I show that when the ZLB is slack, one constraint in
the planner’s problem becomes slack, and the expanded Lagrangian is equivalent to (41), with
λ1

λ2
= (1 + r1)(1− β). When the ZLB binds, we have

λ1

λ2
< 1− β.

1. Modified problem. u0,
¯
v, r1 solves (PP’) if and only if it solves the modified function (PP”):

W∗ = max
u0∈Ω,

¯
v,r1 ¯

v +
∫
(1− A(θ))u0(θ)dθ (PP”)

s.t.
∫

C0(u0(θ)) f (θ)dθ ≤ y∗ (42)

E
(

β−1
[

¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

]
, r1

)
f (θ)dθ ≤ y∗ +

y∗

(1 + r1)(1− β)
(EC)∫

C2(v1(θ), r1) f (θ)dθ ≤ y∗ (RC2)

r1 ≥ 0 (43)

This is true because the constraint sets are the same in (PP’) and (PP”) are the same. By definition,

E(v1, r1) = C1(v1, r1) +
C2(v1, r1)

(1 + r1)(1− β)

So (EC) is equivalent to∫ [
C1(v1, r1) +

C2(v1, r1)

(1 + r1)(1− β)

]
f (θ)dθ ≤ y∗ +

y∗

(1 + r1)(1− β)

This is a weighted sum of the constraints (RC1’) and (RC2’). Clearly then, v1, r1 ≥ 0 satisfies (EC)
and (RC2) if and only if it satisfies (RC1).

2. Two-stage problem. W∗ = maxr1≥0W(r1), where

W(r) = max
u0∈Ω,

¯
v¯
v +

∫
(1− A(θ))u0(θ)dθ (44)

s.t.
∫

C0(u0(θ)) f (θ)dθ ≤ y∗ (45)

E
(

β−1
[

¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

]
, r1

)
f (θ)dθ ≤ y∗ +

y∗

(1 + r1)(1− β)∫
C2(v1(θ), r1) f (θ)dθ ≤ y∗

3. Lagrangian. There exist Lagrange multipliers λ0, λE, λC such that u0,
¯
v solve (44) if and
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only if they solve

W(r) = max
u0∈Ω,

¯
v¯
v +

∫
(1− A(θ))u0(θ)dθ − λ0

∫
C0(u0(θ)) f (θ)dθ (46)

− λE

∫
E
(

β−1
[

¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

]
, r1

)
f (θ)dθ

− λC

∫
C2

(
β−1

[
¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

]
, r1

)
f (θ)dθ

Before proving this statement, note for future reference that since by definition E = C1 +
C2

(1 + r1)(1− β)
, we could equivalently write

W(r) = max
u0∈Ω,

¯
v¯
v +

∫
(1− A(θ))u0(θ)dθ − λ0

∫
C0(u0(θ)) f (θ)dθ (47)

− λ1

∫
C1

(
β−1

[
¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

]
, r1

)
f (θ)dθ

− λ2

∫
C2

(
β−1

[
¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

]
, r1

)
f (θ)dθ

where we define λ1 = λE, λ2 =
λE

(1 + r1)(1− β)
. That is, showing necessity and sufficiency for

(46) is equivalent to showing necessity and sufficiency for (47).
(44) is a special case of the general problem considered in Luenberger [1969], Sections 8.3-8.4:

inf
x∈Ω

f (x)

s.t. G(x) ≤ 0

where X is a linear vector space, Z a normed space, Ω a convex subset of X, P the positive cone
in Z, f a real valued convex functional on Ω, G a convex mapping from Ω into Z. We have

X = {
¯
v, u0|¯

v ∈ V(R+), u0 : Θ→ R}
Ω = {

¯
v, u0|¯

v ∈ V, u0 : Θ→ U(R+), u0 non-decreasing}
Z = R3, P = R3

+

f (
¯
v, u0) = −¯

v−
∫
(1− A(θ))u0(θ)dθ

G(
¯
v, u0) =


∫

C0(u0(θ)) f (θ)dθ − y∗

E (v1(θ), r1) f (θ)dθ − y∗ − y∗

(1 + r1)(1− β)∫
C2(v1(θ), r1) f (θ)dθ − y∗


Ω is convex, P contains an interior point, and f is convex (since it is linear). C0 is convex, and
E and C2 are convex in v1 by Lemma 5.2; since v1 is a linear function of

¯
v, u0, and G contains

weighted sums of C0, E, C2, it follows that G is convex. There exists a point
¯
v, u0 ∈ Ω such that

G(
¯
v, u0) ≤ 0: choose v1 small enough that E(v1, r1) < y∗ − y∗

(1 + r1)(1− β)
, C2(v1, r1) < y∗, and

set u0(θ) = u(y∗/2),
¯
v =

¯
θu(y∗/2) + βv1. Then since the hypotheses of Theorem 1 in Luenberger
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[1969] p217 are met, it follows that if u0,
¯
v solve (44), they solve (46). Conversely, by Theorem 1

in Luenberger [1969] p220, if u0,
¯
v solve (46), they solve (44). Finally, as noted above, showing

necessity and sufficiency of (46) is equivalent to showing necessity and sufficiency of (47). This
completes the proof of the first part of Proposition 5.3. It remains to derive the condition on the
Lagrange multipliers.

4. Expenditure minimization sub-Lagrangians. Applying the same theorems to the expen-
diture minimization problem (EMP), we have that, for each type θ, solutions to the expenditure
minimization problem also minimize an appropriately defined Lagrangian:

E(v1(θ), r1) = min
c1(θ),c2(θ)

c1(θ) +
c2(θ)

(1 + r1)(1− β)
+ ψ(θ)[c2(θ)− ¯

c2]

+µ(θ)

[
u(c1(θ)) +

β

1− β
u(c2(θ))− v1(θ)

]
Integrating across all types,

−
∫

E
(

β−1
[

¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

]
, r1

)
f (θ)dθ

= −
∫ {

min
c1(θ),c2(θ)

c1(θ) +
c2(θ)

(1 + r1)(1− β)
+ ψ(θ)[c2(θ)− y∗ + (1− β)ψ]

µ(θ)

[
u(c1(θ)) +

β

1− β
u(c2(θ))− β−1

(
¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

)]}
f (θ)dθ

= max
c1,c2

{∫
−c1(θ)−

c2(θ)

(1 + r1)(1− β)
− ψ(θ)[c2(θ)− ¯

c2]

− µ(θ)

[
u(c1(θ)) +

β

1− β
u(c2(θ))− β−1

(
¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

)]}
f (θ)dθ

Substituting into the main Lagrangian, we see that if u0,
¯
v solve (44), they also solve

W(r) = max
u0∈Ω,

¯
v¯
v +

∫
(1− A(θ))u0(θ)dθ − λ0

∫
C0(u0(θ)) f (θ)dθ

− λE max
c1,c2

{∫
−c1(θ)−

c2(θ)

(1 + r1)(1− β)
− ψ(θ)[c2(θ)− ¯

c2]

− µ(θ)

[
u(c1(θ)) +

β

1− β
u(c2(θ))− β−1

(
¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

)]}
f (θ)dθ

− λC

∫
C2

(
β−1

[
¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

]
, r1

)
f (θ)dθ
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This will be true if and only if u0,
¯
v, c1, c2 solve

W(r) = max
u0∈Ω,

¯
v,c1,c2 ¯

v +
∫
(1− A(θ))u0(θ)dθ − λ0

∫
C0(u0(θ)) f (θ)dθ

− λE

{∫
−c1(θ)−

c2(θ)

(1 + r1)(1− β)
− ψ(θ)[c2(θ)− ¯

c2]

− µ(θ)

[
u(c1(θ)) +

β

1− β
u(c2(θ))− β−1

(
¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

)]}
f (θ)dθ

− λC

∫
C2

(
β−1

[
¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

]
, r1

)
f (θ)dθ

The economic meaning of this result is that when the ZLB is slack, private and social valuations
of date 1 and date 2 consumption coincide, and the planner would not want to distort date 1 or
date 2 consumption away from their equilibrium levels, even if it were possible to do so. Since
households share the same preferences over date 1 and date 2 consumption, distorting these
allocations would not help relax incentive constraints. Instead, it is always optimal to deliver
utility in an ex post efficient way at dates 1 and 2.

5. Reversing the order of maximization. Next, note that W(r) has the form W(r) =
maxx f (x) + g(x, r), where x = (u0,

¯
v, c1, c2). Then we have

W∗ = max
r≥0
W(r)

= max
r≥0

max
x
{ f (x) + g(x, r)}

= max
x

max
r≥0
{ f (x) + g(x, r)}

= max
x

f (x) + max
r
{g(x, r)}

Applying this result to the Lagrangian

W∗ = max
u0∈Ω,

¯
v,c1,c2 ¯

v +
∫
(1− A(θ))u0(θ)dθ − λ0

∫
C0(u0(θ)) f (θ)dθ

− λE

{∫
−c1(θ)−

c2(θ)

(1 + r1)(1− β)
− ψ(θ)[c2(θ)− ¯

c2]

− µ(θ)

[
u(c1(θ)) +

β

1− β
u(c2(θ))− β−1

(
¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

)]}
f (θ)dθ

−min
r1≥0

{
λC

∫
C2

(
β−1

[
¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

]
, r1

)
f (θ)dθ

}
6. ZLB. When the ZLB is slack, minr1≥0 λC

∫
C2 dF(θ) = minr1∈R λC

∫
C2 dF(θ). Since C2 is

increasing in r1, r1 > 0 can only attain the minimum in this problem when λC = 0. That is, if the
ZLB is slack, λC = 0. However, if the ZLB binds at an optimum, λC > 0.

In the Lagrangian (47), we had λ1 = λE, λ2 =
λE

(1 + r1)(1− β)
+ λC. Thus when the ZLB is

slack, λ2 = (1 + r1)(1− β)λ1. When the ZLB binds, λ2 = (1− β)λ1 + λC > (1− β)λ1. This
establishes the desired result.
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N Proof of Lemma 5.5.

Definition N.1. Let f be a real valued functional defined on a vector space X. Define the (one sided)
Gateaux differential of f at x with increment h to be

δ f (x; h) = lim
α↓0

1
α
[ f (x + αh)− f (x)]

If this limit exists for each h ∈ X, f is Gateaux differentiable at x.

Lemma N.2. Let Ω be a subset of the space of functions mapping Θ = [
¯
θ, θ̄] ⊂ R+ into R. Let

T : Ω → R be defined by T(x) =
∫

Θ ψ(x(θ)) f (θ)dθ. Suppose that ψ is convex, its left and right hand
side derivatives ψ′−(x(θ)), ψ′+(x(θ)) exist and are continuous in x(θ), and there exists ε > 0 such that
x + αh ∈ Ω. Then

δT(x; h) =
∫
{θ∈Θ:h(θ)>0}

ψ′+(x(θ))h(θ) f (θ)dθ +
∫
{θ∈Θ:h(θ)<0}

ψ′−(x(θ))h(θ) f (θ)dθ

Note that we can equivalently write this as

δT(x; h) =
∫

Θ
[ψ′+(x(θ))h+(θ) + ψ′−(x(θ))h−(θ)] f (θ)dθ

where h+(θ) = max{h(θ), 0} and h−(θ) = min{h(θ), 0}.

Proof. The proof is essentially identical to the proof of Lemma A.1 in Amador et al. [2006]. The
only reason this result is not a special case of theirs is that ψ may not be differentiable, although
its left and right hand derivatives exist.

Define Θ+ = {θ ∈ Θ : h(θ) > 0}, Θ− = {θ ∈ Θ : h(θ) < 0}. From the definition of the
Gateaux differential,

δT(x; h) = lim
α↓0

1
α
[T(x + αh)− T(x)]

= lim
α↓0

∫
Θ

1
α
[ψ(x(θ) + αh(x))− ψ(x(θ))] f (θ)dθ

= lim
α↓0

∫
Θ+

1
α
[ψ(x(θ) + αh(x))− ψ(x(θ))] f (θ)dθ + lim

α↓0

∫
Θ−

1
α
[ψ(x(θ) + αh(x))− ψ(x(θ))] f (θ)dθ

Adding and subtracting
∫

Θ+
ψ′+(x(θ))h+(θ) f (θ)dθ from the first term,

lim
α↓0

∫
Θ+

1
α
[ψ(x(θ) + αh(x))− ψ(x(θ))] f (θ)dθ

=
∫

Θ+

ψ′+(x(θ))h+(θ) f (θ)dθ + lim
α↓0

∫
Θ+

[
1
α
[ψ(x(θ) + αh(x))− ψ(x(θ))]− ψ′+(x(θ))h+(θ)

]
f (θ)dθ

I will show that the last term vanishes. For α < ε, we have∣∣∣∣1α [ψ(x(θ) + αh(x))− ψ(x(θ))]− ψ′+(x(θ))h+(θ)
∣∣∣∣ < ∣∣∣∣1ε [ψ(x(θ) + εh(x))− ψ(x(θ))]− ψ′+(x(θ))h+(θ)

∣∣∣∣
for all θ ∈ Θ+, since ψ is convex. As in the proof of Lemma A.1 in Amador et al. [2006], this
provides the required integrable bound to apply Lebesgue’s Dominated Convergence Theorem,
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so we have

lim
α↓0

∫
Θ+

[
1
α
[ψ(x(θ) + αh(x))− ψ(x(θ))]− ψ′+(x(θ))h+(θ)

]
f (θ)dθ

=
∫

Θ+

lim
α↓0

[
1
α
[ψ(x(θ) + αh(x))− ψ(x(θ))]− ψ′+(x(θ))h+(θ)

]
f (θ)dθ = 0

by definition of ψ′+(x(θ)), noting that for θ ∈ Θ+, and for α > 0, x(θ) + αh(x) > x(θ). It follows
that the first term is equal to

∫
Θ+

ψ′+(x(θ))h(θ) f (θ)dθ, as required. An identical argument applies
to the second term. So we have

δT(x; h) =
∫

Θ+

ψ′+(x(θ))h(θ) f (θ)dθ +
∫

Θ−
ψ′−(x(θ))h(θ) f (θ)dθ

as required.

Lemma N.3. Define
M(v1|λ1, λ2, r1) := λ1C1(v1, r1) + λ2C2(v1, r1)

where λ1, λ2 ≥ 0 and
λ1

λ2
≤ (1 + r1)(1− β).

1. M is convex in v1.

2. If
λ1

λ2
= (1 + r1)(1− β), M(v1|λ1, λ2, r1) = λ1E(v1, r1), and M is differentiable.

3. If r1 = 0 and
λ1

λ2
< (1− β), M is left and right differentiable, and it is differentiable except at

v1 = v̄1(0).

Proof. M = λ1E1(v1, r1) +

(
λ2 −

λ1

(1 + r1)(1− β)

)
C2(v1, r1) is the non-negative-weighted sum of

convex functions and is therefore convex. It is immediate that if
λ1

λ2
= (1 + r1)(1− β), and M is

differentiable. If r1 = 0 and λ2 >
λ1

(1− β)
, M is the weighted sum of a differentiable function E,

and a function C2 which is left- and right-differentiable everywhere, and differentiable except at
v̄1(0). The desired result follows.

Lemma N.4. Define the Lagrangian

L(u0,
¯
v) =

¯
v +

∫
(1− A(θ))u0(θ)dθ − λ0

∫
C0(u0(θ)) f (θ)dθ∫

M
(

β−1
[

¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

]
|λ1, λ2, r1

)
f (θ)dθ

where
M(v1(θ)|λ1, λ2, r1) = λ1C1(v1(θ), r1) + λ2C2(v1(θ), r1)
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The Gateaux differential of the Lagrangian is

δL(u0,
¯
v; ∆0,

¯
∆) =

¯
∆ +

∫
(1− A(θ))∆0(θ)dθ − λ0

∫
C′0(u0(θ))∆0(θ) f (θ)dθ

−
∫

Θ+

M′+(v1(θ)|λ1, λ2, r1)β−1
[

¯
∆ +

∫ θ

¯
θ

∆0(z)dz− θ∆0(θ)

]
f (θ)dθ

−
∫

Θ−
M′−(v1(θ)|λ1, λ2, r1)β−1

[
¯
∆ +

∫ θ

¯
θ

∆0(z)dz− θ∆0(θ)

]
f (θ)dθ

where v1(θ) = β−1
[

¯
v +

∫ θ

¯
θ u0(z)dz− θu0(θ)

]
, and

Θ+ =

{
θ ∈ Θ :

¯
∆ +

∫ θ

¯
θ

∆0(z)dz− θ∆0(θ) > 0
}

Θ− =

{
θ ∈ Θ :

¯
∆ +

∫ θ

¯
θ

∆0(z)dz− θ∆0(θ) < 0
}

Proof. By Lemma N.2, the Gateaux differential of

¯
v +

∫
(1− A(θ))u0(θ)dθ − λ0

∫
C0(u0(θ)) f (θ)dθ

with increment ∆0,
¯
∆ is

¯
∆ +

∫
(1− A(θ))∆0(θ)dθ − λ0

∫
C′0(u0(θ))∆0(θ) f (θ)dθ

since C0 is convex and differentiable. The Gateaux differential of
∫

M(v1(θ)|λ1, λ2, r1) f (θ)dθ
with increment ∆1(θ) is∫

Θ+

M′+(v1(θ)|λ1, λ2, r1)∆1(θ) f (θ)dθ +
∫

Θ−
M′−(v1(θ)|λ1, λ2, r1)∆1(θ) f (θ)dθ

where Θ+ = {θ ∈ Θ : ∆1(θ) > 0}, Θ− = {θ ∈ Θ : ∆1(θ) < 0}. This follows because M is convex
and both left- and right- differentiable. Defining

∆1(θ) = β−1
[

¯
∆ +

∫ θ

¯
θ

∆0(z)dz− θ∆0(θ)

]
,

it follows that the Gateaux differential of∫
M
(

β−1
[

¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

]
|λ1, λ2, r1

)
f (θ)dθ

is ∫
Θ+

M′+(v1(θ)|λ1, λ2, r1)β−1
[

¯
∆ +

∫ θ

¯
θ

∆0(z)dz− θ∆0(θ)

]
f (θ)dθ

+
∫

Θ−
M′−(v1(θ)|λ1, λ2, r1)β−1

[
¯
∆ +

∫ θ

¯
θ

∆0(z)dz− θ∆0(θ)

]
f (θ)dθ
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The result then follows.

O Proof of Lemma 5.5.

Lemma O.1. Let f be a concave, real valued functional defined on a vector space X. Suppose that f is
(one-sided) Gateaux differentiable. Then x0 maximizes f on the convex set Ω ⊂ X if and only if

δ f (x0; x− x0) ≤ 0

for all x ∈ Ω.

Proof. The proof of necessity is essentially identical to Luenberger [1969] Theorem 1, p178, except
that I use the one-sided Gateaux differential. Suppose x0 maximizes f . Since Ω is convex,
x0 + α(x− x0) ∈ Ω for 0 ≤ α ≤ 1. So for any x ∈ Ω,

f (x0 + α(x− x0))− f (x0) ≤ 0
1
α
[ f (x0 + α(x− x0))− f (x0)] ≤ 0

lim
α↓∞

1
α
[ f (x0 + α(x− x0))− f (x0)] ≤ 0.

The proof of sufficiency follows Luenberger [1969] Lemma 1, p227. Suppose there exists x0 ∈ Ω
such that δ f (x0; x− x0) ≤ 0, ∀x ∈ Ω. Take any x ∈ Ω. Since f is concave, for any α ∈ [0, 1],

f (x0 + α(x− x0)) ≥ f (x0) + α[ f (x)− f (x0)]

f (x)− f (x0) ≤
1
α
[ f (x0 + α(x− x0))− f (x0)]

Taking limits, and using the definition of the Gateaux differential,

f (x)− f (x0) ≤ δ f (x0; x− x0) ≤ 0

by assumption. So f (x0) ≥ f (x) for any x ∈ Ω, and x0 is a maximum.

Lemma 5.5 then follows from applying Lemma O.1 to Proposition 5.3, and using the definition
of the Gateaux differential in N.2. Note that the Lagrangian is concave.

P Proof of Proposition 5.6.

Lemma P.1. If r1 > 0 in equilibrium, the equilibrium is constrained efficient.

Proof. Suppose c0, c1, c2, r0, r1 > 0 is an equilibrium. Set

1
λ1

=
∫ f (θ)

βu′(c1(θ))
dθ

λ0

λ1
= 1 + r0

g(θ) = λ1, ∀θ
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In a competitive equilibrium, we have
βu′(c1(θ))

θu′(c0(θ))
=

1
1 + r0

for all θ. Since the ZLB does not bind,

λ(θ) = λ1 for all θ. Thus the first order sufficient conditions for optimality are satisfied.

Lemma P.2. Suppose u0(θ) is continuous and strictly increasing on (θ1, θ2), and α(θ1) is continuous
on (θ1, θ2). Suppose also that

∫
Θ α(θ)∆0(θ)dθ ≤ 0 for all functions ∆0 : Θ → R such that u0 + ∆0 is

increasing. Then α(θ) = 0 for all θ ∈ (θ1, θ2).

Proof. Suppose by contradiction that α(θ) > 0 for some θ ∈ [θ1, θ2]. Then by continuity, α(θ) > 0
on some interval [θ′1, θ′2] ⊂ [θ1, θ2]. Set

∆0(θ) =
(u0(θ)− u0(θ1))(u0(θ2)− u0(θ))

(u0(θ2)− u0(θ1))2 for θ ∈ [θ′1, θ′2],

∆0(θ) = 0 everywhere else. It can be verified that u0(θ) + ∆0(θ) is increasing, is an admissible
deviation, and is positive for θ ∈ (θ′1, θ′2). Then we have∫

α(θ)∆0(θ)dθ > 0,

a contradiction.

Lemma P.3. If u0(θ) is continuous and strictly increasing and u0,
¯
v, r1 solves (PP’), then there exist

Lagrange multipliers λ0, λ1, λ2 such that

1 =
∫

M′(v1(θ)|λ1, λ2, r1) f (θ)dθ (48)

λ0C′(u0(θ)) f (θ)− β−1θM′(v1(θ)|λ1, λ2, r1) f (θ) =
∫ θ̄

θ
[a(z)− β−1M′(v1(z)|λ1, λ2, r1) f (z)]dz

(49)

for all θ ∈ Θ, unless r1 = 0 and v̄1(0) = v1(θ). If the ZLB is slack,
λ1

λ2
= (1 + r1)(1− β). If the ZLB

binds,
λ1

λ2
< 1− β.

Conversely, if the ZLB is slack and (48), (49) hold for all θ ∈ Θ with u0 continuous and strictly
increasing, and if u0,

¯
v, r1 satisfy the constraints in (PP’), then u0,

¯
v, r1 solve (PP’).

Proof. Suppose u0 is continuous and strictly increasing. Then in any incentive compatible alloca-
tion, v1 is continuous and strictly decreasing. It follows that there exists at most one type θ∗ such
that v1(θ) = v̄1(r1) (that is, θ is ‘just’ liquidity constrained). By Lemma N.3, M is differentiable
everywhere except at v̄1(r1) (and if the ZLB is slack, it is differentiable at this point too). Thus the
first-order condition necessary condition for a maximum, stated in Lemma 5.5, can be rewritten
as

δL(u0,
¯
v; ∆0,

¯
∆) =

¯
∆ +

∫
(1− A(θ))∆0(θ)dθ − λ0

∫
C′0(u0(θ))∆0(θ) f (θ)dθ

−
∫

M′(v1(θ)|λ1, λ2, r1)β−1
[

¯
∆ +

∫ θ

¯
θ

∆0(z)dz− θ∆0(θ)

]
f (θ)dθ ≤ 0

for all
¯
∆, ∆0 such that u0 + ∆0 is increasing. Applying Fubini’s Theorem to reverse the order of
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integration, and rearranging terms, we can rewrite this as

∫
∆0(θ)

{
−λ0C′0(u0(θ)) f (θ) + β−1θM′(v1(θ)) f (θ)−

∫ θ̄

θ
[a(z)− β−1M′(v1(z)) f (z)]dz

}
dθ

+
¯
∆
{

1−
∫

M′(v1(θ)) f (θ)dθ

}
≤ 0 for all

¯
∆, ∆0 such that u0 + ∆0 ∈ Ω

where we suppress the dependence of M′ on λ1, λ2, r1 to save notation. Clearly, we must have
1 =

∫
M′(v1(θ)) f (θ)dθ = 0, so (48) holds. To show that (49) holds, we use Lemma P.2, first

setting [θ1, θ2] = [
¯
θ, θ∗], and then setting [θ1, θ2] = [θ∗, θ̄]. Since

α(θ) := −λ0C′0(u0(θ)) f (θ) + β−1θM′(v1(θ)) f (θ) +
∫ θ̄

θ
[a(z)− β−1M′(v1(z)) f (z)]dz

is continuous on [
¯
θ, θ∗) and on (θ∗, θ̄], it follows that α(θ) = 0 for any θ 6= θ∗. If the ZLB does not

bind, M′ exists and is continuous everywhere, and we also have α(θ∗) = 0. Then (49) holds.
Finally, if the ZLB is slack, and if α(θ) = 0 everywhere, then clearly

∫
α(θ)∆0(θ)dθ = 0 for all

∆0, and by Lemma 5.5, u0,
¯
v, r1 solve (PP’).

Lemma P.4. If r1 > 0,
∫

c1(θ) f (θ)dθ < y∗ in equilibrium, the equilibrium is constrained inefficient.

Proof. Suppose by contradiction that such an allocation u0,
¯
v solves (PP’) for some non-negative

Pareto weights a(θ) (equivalently, for some differentiable, nondecreasing A(θ) =
∫ θ

¯
θ a(z)dz).

In any competitive equilibrium, allocations and utilities are continuous in θ. Consequently, by
Lemma P.3, there must exist Lagrange multipliers λ0 > 0, λ1 = 0, λ2 > 0 such that

λ0C′(u0(θ)) f (θ)− β−1θM′(v1(θ)|λ1, λ2, r1) f (θ) = 1− A(θ)−
∫ θ̄

θ
β−1M′(v1(z)|λ1, λ2, r1) f (z)]dz

Let θ∗ be the type who is just liquidity constrained. For θ < θ∗, this condition states that

1− A(θ) = λ0
f (θ)

u′(c0(θ))
− θ f (θ)µλ2

βu′(c1(θ))
+
∫ θ∗

θ

f (z)µλ2

βu′(c1(z))
dz

where µ :=
(1− β)β1/σ

1− β + β1/σ
, the date 2 MPC of unconstrained households. As θ → θ∗ from below,

since all right hand side terms are continuous,

1− A(θ)→ λ0
f (θ∗)

u′(c0(θ∗))
− θ∗ f (θ∗)µλ2

βu′(c1(θ∗))

For θ > θ∗,

1− A(θ) = λ0
f (θ)

u′(c0(θ))
→ λ0

f (θ∗)
u′(c0(θ∗))

as θ → θ∗ from above. These two limits are not the same, which contradicts the hypothesis that
A(θ) was continuous. So the allocation cannot be a solution to (PP’) for any welfare weights, and
is not constrained efficient.

An alternative proof is as follows.
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Proof. Consider a deviation, relative to a competitive equilibrium allocation in which the ZLB
binds, in which we add the point (c̄, ā1) to the budget set. In utility space, this point is ū, v̄1. If
ū = u0(θ∗), there is no deviation. For any ū > u0(θ∗), a set of types (θ1(ū), θ2(ū)) (containing θ∗)
will be attracted to the deviation, where

θ1(ū)ū + βv̄1 = v(θ1(ū))
θ2(ū)ū + βv̄1 = v(θ2(ū))

Their derivatives are

θ′i(ū) = −
θi(ū)

ū− u0(θi(ū))
, i = 1, 2

The change in date 0 consumption induced by this deviation is

∆C0(ū, θ∗) =
∫ θ∗

θ1(ū)
[c0(ū)− c0(θ)] f (θ)dθ −

∫ θ2(ū)

θ∗
[c0(θ)− c0(ū)] f (θ)dθ

Taking derivatives,

∆C′0(ū, θ∗) = c′0(ū)[F(θ2(ū))− F(θ1(ū))]+ f (θ1(ū))θ1(ū)
c0(ū)− c0(θi(ū))

ū− u0(θ1(ū))
− θ2(ū)

c0(ū)− c0(θ2(ū))
ū− u0(θ2(ū))

All these terms vanish as ū → u(θ∗), so a small deviation has no first order effect on date 0
consumption.

The change in date 2 consumption induced by this deviation is

∆C0(ū, θ∗) =
∫ θ∗

θ1(ū)
[
¯
c2 − c2(θ)] f (θ)dθ

The derivative of the change in date 2 consumption is

∆C′2(ū, θ∗) = f (θ1(ū))θ1(ū) ¯
c2 − c2(θ1(ū))
ū− u0(θ1(ū))

= f (θ1(ū))θ1(ū) ¯
c2 − c2(θ1(ū))

c0(θ∗)− c0(θ1(ū))
c0(θ∗)− c0(θ1(ū))
c0(ū)− c0(θ1(ū))

c0(ū)− c0(θ1(ū))
ū− u0(θ1(ū))

The first fraction is equal to a negative constant, and the third fraction converges to C′0(u(θ
∗)) > 0.

Consider the middle term,
g(ū)
h(ū)

:=
c0(θ∗)− c0(θ1(ū))
c0(ū)− c0(θ1(ū))

. Both g(ū) and h(ū) converge to zero as ū→ u0(θ∗).

g′(ū) = c′0(θ1(ū))
θ1(ū)

ū− u0(θi(ū))

h′(ū) = c′0(ū)− c′0(θ1(ū))
θ1(ū)

ū− u0(θi(ū))
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So we have

g′(ū)
h′(ū)

=
−c′0(θ1(ū))

θ1(ū)
ū−u0(θi(ū))

c′0(ū)− c′0(θ1(ū))
θ1(ū)

ū−u0(θi(ū))

→ 1 as ū→ u(θ∗).

Thus ∆C′2(ū, θ∗) converges to a positive number as ū→ u0(θ∗).
Putting this all together, we see that a small deviation has no first order effect on C0, and

causes a first order reduction in C2. It must therefore decrease the value of the Lagrangian. So
the original allocation was inefficient.

The only assumption we used here was that u0(θ) is continuous and strictly increasing at θ∗.
The above argument thus shows that such an allocation can never be optimal when the date 1
resource constraint is slack.

P.1 Efficiency of piecewise linear equilibria

Definition P.5. c0, c1, c2, r1 = 0 is a full employment piecewise linear equilibrium (FEPLE) if
∫

ct(θ) f (θ) =
y∗, t = 0, 1, 2, and there exist RB ≥ RS, θB > θS such that

1. for θ > θB:

RB =
θu′(c0(θ))

βu′(c1(θ))

c2(θ) = y∗ − (1− β)φ

u′(c1(θ)) ≥ βu′(c2(θ))

2. for θ < θS:

RS =
θu′(c0(θ))

βu′(c1(θ))

c2(θ) ≥ y∗ − (1− β)φ

u′(c1(θ)) ≥ βu′(c2(θ))

3. for θ ∈ [θS, θB]:

c0(θ) = c0 constant
θu′(c0(θ))

βu′(c1(θ))
∈ (RS, RB)

c2(θ) = y∗ − (1− β)φ

u′(c1(θ)) = βu′(c2(θ))

Proposition P.6. Every FEPLE is constrained efficient.

Proof. Suppose c0, c1, c2, r0 satisfies the conditions in Definition P.5, and let u0 = u(c0(θ)), ¯
v =

¯
θu(c0(¯

θ) + βu(c1(¯
θ)) +

β2

1− β
u(c2(θ)) be the associated utilities. The proof proceeds by con-

structing Lagrange multipliers λ0, λ1, λ2 and Pareto weights a(θ) so that the sufficient conditions
in Lemma 5.5 are satisfied.
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Note that the proposed allocation has a discontinuity at θS. Furthermore, there is a set of
types [θS, θB] with positive measure who have v1(θ) = v̄1(0), and for whom M(v1(θ)) is not
differentiable.

λ0 =

[∫ C′0(u0(θ)) f (θ)
θ

dθ

]−1

a(θ) =
λ0C′0(u0(θ)) f (θ)

θ

λ1 =
λ0

RB

λ2 = β−1/σ

[
1− β + β1/σ

RS(1− β)
λ0 − λ1

]
Note that since RS < RB, λ1 < (1− β)λ2, as required.

Next, note that by construction, for θ < θS, λ(θ) =
λ0

RS
, and

M′(v1(θ)) =
λ0

RSu′(c1(θ))
=

λ0β

θu′(c0(θ))
=

βa(θ)
f (θ)

(50)

where the second equality uses the definition of a FEPLE, and the third equality uses the con-

struction of the Pareto weights. Similarly, for θ > θB, λ(θ) =
λ0

RB
and

M′(v1(θ)) =
λ0

RBu′(c1(θ))
=

λ0β

θu′(c0(θ))
=

βa(θ)
f (θ)

(51)

Finally, for θ ∈ [θS, θB], we have v1(θ) = v̄1 and

βa(θ)
f (θ)

=
λ0β

θu′(c0(θ))
∈
[

λ0

RBu′(c1(θ))
,

λ0

RBu′(c1(θ))

]
=
[
M′−(v̄1), M′+(v̄1)

]
(52)

Define M′(v1(θ)|∆1(θ)) = M′+(v1(θ)) if ∆1(θ) > 0, M′−(v1(θ)) if ∆1(θ) < 0. Note that since

¯
∆ +

∫ θ

¯
θ

∆0(z)dz = θ∆0(θ) + β∆1(θ)

we can write the Gateaux differential of the Lagrangian as follows:

δL(u0,
¯
v; ∆0,

¯
∆) =

∫
Θ

a(θ)[θ∆0(θ) + β∆1(θ)]− λ0

∫
C′0(u0(θ))∆0(θ) f (θ)dθ

−
∫

M′(v1(θ)|∆1(θ)) f (θ)dθ

=
∫

Θ
∆0(θ)

{
θa(θ)− λ0C′0(u0(θ)) f (θ)

}
dθ +

∫
Θ

∆1(θ)
{

βa(θ)−M′(v1(θ)|∆1(θ)) f (θ)
}

dθ

The first term in curly brackets is zero, by definition of a(θ). The second term is zero except for
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θ ∈ [θS, θB], by (50) and (51). So we have

δL(u0,
¯
v; ∆0,

¯
∆) =

∫ θB

θS

∆1(θ)
{

βa(θ)−M′(v̄1|∆1(θ)) f (θ)
}

dθ

By (52), βa(θ)−M′(v̄1|∆1(θ)) f (θ) is positive when ∆1(θ) < 0 and negative when ∆1(θ) > 0. It
follows that

[βa(θ)−M′(v̄1|∆1(θ)) f (θ)]∆1(θ) ≤ 0, ∀θ ∈ [θS, θB]

So we must have δL(u0,
¯
v; ∆0,

¯
∆) ≤ 0, as required.

Alternatively, the Proposition can be proved by showing that a FEPLE solves a relaxed Pareto
problem without incentive constraints. Since it also satisfies the incentive constraints, it must
solve the restricted Pareto problem (PP’).

Proof. Consider the relaxed problem

max
u0,v1,r1

∫
a(θ) [θu0(θ) + βv1(θ)]dθ

s.t.
∫

C0(u0(θ)) f (θ)dθ ≤ y∗∫
C1(v1(θ), r1) f (θ)dθ ≤ y∗∫
C2(v1(θ), r1) f (θ)dθ ≤ y∗

r1 ≥ 0

and suppose that the ZLB binds at an optimum. The same arguments as above demonstrate that
solutions to this problem solve a Lagrangian∫

a(θ) [θu0(θ) + βv1(θ)]− λ0

∫
C(u0(θ)) f (θ)dθ −

∫
M(v1(θ))

The first order necessary and sufficient conditions for optimality are

a(θ)θ − λ0C′(u0(θ)) f (θ) = 0
a(θ)β−M′(v1(θ)) f (θ) = 0 if v1(θ) 6= v̄1(0)

a(θ)β−M′+(v1(θ)) f (θ) ≤ 0,
a(θ)β−M′−(v1(θ)) f (θ) ≥ 0

if v1(θ) = v̄1(0)

As in the previous proof, define

λ0 =

[∫ C′0(u0(θ)) f (θ)
θ

dθ

]−1

a(θ) =
λ0C′0(u0(θ)) f (θ)

θ

λ1 =
λ0

RB

λ2 = β−1/σ

[
1− β + β1/σ

RS(1− β)
λ0 − λ1

]
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By construction, a FEPLE satisfies the first order conditions with these multipliers. So a FEPLE
solves a relaxed Pareto problem. As in the previous proof, any FEPLE is incentive compatible. It
follows that a FEPLE solves the restricted problem (PP’).

P.2 Existence of a FEPLE

Let RS = (1 + r0). Define c0(yS, yB, RB; θ), a1(yS, yB, RB; θ) as the solutions to

max
c0,a1

θu(c0) + βV(a1) (53)

s.t. a1 = ā1 + RS(yS − c0) if c0 ≤ yS (54)
a1 = ā1 if c0 ∈ [yS, yB] (55)

a1 = ā1 − RB(c0 − yB) if c0 ≥ yB (56)

where from now on we suppress dependence on r1, since this will always equal zero (i.e. we
write V(a1) for V(a1, 0), ā1 for ā1(0), etc.) We also suppress dependence on RS, since this will
always be equal to 1 + r0. Define ct(yS, yB, RB; θ) = Xt(a1(yS, yB, RB; θ)) for t = 1, 2. Define the
aggregate excess demand functions

Zt(yS, yB, RB) =
∫

ct(yS, yB, RB; θ) f (θ)dθ − y∗

If the ZLB binds in equilibrium, there exist ȳ, RS = 1+ r0 such that Z0(ȳ, ȳ, RS) = Z2(ȳ, ȳ, RS) = 0,
Z1(ȳ, ȳ, RS) < 0.

Lemma P.7. Zt(yS, yB, RB) is C1 in all its arguments for t = 0, 1, 2 on the set {yS, yB, RB : yB ≥
yS, RB ≥ RS}. Z2 is increasing in yS, decreasing in yB, and does not depend on RB.

Proof. Let s0, s1, s2 be the solution to (53) subject to the constraint that c0 ≤ yS, and define the
associated value function VS(yS; θ). Let b0, b1, b2 be the solution subject to the constraint that
c0 ≥ yB, and define the associated value function VB(yB, RB; θ). These programs have contin-
uous, differentiable, concave objective functions and linear constraints; they therefore give rise
to continuous policy functions and continuous, differentiable value functions. In addition, the
policy functions are differentiable when the inequality constraints c0 ≤ yS, c0 ≥ yB are slack.

When c0 = yB, the solution is yB,
¯
c1,

¯
c2, where u′(

¯
c1) = βu′(

¯
c2). Let θS(yS, yB) be the type who

is just indifferent between choosing some c0 ≤ yS and c0 = yB, and let θB(yB, RB) be the highest
type who chooses c0 = yB. θS is implicitly defined by

VS(yS; θS)− θSu(yB)− βV(ā1) = 0

By the Envelope Theorem, the derivative of this expression with respect to θS is u(s0(yS; θS))−
u(yB) ≤ 0, which is nonzero provided that s0(yS; θS) 6= yB, which will be true if yB > yS. Then
by the Implict Function Theorem, this defines θS as a C1 function of yS, yB. It can be verified that
θS is increasing in yS and decreasing in yB.

I now show that Zt is right-differentiable with respect to yB when yB = yS. Fix yS. Define θ̂
by s0(θ̂) = yS. Define

X(yB) =
∫ θ̂

θ(yB)
[yB − s0(θ)] f (θ)dθ

where θ(yB) is defined by
VS(θ) = θu(yB) + βV(ā1)
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Since θ(yB) is continuous, X(yB) is continuous. For yB > yS,

θ′(yB) =
−θ(yB)u′(yB)

u(yB)− u(s0(θ(yB)))

by the Implicit Function Theorem. Applying Leibniz’s Theorem to X, for yB > yS we have

X′(yB) = −θ′(yB)[yB − s0(θ(yB))] f (θ(yB)) +
∫ θ̂

θ(yB)
f (θ)dθ

= θ(yB)u′(yB) f (θ(yB))
yB − s0(θ(yB))

u(yB)− u(s0(θ(yB)))
+
∫ θ̂

θ(yB)
f (θ)dθ

lim
yB↓yS

X′(yB) = θ̂ f (θ̂)

Thus since X is continuous, X′+(yS) = θ̂ f (θ̂).
θB is explicitly defined by

θB =
βRBu′(c̄1)

u′(yB)

Then we have

Zt(yS, yB, RB) =
∫ θS(yS,yB)

¯
θ

st(yS; θ) f (θ)dθ + [F(θB(yB, RB))− F(θS(yS, yB))]cB
t

+
∫ θ̄

θB(yB,RB)
bt(yB, RB; θ) f (θ)dθ − y∗

Provided that s0(yS; θS) < yB, we can apply Leibniz’s formula to show that Zt is C1. If s0(yS; θS) =
yB, then we must have yB = yS.

Next we show that Z2 is increasing in yS, decreasing in yB, and does not depend on RB. All
types with a1 ≤ ā1 are liquidity constrained, and consume

¯
c2 at date 2. Thus we have

Z2(yS, yB, RB) =
∫ θS(yS,yB)

¯
θ

s2(yS; θ) f (θ)dθ + [1− F(θS(yS, yB)]¯
c2 − y∗ (57)

which clearly does not depend on RB. θS is increasing in yS and decreasing in yB. Since
s2(yS; θS) ≥ ¯

c2, it follows that Z2 is increasing in yS and decreasing in yB.

Since Z2 does not depend on RB, we henceforth write Z2(yS, yB).

Lemma P.8. Z2(yS, yB) = 0 defines yS = ϕS(yB) as a C1, increasing function of yB, with ϕS(ȳ) = ȳ,
ϕS(yB)→ ∞ as yB → ∞.

Proof. Since Z2 is C1, increasing in yS and decreasing in yB, the first part follows from the Implicit
Function Theorem. Given our assumption that the ZLB binds in equilibrium, there exists ȳ such
that Z2(ȳ, ȳ) = 0. To prove the last part, note that since c̄2 < y∗, we must have θS >

¯
θ if Z2 = 0.

That is, we must have VS(yS;
¯
θ)− θSu(yB)− βV(ā1) > 0. As yB → ∞, this can only be satisfied if

yS → ∞.

Lemma P.9. Φ0(yB, RB) := Z0(ϕ(yB), yB, RB) is C1, increasing in yB and decreasing in RB.
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Proof. Φ0 is the composition of C1 functions and is therefore C1. It is decreasing in RB because b0
is decreasing in RB.

To see that Φ0 is increasing in yB, suppose that y′B > yB and Z2(yS, yB) = Z2(y′S, y′B) = 0.
Then y′S > yS. Inspecting (57), we see that we must have θ′S < θS, since s2 is increasing in yS.
There are then two effects on Z0. The increase in yS and yB increases date 0 consumption for all
types. And the fall in θS means that some households switch from a low to a high level of date 0
consumption. The overall effect is to increase Z0.

Corollary P.10. Φ0(yB, RB) = 0 defines yB = ϕB(RB) as a continuous, increasing function of RB.

Proof. This follows immediately by applying the Implicit Function Theorem to the above result.

Lemma P.11. Φ1(RB) = Z1(ϕS(ϕB(RB)), ϕB(RB), RB) is a continuous function of RB with Φ1(RS) <
0, limRB→∞ Φ1(RB) > 0.

Proof. Φ1 is the composition of continuous functions, and is therefore continuous. Under the as-
sumption that the ZLB binds in equilibrium, ϕS(ϕB(RS)) = ϕB(RS) = ȳ and Z1(ϕS(ϕB(RS)), ϕB(RS), RS) <
0. For RB sufficiently high, all types bunch at yB and consume

¯
c1 > y∗ at date 1; it therefore fol-

lows that Φ1 > 0.

Lemma P.12. There exist yS > ȳ, yB > ȳ, RB > RS such that Zt(yS, yB, RB) = 0, t = 0, 1, 2.

Proof. Φ1(RB) is continuous, negative for RB = RS and positive for high enough RB. By the
Intermediate Value Theorem, there exists RB such that Φ1(RB) = 0. Define yS = ϕS(ϕB(RB)),
yB = ϕB(RB): the result then follows.

The following proposition is now immediate.

Proposition P.13. Suppose the ZLB binds in equilibrium. Then there exists a FEPLE.

Q Proof of Proposition 6.2.

1. Take any solution to the relaxed Pareto problem, and set

τ(θS) = 0

1 + τ(θB) =
u′(cS

1)

u′(cB
1 )

Uc(cB
0 , θB)

Uc(cS
0 , θS)

1 + r0 =
Uc(cS

0 , θS)

βu′(cS
1)

1 + r1 =
u′(cS

1)

βu′(cS
2)

T1(θS) = −T1(θB) = (1 + r0)(cS
0 − y∗) + cS

1 − y∗ +
cS

2 − y∗

(1 + r1)(1− β)

It is straightforward to show that this implements the allocation as an equilibrium with macro-
prudential taxes. To see that τ(θB) = 0 when the ZLB is slack and > 0 when the ZLB binds note
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that the first order conditions in the planner’s problem have

αUc(cS
0 , θS)− λ0 = 0

(1− α)Uc(cB
0 , θB)− λ0 = 0

αu′(cS
1)− λ1 + ζu′′(cS

1) = 0

(1− α)u′(cB
1 )− λ1 = 0

2. Take any solution to the relaxed Pareto problem. Set

φ0 = c̄S
1 − y∗ + φ

1 + r0 =
Uc(cS

0 , θS)

βu′(cS
1)

1 + r1 =
u′(cS

1)

βu′(cS
2)

T0(θS) = −T0(θB) = cS
0 − y∗ +

cS
1 − y∗

1 + r0
+

cS
2 − y∗

(1 + r0)(1 + r1)(1− β)

If the ZLB is slack, then cS
1 < c̄S

1 , and the date 0 debt limit does not bind. If the ZLB binds, then
in any solution to the planner’s problem, cS

1 = 2y∗ − cB
1 = c̄S

1 , as required.

R Proof of Proposition 6.3.

The relevant first order conditions in the planner’s problem are

αUc(cS
0 , θS)− λ0 + µSUc(cS

0 , θS)− µBUc(cS
0 , θB) = 0

(1− α)Uc(cB
0 , θB)− λ0 − µSUc(cB

0 , θS) + µBUc(cB
0 , θB) = 0

αu′(cS
1)− λ1 + ζu′′(cS

1) + (µS − µB)u′(cS
1) = 0

(1− α)u′(cB
1 )− λ1 − (µS − µB)u′(cB

1 ) = 0

Combining,

αUc(cS
0 , θS) + µSUc(cS

0 , θS)− µBUc(cS
0 , θB)

(1− α)Uc(cB
0 , θB)− λ0 − µSUc(cB

0 , θS) + µBUc(cB
0 , θB)

=
αu′(cS

1) + ζu′′(cS
1) + (µS − µB)u′(cS

1)

(1− α)u′(cB
1 )− (µS − µB)u′(cB

1 )

Uc(cS
0 , θS)

Uc(cB
0 , θB)

1 + µS
α −

µBUc(cS
0 ,θB)

αUc(cS
0 ,θS)

1− µSUc(cB
0 ,θS)

(1−α)Uc(cB
0 ,θB)

+ µB
1−α

=
u′(cS

1)

u′(cB
1 )

1 + ζu′′(cS
1 )

αu′(cS
1 )

+ µS−µB
α

1− µS−µB
α

We have

1− T′(dB
1 )

1− T′(dS
1)

=
u′(cS

1)

u′(cB
1 )

Uc(cB
0 , θB)

Uc(cS
0 , θS)

=
1 + µS

α −
µBUc(cS

0 ,θB)

αUc(cS
0 ,θS)

1 + ζu′′(cS
1 )

αu′(cS
1 )

+ µS−µB
α

1− µS−µB
α

1− µSUc(cB
0 ,θS)

(1−α)Uc(cB
0 ,θB)

+ µB
1−α

The Proposition follows immediately.
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S Proof of Proposition 6.4.

The proof of Lemma G.3 shows that any incentive compatible allocation can be implemented
with a continuous, strictly decreasing function a(c) (and corresponding date 0 interest rate r0)
which gives an agent’s date 1 cash on hand as a function of her date 0 consumption. This

function is therefore invertible. Define T0(d) = a−1(−d)− y∗ − d
1 + r0

. The budget set with date

0 transfers is then identical to the budget set with date 1 debt contingent transfers. Since date
1 debt contingent transfers implement efficient allocations, it follows that date 0 transfers also
implement efficient allocations.

Consider the equilibrium induced by a debt limit φ0 = d̄1 = c̄S
1 − y∗ − φ. If d1 < d̄1 in

equilibrium, the ZLB does not bind, and the equilibrium is constrained efficient. If the debt limit
binds, the equilibrium satisfies

Uc(cS
0 , θS) = β(1 + r0)u′(c̄S

1)

Uc(cB
0 , θS) > β(1 + r0)u′(cB

1 )

cS
t + cB

t = 2y∗, t = 0, 1

U (cS, θS) > U (cB, θS)

U (cB, θB) > U (cS, θB)

Set
α

1− α
=

Uc(cB
0 , θB)

Uc(cS
0 , θS)

, λ0 = αUc(cS
0 , θS), λ1 = (1− α)u′(cB

1 ), ζ =
λ1 − αu′(cS

1)

u′′(cS)
> 0. Then the

allocation satisfies the first order sufficient conditions for a solution to the Pareto problem.
For high enough θB, the borrowing constraint binds (in both the equilibrium without policy

and under a debt limit). B’s gain from the equilibrium with a debt limit is

U(cB′
0 , θB)−U(cB′

0 , θB) + β[u(2y∗ − c̄S
1)− u(cB

1 )]

where cB′
0 denotes consumption with a debt limit. In the limit as θB → ∞ and Uc → ∞, borrowers

only derive utility from date 0 consumption. Since the debt limit necessarily reduces date 0
consumption, it makes them worse off.

Part 4 of the Proposition follows immediately from our earlier characterization of constrained
efficient allocations.

T Proof of Proposition 7.2.

The Pareto problem is
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max αU (cS, θS) + (1− α)U (cB, θB) (58)

s.t. cS
0 + cB

0 ≤ 2y∗ (RC0)

cS
1 + cB

1 ≤ 2y∗ (RC1)

ĉS
1 + ĉB

1 ≤ 2y∗ (RC1’)

cS
2 + cB

2 = 2y∗ (RC2)

cB
2 ≥ y∗ − (1− β)φ (BC)

u′(cS
1) ≥ βu′(cS

2) (ZLB)

U (cS, θS) ≥ U (cB, θS) (ICS)

U (cB, θB) ≥ U (cS, θB) (ICB)

where

U (ci, θ) := U(ci
0, θ) + π

{
βu(ci

1) +
β2

1− β
u(ci

2)

}
+ (1− π)

β

1− β
u(ĉi

1)

Lemma T.1. (RC2) and (RC1’) bind. u′(ci
1) > βu′(cS

2) for at least one agent. If (ZLB) binds, (BC)
binds. cB

1 ≤ cS
1 .

Proof. Identical to the proofs of Lemmas 4.1-4.4.

Lemma T.2. At most one incentive constraint binds.

Proof. Suppose by contradiction that U (cS, θS) = U (cB, θS), U (cS, θS) = U (cB, θS). By the same
argument as in the proof of Lemma 4.5, cS

0 = cB
0 .

Suppose first that ĉS
1 = ĉB

1 , cS
1 = cB

1 , cS
2 = cB

2 . Then the argument in the proof of Lemma 4.5
applies, and we have a contradiction.

If cS 6= cB, then set ci
1 =

cS
1 + cB

1
2

, ci
2 =

cS
2 + cB

2
2

= y∗, ĉi
1 =

ĉS
1 + ĉB

1
2

= y∗. This deviation satisfies
all the constraints. Since preferences are strictly concave, this increases utility, contradicting the
assumption that the original allocation was optimal.

Lemma T.3. (RC0) binds.

Proof. The proof is essentially identical to the proof of Lemma F.6. Forming the Lagrangian, the
first order necessary conditions for a maximum are

αUc(cS
0 , θS)− λ0 + µSUc(cS

0 , θS)− µBUc(cS
0 , θB) = 0

(1− α)Uc(cB
0 , θB)− λ0 − µSUc(cB

0 , θS) + µBUc(cB
0 , θB) = 0

αu′(cS
1)− λ1 + ζu′′(cS

1) + (µS − µB)u′(cS
1) = 0

(1− α)u′(cB
1 )− λ1 − (µS − µB)u′(cB

1 ) = 0

αu′(ĉS
1)− λ̂1 + (µS − µB)u′(ĉS

1) = 0

(1− α)u′(ĉB
1 )− λ̂1 − (µS − µB)u′(ĉB

1 ) = 0

αu′(cS
2)− λ2 − (1− β)ζu′′(cS

2) + (µS − µB)u′(cS
2) = 0

(1− α)u′(cB
2 )− λ2 + ψ− (µS − µB)u′(cB

2 ) = 0
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where λ0, βπλ1, β(1− π)λ̂1,
β2

1− β
πλ2, ψ, βζ, µS, µB are the multipliers on (RC0), (RC1), (RC1’),

(RC2), (BC), (ZLB), (ICS), (ICB) respectively.
Since at most one incentive constraint binds, µS, µB ≥ 0, with at least one equality. It follows

that either αUc(cS
0 , θS)− λ0 ≥ 0, or (1− α)Uc(cB

0 , θB)− λ0 ≥ 0, or both. Since Uc > 0, this implies
λ0 > 0. Thus (RC0) binds.

Lemma T.4. If (RC1) is slack, (ICS) and (ZLB) both bind.

Proof. Again, this follows directly from the proof of Lemma F.7.

This concludes the proof of part 1 of Proposition 7.2. Next, I show that ever constrained
efficient allocation can be implemented as an equilibrium with transfers.

Lemma T.5. If an allocation can be implemented as an equilibrium with transfers in the incomplete
markets economy, it can be implemented as an equilibrium with transfers in the complete markets economy.

Proof. Suppose T(d), T̂(d), r0 implement an allocation cS, cB in the incomplete markets economy.
In the incomplete markets economy, consider the transfer functions

T(d, d̂) = T(d) if d = d̂

= −∞ if d 6= d̂

T̂(d, d̂) = T̂(d) if d = d̂

= −∞ if d 6= d̂

together with the interest rates r0, r̂0 = r0. Clearly it is feasible for all households to choose
the same allocation as they would in the incomplete markets economy, by setting d̂ = d. And
it can never be optimal for them to do anything else, since this would incur an infinitely large
consumption loss.

With this Lemma in hand, I focus on implementation in the incomplete markets economy,
without loss of generality.

Lemma T.6. Define the date 1 value function V(ai
1) as in Lemma G.1, and define

V̂(âi
1) = max

{ci
t,d

i
t+1}∞

t=1

∞

∑
t=1

βt−1u(ci
t) (59)

s.t.ci
1 = y1 + âi

1 +
di

2
1 + r1

(60)

ci
t = yt − di

t +
di

t+1

1 + rt
, t ≥ 2 (61)

{ci
t, di

t+1}∞
t=0 solves i’s problem, given {yt, rt} and T(·), T̂(·), if and only if:

1. ci
0, di

1 solve

max
ci

0,di
1

U(ci
0, θi) + βπV(T(di

1)− di
1) + β(1− π)V̂(T̂(di

1)− di
1)

s.t. ci
0 = y0 +

di
1

1 + r0
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2. {ci
t, di

t+1}∞
t=1 solve (22), given ai

1 = T(di
1)− di

1.

3. {ĉi
t, d̂i

t+1}∞
t=1 solve (59), given âi

1 = T̂(di
1)− di

1.

Proof. Again, the proof is standard and is therefore omitted.

Lemma T.7. In any equilibrium with transfers:

1. for all t ≥ 2 and for all i, rt = r∗ = β−1 − 1, di
t = di

2, ci
t = ci

2 = y∗ − (1− β)di
2.

2. for all t ≥ 1 and for all i, r̂t = r∗ = β−1 − 1, d̂i
t = d̂i

1, ĉi
t = ĉi

1 = y∗ − (1− β)d̂i
1

Proof. The proof is identical to that of Lemma G.2.

Lemma T.8. In the two-type economy, {ci
t} can be implemented as an equilibrium with transfers if and

only if there exists r1 such that

cS
0 + cB

0 ≤ 2y∗ (62)

r1 ≥ 0, cS
1 + cB

1 ≤ 2y∗, with at least one equality (63)

ĉS
1 + ĉB

1 = 2y∗ (64)

cS
2 + cB

2 = 2y∗ (65)

u′(ci
1) ≥ β(1 + r1)u′(ci

2), ci
2 ≥ y∗ − (1− β), with at least one equality, i = S, B (66)

U (cS, θS) ≥ U (cB, θS) (67)

U (cB, θB) ≥ U (cS, θB) (68)

Proof. As in the proof of Lemma G.3, it is straightforward to show that these conditions are neces-
sary for implementability, and that if an allocation satisfies these conditions, then all equilibrium
conditions are satisfied - except, possibly, the condition that for i = S, B, ci

0, di
1 solve (22). Let

Ui = U (ci, θi) be the utility that each agent gets from her allocation. Define ai
1 = ci

1− y1−
di

2
1 + r1

,

âi
1 = ĉi

1 − y∗ − d̂i
2

1 + r̂1
. For each i = S, B, define the set

V i = {(c, a, â) ∈ R3 : U(c, θi) + βπV(a) + β(1− π)V̂(â) ≤ Ui}

By construction, V i is a closed set and ci
0, ai

1, âi
1 is contained in its boundary. Let

V = VS ∩ VB = {(c, a, â) ∈ R3 : U(c, θi) + βπV(a) + β(1− π)V̂(â) ≤ Ui, i = S, B}

be the set of allocations which both agents find weakly inferior to their equilibrium allocations.
By (67) and (68), the boundary of V contains cS

0 , aS
1 , âS

1 and cB
0 , aB

1 , âB
1 . To implement the desired

equilibrium, we can offer households any subset of V which contains both their equilibrium
allocations. Let a(c), â(c) be any functions satisfying

(c, a(c), â(c)) ∈ V , ∀x

ai
1 = a(ci

0), âi
1 = â(ci

0), i = S, B

It is immediate that

ci
0 ∈ arg max

c
U(c, θi) + βπV(a(c)) + β(1− π)V̂(â(c))
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Define T(d) = d + a

(
y0 +

di
1

1 + r0

)
, T̂(d) = d + â

(
y0 +

di
1

1 + r0

)
. We have immediately that

ci
0, di

1 ∈ arg max
c,d

U(c, θi) + βπV(T(d)− d) + β(1− π)V̂(T̂(d)− d)

s.t. ci
0 = y0 +

di
1

1 + r0

Since it is clear that these transfer functions satisfy the government budget constraint, we are
done.

Lemma T.9. In any constrained efficient allocation, S is unconstrained at date 1.

Proof. Suppose by contradiction that S is constrained at date 1 in the crisis state: then cS
1 < cB

1 ,
cS

t ≤ cB
t for all t ≥ 2. Since cS

0 < cB
0 , we must have ĉS

1 > ĉB
1 , otherwise B consumes more at all

dates and states, which cannot be incentive compatible. Suppose then that ĉS
1 > ĉB

1 : I will show
that this cannot be optimal. Consider the following deviation. Increase cS

1 and decrease cB
1 by

ε > 0, and increase ĉB
1 and decrease ĉS

1 by ε̂ > 0, where ε, ε̂ are chosen so that

π[u(cS
1 + ε)− u(cB

1 − ε)] +
1− π

1− β
[u(ĉS

1 − ε̂) + u(ĉB
1 + ε̂)] = π[u(cS

1)− u(cB
1 )] +

1− π

1− β
[u(ĉS

1) + u(ĉB
1 )]

By construction, resource and incentive compatibility constraints are satisfied. For small enough
ε, S is still borrowing constrained. To first order,

ε̂ =
π(1− β)

1− π

u′(cS
1) + u′(cB

1 )

u′(ĉS
1) + u′(ĉB

1 )

and the change in each agent’s utility is

∆UB = −βπu′(cB
1 )ε + βπu′(ĉB

1 )
u′(cS

1) + u′(cB
1 )

u′(ĉS
1) + u′(ĉB

1 )
ε > 0

∆US = βπu′(cS
1)ε− βπu′(ĉS

1)
u′(cS

1) + u′(cB
1 )

u′(ĉS
1) + u′(ĉB

1 )
ε > 0

where the inequalities hold because

u′(cS
1)

u′(cB
1 )

>
u′(cS

1) + u′(cB
1 )

u′(ĉS
1) + u′(ĉB

1 )
>

u′(ĉS
1)

u′(ĉB
1 )

So for some ε > 0, the deviation increases both agents’ utilities and satisfies all the constraints.
Thus the original allocation cannot have been optimal.

Corollary T.10. In the two-type economy, {ci
t} can be implemented as an equilibrium with transfers if

and only if (62), (64), (65), (67), (68) are satisfied, together with

u′(cS
1) ≥ βu′(cS

2), cS
1 + cB

1 ≤ 2y∗, with at least one equality (69)

u′(cB
1 )

βu′(cB
2 )
≥

u′(cS
1)

βu′(cS
2)

, cB
2 ≥ y∗ − (1− β)φ, with at least one equality (70)
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Proof. Identical to the proof of Corollary G.5.

U Proof of Proposition 7.3.

Lemma U.1. Suppose {ci
t, ĉi

t} solves (58). Define ai
1 = ci

1 − y1 −
di

2
1 + r1

, âi
t = ĉi

1 − y∗ − d̂i
2

1 + r̂1
.

Take any transfer functions T, T̂ and interest rate r0 ≥ 0. Define the associated net wealth functions

a(c) := T((1 + r0)(c− y∗))− (1 + r0)(c− y∗), â(c) = T̂((1 + r0)(c− y∗))− (1 + r0)(c− y∗)

Sufficient conditions for T, T̂, r0 to implement {ci
t, ĉi

t} are that:

1. a(ci
0) = ci

1 − y1 +
ci

2 − y∗

(1 + r1)(1− β)
for i = S, B, and

2. â(ci
0) =

ĉi
1 − y∗

1− β
for i = S, B,

3. for all c,

(c, a(c), â(c)) ∈ V = VS∩VB = {(c, a, â) ∈ R3 : U(c, θi)+ βπV(a)+ β(1−π)V̂(â) ≤ Ui, i = S, B}

Proof. Suppose {ci
t, ĉi

t} solves (58), and is therefore implementable. Let T, T̂, r0 satisfy the condi-
tions in the Lemma; I show that T, T̂, r0 implement this allocation.

If the conditions in the Lemma are satisfied, then for each i,

ci
0 ∈ arg max

c
U(c, θi) + βπV(a(c)) + β(1− π)V̂(â(c))

That is,

ci
0, di

1 ∈ arg max
c,d

U(c, θi) + βπV(T(d)− d) + β(1− π)V̂(T̂(d)− d)

s.t. ci
0 = y0 +

di
1

1 + r0

Defining di
1 = (1 + r0)(ci

0 − y∗), we have

∑
i=S,B

T(di
1) = ∑

i=S,B
ai

1 + ∑
i=S,B

di
1

= ∑
i=S,B

(
ci

1 − y1 +
ci

2 − y∗

(1 + r1)(1− β)

)
+ ∑

i=S,B
(1 + r0)(ci

0 − y∗)

= 0

∑
i=S,B

T̂(di
1) = ∑

i=S,B
âi

1 + ∑
i=S,B

di
1

= ∑
i=S,B

ĉi
1 − y∗

1− β
+ ∑

i=S,B
(1 + r0)(ci

0 − y∗)

= 0
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So the government budget constraints are satisfied. The remaining conditions are satisfied by
assumption.

Assumption U.2. u′(y∗ + (1− β)φ)φ is increasing in φ.

Lemma U.3. In any constrained efficient allocation, aB
1 ≥ âB

1 , aS
1 ≤ âS

1 .

Recall the necessary conditions for a maximum:

Proof.

[α + µS − µB]u′(cS
1) + ζu′′(cS

1) = λ1 = [1− α− µS + µB]u′(cB
1 )

[α + µS − µB]u′(ĉS
1) = λ̂1 = [1− α− µS + µB]u′(ĉB

1 )

[α + µS − µB]u′(cS
2)− (1− β)ζu′′(cS

2) = λ2 = [1− α− µS + µB]u′(cB
1 ) + ψ

It is clear that if the ZLB is slack and ζ = 0, cS
1 = ĉS

1 , cB
1 = ĉB

1 , while if the ZLB binds, cB
1 ≥ ĉB

1 ,
cS

1 ≤ ĉS
1 . Finally, if the borrowing constraint

If the borrowing constraint is slack, clearly optimal allocations are the same in the two states,
and ai

1 = âi
1, i = S, B. If the borrowing constraint binds but the ZLB is slack, then if (by contra-

diction) ai
1 = âi

1 for i = S, B in the optimal allocation, we would have cB
1 < ĉB

1 . To see this, note
that borrowers’ consumption when the constraint binds is

cB(φ) = y∗ + a + β
u′(y∗ + (1− β)φ)φ

u′(cB
1 )

By Assumption U.2, cB
1 (φ) is increasing in φ. In the non-crisis state, borrowers roll over their

debt, and ĉB
1 = c(−âB

1 ). In the crisis state, φ < −âB
1 , and cB

1 = c(φ) < ĉB
1 . We know it is optimal

to smooth consumption across states. To implement this, we must have aB
1 > âB

1 , and thus by
market clearing aS

1 < âS
1 .

Finally, when the ZLB binds, it is optimal to give the borrowers even higher consumption
than in the non-crisis state, but their pre-transfer income is (weakly) lower, because we may have
y1 < y∗. Thus again, we must have aB

1 > âB
1 and aS

1 < âS
1 .

Lemma U.4. R(α) :=
Uc(cS

0(α), θS)

β[πu′(cS
1(α)) + (1− π)u′(ĉS

1(α))]
is decreasing in α on [αS, αB]. T(α) :=

R(α)(y∗ − cS
0(α))− aS

1(α) is decreasing in α on [αS, αB]. There exits ᾱ ∈ (αS, αB) such that T(ᾱ) = 0.

Proof. R(α) is defined by

R(α) =
Uc(cS

0(α), θS)

β[πu′(cS
1(α)) + (1− π)u′(ĉS

1(α))]

αUc(cS
0(α), θS) = (1− α)Uc(2y∗ − cS

0(α), θS)

αu′(g1(α)) = (1− α)u′(2y∗ − g1(α))

αu′(ĉS
1(α)) = (1− α)u′(2y∗ − ĉS

1(α))

cS
1(α) = min{g1(α), c̄S

1}

Under Assumption H.4, R is decreasing in α. Since aS
1 and cS

1 are increasing in α, and cS
0 < y∗,

T(α) is increasing in α.
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When α = αS, U(cS
0 , θS) + βπV(aS

1) + β(1−π)V̂(âS
1) = U(cB

0 , θS) + βπV(aB
1 ) + β(1−π)V̂(âB

1 ).
Since these functions are concave,

Uc(cS
0 , θS)(cB

0 − cS
0) + βπV ′(aS

1)(aB
1 − aS

1) + β(1− π)V̂ ′(âS
1)(âB

1 − âS
1) > 0

R(α)(cB
0 − cS

0) +
πV ′(aS

1)

πV ′(aS
1) + (1− π)V̂ ′(âS

1)
(aB

1 − aS
1) +

(1− π)V̂ ′(âS
1)

πV ′(aS
1) + (1− π)V̂ ′(âS

1)
(âB

1 − âS
1)

R(α)(cB
0 − cS

0) + aS
1 − aB

1 > 0
T(α) > 0

where the third line uses Lemma U.3. An analogous argument establishes that T(αB) < 0. Finally,
since T is clearly continuous, there exists ᾱ such that T(α) = 0.

V Proof of Proposition 7.4.

If the borrowing constraint does not bind in equilibrium, yt = y∗ in all periods and the economy
enters steady state at date 1, ci

1 = ĉi
1, i = S, B, and

Uc(ci
0, θi)

βu′(ci
1)

=
Uc(ci

0, θi)

βu′(ĉi
1)

= 1 + r0 = 1 + r̂0, i = S, B

u′(ci
1) = β(1 + r1)u(ci

2), u′(ĉi
1) = β(1 + r̂1)u(ĉi

2), i = S, B

Choose α so that
α

1− α
=

Uc(cS
1 , θS)

Uc(cB
0 , θB)

. It follows that the allocation satisfies the first order sufficient

conditions for an optimum.
Suppose the borrowing constraint binds, but the ZLB is slack. In the complete markets econ-

omy, we have

Uc(ci
0, θi)

βu′(ci
1)

= 1 + r0, i = S, B

Uc(ci
0, θi)

βu′(ĉi
1)

= 1 + r̂0, i = S, B

u′(ci
1) ≥ β(1 + r1)u(ci

2), i = S, B

hoose α so that
α

1− α
=

Uc(cS
1 , θS)

Uc(cB
0 , θB)

. It follows that the allocation satisfies the first order sufficient

conditions for an optimum.

Choose α so that
α

1− α
=

Uc(cB
0 , θB)

Uc(cS
0 , θS)

. It follows that

αUc(cS
0 , θS) = (1− α)Uc(cB

0 , θB)

αu′(cS
1) = (1− α)u′(cB

1 ) + ψαu′(ĉS
1) = (1− α)u′(ĉB

1 )

for some ψ ≥ 0. So the allocation satisfies the first order sufficient conditions in (58), and is
Pareto optimal.

In the incomplete markets economy, cB
1 < ĉB

1 . But in any solution to the planner’s problem,
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cB
1 = ĉB

1 . So the incomplete markets equilibrium cannot be efficient. To see that debt relief is
Pareto improving, take an equilibrium without policy and increase cB

1 while decreasing cS
1 . This

clearly leads to a Pareto improvement, and can be implemented with debt relief.
Finally, if the ZLB binds in equilibrium (in either economy), y1 < y∗, which cannot be optimal

since neither incentive constraint binds.

W Proof of Proposition 7.8.

The Pareto problem is

max
xS,xB

αU (xS, θS) + (1− α)U (xB, θB) (71)

s.t xS
0 + xB

0 ≤ 0 (72)

xS
1 + xB

1 ≤ 0 (73)

xS
2 + xB

2 = 0 (74)

u′1(xS
1 , θS) ≥ βu′2(xS

2 , θS) (75)

xB
2 ≥ −(1− β)φ (76)

u′1(xB
1 , θB)

βu′2(xB
1 )
≥

u′1(xS
1 , θS)

βu′2(xS
1 )

(77)

(xB
2 + (1− β)φ)

(
u′1(xB

1 , θB)

βu′2(xB
1 )
−

u′1(xS
1 , θS)

βu′2(xS
1 )

)
= 0 (78)

U (xB, θB) ≥ U (xS, θB) (79)

U (xS, θS) ≥ U (xB, θS) (80)

where

U (x, θ) := u0(x0, θ) + βu1(x1, θ) +
β2

1− β
u2(x2, θ)

There are two new constraints, (77) and (78). These constraints impose that if the borrowing
constraint does not bind, agents must have the same marginal rate of substitution between date
1 and date 2 consumption. If neither incentive constraint binds, these new constraints do not
bind for the planner, since it is already optimal to give agents the same MRS. However, if one
incentive constraint binds, the planner might want to distort allocations away from the first best,
giving agents different MRSs, in order to make incentive compatibility hold.4 Then these new
constraints, which restrict MRSs to be the same, will bind.

Lemma W.1. u′1(xi
1, θi) > βu′2(xi

2, θi) for at least one agent.

Proof. If not, then xi
1 > xi

2 for i = S, B; summing, we have xS
1 + xB

1 > xS
2 + xB

2 = 0, which is
infeasible.

Lemma W.2. If (75) binds, (76) binds.

4In the baseline model considered thoughout the paper, there was no difference between agents’ preferences be-
tween dates 1 and 2. Thus the planner had no motive to distort the MRS between these two dates.
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Proof. Suppose by contradiction that (75) binds but (76) does not. By (77), we must have
u′1(xB

1 , θB)

βu′2(xB
1 )

=

u′1(xS
1 , θS)

βu′2(xS
1 )

= 1 (since (75) binds), contradicting Lemma W.1.

Lemma W.3. At most one incentive constraint binds.

Proof. First I show that if both incentive compatibility constraints hold, the allocation is weakly
inferior to the autarchic allocation xi

t = 0, ∀i, t. Then I show that this allocation itself cannot be
optimal.

If both (80) and (79) bind, then for i = S, B,

U (xS, θi) = U (xB, θi)

U (0, θi) ≥ U (
1
2
(xS + xB), θi) ≥ U (xS, θi)

To show that autarky is not optimal, consider the following deviation: set xB
0 = −xS

0 = ε0 > 0,
xS

1 = −xB
0 = ε1 > 0, xS

2 = −xB
2 = ε2, choosing ε0, ε1 so that

u′0(0, θS)

βu′1(0, θS)
<

δ

ε
<

u′0(0, θB)

βu′1(0, θB)

and choosing ε2 to satisfy the agents’ Euler equations. This deviation increases utility for both
agents, and is feasible, because it relaxes both incentive compatibility constraints.

Lemma W.4. (RC0) binds.

Proof. Identical to the proof of Lemma F.6.

Lemma W.5. If (RC1) is slack, (ICS) and (ZLB) both bind.

Proof. Identical to the proof of Lemma F.7.

The proof that every solution to this Pareto problem can be implemented as an equilibrium
with transfers has the same structure as the corresponding proof in the baseline model. I show
that household optimality conditions can be expressed in recursive form, show that the economy
enters steady state at date 2, show that we can represent optimality conditions using incentive
compatibility constraints, and then show that certain constraints do not bind.

Definition W.6. An equilibrium with transfers is a collection {xi
t, di

t+1, zi
t, rt} such that, given a policy

T(·):
1. for each i = S, B, {xi

t, di
t+1} solves agent i’s problem, given {zi

t, rt} and given policy T(·):

max u0(xi
0, θi) +

∞

∑
t=1

βtut(xi
t, θi) (81)

s.t.
di

2
1 + r1

= di
1 + xi

1 + zi
1 − T(di

1) (82)

di
t+1

1 + rt
= di

t + xi
t + zi

t, ∀t 6= 1 (83)

di
t ≤ φ, t ≥ 2 (84)

di
0 = 0 (85)
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2. for all t,

xS
t + xB

t + 2zt = 0 (86)
rt ≥ 0, zt ≥ 0, rtzt = 0 (87)

3. the government budget constraint is satisfied:

T(dS
1) + T(dB

1 ) = 0 (88)

Lemma W.7. Define the date 1 value function

Vi(ai
1, θi) = max

{xi
t,d

i
t+1}∞

t=1

∞

∑
t=1

βt−1ut(xi
t, θi) (89)

s.t.xi
1 = ai

1 − z1 +
di

2
1 + r1

(90)

xi
t = −di

t − zt +
di

t+1

1 + rt
, t ≥ 2 (91)

di
t ≤ φ, t ≥ 2 (92)

{xi
t, di

t+1}∞
t=0 solves i’s problem, given {zt, rt} and T(·), if and only if:

1. xi
0, di

1 solve

max
ci

0,di
1

u(xi
0, θi) + βVi(T(di

1)− di
1)

s.t. xi
0 =

di
1

1 + r0
− z0

2. {xi
t, di

t+1}∞
t=1 solve (89), given ai

1 = T(di
1)− di

1.

Proof. Again, the proof is standard and is therefore omitted.

Recall the following assumptions:

Assumption W.8. For all t, θ, there exists xt(θ) such that ut(·, θ) is C2 on (xt(θ), ∞), with u′t > 0,
u′′t < 0, limx→xt(θ) u′t(x, θ) = +∞, limx→xt(θ) ut(x, θ) = −∞.

Assumption W.9.
u′0(x0, θ)

βu′1(x1, θ)
is increasing in θ.

Assumption W.10.
u′t+1(x, θ)

u′t(x, θ)
= 1, for all θ, x, t ≥ 1.

Lemma W.11. In any equilibrium with transfers, for all t ≥ 2 and for all i, rt = r∗ = β−1 − 1, di
t = di

2,
xi

t = xi
2 = −(1− β)di

2.

Proof. First, suppose that households solve a relaxed problem in which φt = ∞ for all t ≥ 3. In
this case, household first order conditions yield

u′t(xi
t, θi) = β(1 + rt)u′t+1(xi

t+1)φ for all t ≥ 2
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I will show that the borrowing constraint does not bind, so households are indeed liquidity
unconstrained after date 2.

If rt = r∗, ∀t ≥ 2, the proposed allocation uniquely satisfies these first order conditions, by
assumption W.10. Suppose by contradiction that there is also an equilibrium with rt > r∗ for
some t ≥ 2. Then for each household i, xi

t < xi
t+1. Integrating, we have zt = −

∫
xi

t di >

−
∫

xi
t+1 di = 0. So zt > 0, which implies rt = 0 by the definition of equilibrium, a contradiction.

Suppose by contradiction that rt < r∗. Then a similar argument implies that zt+1 = −
∫

xi
t+1 di >

0 and rt+1 = 0. Iterating forward, we see that we must have rt+s = 0, zt+s > 0 for all s ≥ 1. This
deflationary equilibrium is clearly Pareto inferior to an equilibrium with zt = 0, so we can rule
this equilibrium out when considering optimal policy.

From the budget constraints, it follows that xi
t = xi

2 = −(1− β)di
2, di

t+1 = di
t, for all t ≥ 2.

Since di
2 ≤ φ, households’ unconstrained borrowing decisions happen to satisfy the borrowing

constraint, as claimed.

Lemma W.12. If i is constrained at date 1, xi
t ≤ xj

t, ∀t ≥ 1. If φ > 0, the inequality is strict.

Proof. It follows immediately from Lemma W.11 that if i is constrained, he consumes less than j
in steady state:

xi
2 = −(1− β)φ ≤ (1− β)φ = xj

2

with strict inequality if φ > 0. Since i is constrained and j is not, we have

u′1(xi
1, θi)

u′2(xi
2, θi)

>
u′1(xj

1, θi)

u′2(xj
2, θi)

= β(1 + r1)

I claim that β(1 + r1) < 1. If not, then
u′1(xj

1, θi)

u′2(xj
2, θi)

,
u′1(xi

1, θi)

u′2(xi
2, θi)

≥ 0, which implies xi
2 > xi

1, xj
2 > xj

1

by Assumption W.10. Summing, we have xi
1 + xj

1 < xi
2 + xj

2 ≤ 0. But this is a contradiction, since
r1 > 0 and we must have full employment.

Since β(1 + r1) < 1, it follows that xj
1 > xj

2 ≥ 0. Since xi
1 + xj

1 ≤ 0, we have immediately that
xi

1 < xj
1.

Lemma W.13. In any equilibrium with transfers:

1. If xi
0 > xj

0, then xi
t ≤ xj

t, ∀t ≥ 0, with at least one strict inequality

2. If xi
0 = xj

0, then xi
t = xj

t, ∀t

Proof. Suppose xi
0 > xj

0. If no agent is constrained at date 1, then the economy enters steady state
and xi

1 = xi
t, for all t ≥ 1. We must have xi

1 < xj
1, otherwise j would strictly prefer i’s allocation.

If j is constrained, we know from Lemma W.12 that i must consume more than j at every date
t ≥ 1. So j consumes less in every period, which is impossible, since then j would prefer i’s
allocation. If i is constrained, then j consumes more than i at every date t ≥ 1, which is what we
wanted to show.

Suppose xi
0 = xj

0. If either agent is liquidity constrained at date 1, that agent consumes less in
every subsequent period, and would rather choose the other agent’s allocation. If neither agent
is constrained, the economy enters steady state and xi

t = xi
1 = xi

j = xj
t in every period. Since

there is full employment in steady state, xi
t = xj

t = 0.
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Lemma W.14. In the two-type economy, {ci
t} can be implemented as an equilibrium with transfers if and

only if there exists r1 such that

xS
0 + xB

0 ≤ 0 (93)

r1 ≥ 0, xS
1 + xB

1 ≤ 0, with at least one equality (94)

xS
2 + xB

2 = 0 (95)

u′1(xi
1, θ1) ≥ β(1 + r1)u′2(xi

2, θ2), xi
2 ≥ −(1− β)φ, with at least one equality, i = S, B (96)

U (xB, θB) ≥ U (xS, θB) (97)

U (xS, θS) ≥ U (xB, θS) (98)

Proof. First I show that these conditions are necessary for implementability. Suppose {xi
t, di

t+1, rt, zt}
is an equilibrium with transfers, given some policy T(·). (93) and (95) are satisfied by definition.
By Lemma W.11, the economy enters a steady state at date 2 with full employment, thus (94) is
satisfied. (29) describes necessary conditions for optimality in the household problem. Finally,
the incentive compatibility constraints (98), (97) follow from a standard mimicking argument.

Next, I show that conditions (93)-(97) are sufficient for implementability. Let {xi
t}, r1 satisfy

these conditions. Set 2zt = −xS
t − xB

t for all t and set rt = r∗ for all t ≥ 2. Set di
t =

−xi
2

1− β
, ∀t ≥ 2.

If zt > 0, set r0 = 0, otherwise choose any r0 ≥ 0.
It is clear that all equilibrium conditions are satisfied, except, possibly, the condition that for

i = S, B, xi
0, di

1 solve (89). Let Ui = U (xi, θi) be the utility that each agent gets from her allocation.

Define ai
1 = xi

1 + z1 −
di

2
1 + r1

. For each i = S, B, define the set

V i = {(x, a) ∈ R2 : u0(x, θi) + βVi(a) ≤ Ui}

By construction, V i is a closed set and xi
0, ai

1 is contained in its boundary. Let

V = VS ∩ VB = {(x, a) ∈ R2 : u0(x, θi) + βVi(a) ≤ Ui, i = S, B}

be the set of allocations which both agents find weakly inferior to their equilibrium allocations.
By (98) and (97), the boundary of V contains xS

0 , aS
1 and xB

0 , aB
1 . To implement the desired equilib-

rium, we can offer households any subset of V which contains both their equilibrium allocations.
Let a(x) be any function satisfying

(x, a(x)) ∈ V , ∀x

ai
1 = a(xi

0), i = S, B

It is immediate that
xi

0 ∈ arg max
x

u0(x, θi) + βVi(a(x))

52



Define T(d) = d + a

(
di

1
1 + r0

− z0

)
. We have immediately that

xi
0, di

1 ∈ arg max
x,a

u0(x, θi) + βVi(T(d)− d)

s.t. xi
0 =

di
1

1 + r0
− z0

Since it is clear that these transfer functions satisfy the government budget constraint, we are
done.

Lemma W.15. Suppose θB > θS. Let b, s = {bt}∞
t=0, {st}∞

t=0 be two allocations with b0 > s0, bt ≤
st, ∀t ≥ 1, with strict inequality for t = 1. If U(b, θS) ≥ U(s, θS), then U(b, θB) > U(s, θB).

Proof. Suppose not, and U(b, θB) ≤ U(s, θB). By continuity, there exists θ̄ ∈ [θS, θB) such that
U(b, θ̄) = U(s, θ̄). There exists some isoutility curve {(x0(τ), x1(τ), ...)|τ ∈ [0, 1]} linking s and
b, with x(0) = s, x(1) = b, x′0(τ) > 0, x′t(τ) ≤ 0, ∀t ≥ 1, with at least one strict inequality, such
that U(x(τ), θ̄) is constant for all τ ∈ [0, 1]. That is, for all τ ∈ [0, 1], we have

d
dτ

U(x(τ), θ̄) = 0

u′0(x0(τ), θ̄)x′0(τ) +
∞

∑
t=1

βtu′t(xt(τ), θ̄)x′t(τ) = 0

x′0(τ) +
∞

∑
t=1

βt u′t(xt(τ), θ̄)

u′0(x0(τ), θ̄)
x′t(τ) = 0

x′0(τ) +
∞

∑
t=1

βt u′t(xt(τ), θB)

u′0(x0(τ), θB)
x′t(τ) > 0

where the last line uses Assumption W.9. Multiplying by u′0(x0(τ), θB) and integrating, we have

u′0(x0(τ), θB)x′0(τ) +
∞

∑
t=1

βtu′t(xt(τ), θB)x′t(τ) > 0

∫ 1

0
u′0(x0(τ), θB)x′0(τ)dτ +

∞

∑
t=1

βt
∫ 1

0
u′t(xt(τ), θB)x′t(τ)dτ > 0

U(b, θB)−U(s, θB) > 0

a contradiction. So we must have U(b, θB) > U(s, θB).

Lemma W.16. In any implementable allocation, xB
0 ≥ xS

0 . If xB
0 > xS

0 , then xB
t ≤ xS

t , for all t ≥ 1, with
at least one strict inequality. If xB

0 = xS
0 , then xB

t = xS
t for all t. S is unconstrained at date 1.

Proof. The first part follows from Lemma W.13 and Lemma W.15. Suppose by contradiction
that there exists an implementable allocation in which S is constrained. Then by Lemma W.12,
xS

t ≤ xB
t , for all t ≥ 1. We know that xB

0 ≥ xS
0 . If any one of these inequalities is strict, S prefers

B’s allocation, which contradicts the assumption that the allocation is implementable. If xS
t = xB

t
for all t, S is unconstrained.
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Corollary W.17. {xi
t} can be implemented as an equilibrium with transfers if and only if (93), (95), (98),

(79) are satisfied, together with

u′1(xS
1 , θS) ≥ βu′2(xS

2 , θS), xS
1 + xB

1 ≤ 0, with at least one equality (99)

u′1(xB
1 , θB)

βu′2(xB
2 , θB)

≥
u′1(xS

1 , θS)

βu′2(xS
2 , θS)

, xB
2 ≥ −(1− β)φ, with at least one equality (100)

Proof. The proof follows exactly the proof of Corollary G.5.

Lemma W.18. Suppose {xi
t} solves the Pareto problem (71). Then (99) and (100) are satisfied.

Proof. (100) is satisfied by construction. (99) is satisfied by Lemma W.5.

Next, I show that debt relief implements some constrained efficient allocations.

Assumption W.19. The economy has a unique equilibrium.

Fix θS, θB. Let x̃i
t(α) denote allocations which solve a relaxed Pareto problem without incentive

constraints and without the ZLB. Define the net transfer from borrowers to savers in this relaxed
Pareto problem as

T̃(α) =
u′0(x̃S

0 (α), θS)

βu′1(x̃S
1 (α), θS)

x̃B
0 (α) + ãB

1 (α)

Since the ZLB binds in the original Pareto problem if xS
1 is large enough, and xS

1 is increasing in
α, there exists αZLB (which may equal 1) such that the ZLB binds if α > αZLB. Assumption W.19
implies that T̃(α) = 0 has at most one solution in [0, αZLB] (otherwise both solutions would be
competitive equilibria.

When the ZLB binds, the solution to the relaxed Pareto problem is x̃i
0(α), x̄i

1, x̄i
2, i = S, B,

where x̄S
2 = (1− β)φ, u′1(x̄S

1 , θS) = βu′2(x̄S
2 , θS), x̄B

t = −x̄S
t , t = 1, 2. Define

TZLB(α) =
u′0(x̃S

0 (α), θS)

βu′1(x̄S
1 , θS)

x̃B
0 (α) + āB

1 ;

it follows that TZLB is strictly decreasing in α. Define T(α) = TZLB(α) if α ≤ αZLB, T(α) = T̃(α)
if α > αZLB. An identical argument to that in the proof of Lemma H.5 shos that T(αS) > 0,
T(αB) < 0. It follows that there exists ᾱ such that T(ᾱ) = 0, T(α) > 0 for α < ᾱ, T(α) < 0 for
α > ᾱ.

Lemma W.20. Constrained efficient allocations with T(α) > 0 can be implemented with debt relief.
Constrained efficent allocations with T(α) < 0 can be implemented with a savings subsidy.

Proof. As in Lemma H.3.

Part 3 of the Proposition follows.
Finally, the proof of part 4 is essentially identical to the proof of Proposition 4.7 presented

above, and is omitted.

X Proof of Proposition 7.9.

Let

U (ci, hi, θi) := θiU(ci
0, hi

0) + βU(ci
1, hi

1) +
β2

1− β
U(ci

2, hi
2)
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We have a Pareto problem

max αU (cS, hS, θS) + (1− α)U (cB, hB, θB) (101)

cS
t + cB

t = hS
t + hB

t , t = 0, 1, 2 (102)

Uc(cS
t , hS

t ) + Uh(cS
t , hS

t ) = 0, t = 0, 2 (103)

Uc(cB
t , hB

t ) + Uh(cB
t , hB

t ) = 0, t = 0, 2 (104)

Uc(cS
1 , hS

1) ≥ βUc(cS
2 , hS

2) (105)

Uc(cB
1 , hB

1 )

βUc(cB
2 , hB

2 )
≥

Uc(cS
1 , hS

1)

βUc(cS
2 , hS

2)
(106)(

Uc(cB
1 , hB

1 )

βUc(cB
2 , hB

2 )
−

Uc(cS
1 , hS

1)

βUc(cS
2 , hS

2)

)
(cB

2 − hB
2 −

r∗

1 + r∗
φ) = 0 (107)

cB
2 ≥ hB

2 − (1− β)φ (108)

U (cS, hS, θS) ≥ U (cB, hB, θS) (109)

U (cB, hB, θB) ≥ U (cS, hS, θB) (110)

I will confine attention to the case in which the borrowing constraint binds. Note that I impose
that labor supply must be efficient at date 0, as well as in the steady state.

Definition X.1. An equilibrium with transfers is a collection {ci
t, di

t, hi
t, rt, wt, πt}∞

t=0 such that, given a
policy T(d), τ(d),

1. for each i, given {rt, wt} and given policy, {ci
t, di

t, hi
t} solves

max θiU(ci
0, hi

0) +
∞

∑
t=1

βtU(ci
t, hi

t)

s.t. ci
t + di

t = wthi
t + πt +

di
t+1

1 + rt
, t 6= 1

ci
1 + di

1 = T(di
1) + (1− τ(di

1))w1hi
1 + π1 +

di
2

1 + r1

di
t ≤ φ, t ≥ 2

di
0 = 0

2. firms’ profits are 2πt = (1− wt)(hS
t + hB

t ), ∀t

3. markets clear:
cS

t + cB
t = hS

t + hB
t , ∀t

4. wt ≤ 1, rt ≥ 0, rt(1− wt) = 0.
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Lemma X.2. Define the date 1 value function

V(ai
1) = max

{ci
t,h

i
t,d

i
t+1}∞

t=1

∞

∑
t=1

βt−1U(ci
t, hi

t) (111)

s.t.ci
1 = ai

1 + (1− τ(ai
t))w1h1 + π1 +

di
2

1 + r1
(112)

ci
t = wtht + πt − di

t +
di

t+1

1 + rt
, t ≥ 2 (113)

di
t ≤ φ, t ≥ 2 (114)

{ci
t, hi

t, di
t+1}∞

t=0 solves i’s problem, given {wt, rt} and T(·), τ(·), if and only if:

1. ci
0, hi

0, di
1 solve

max
ci

0,hi
0,di

1

θiU(ci
0, hi

0) + βV(T(di
1)− di

1)

s.t. ci
0 = w0h0 +

di
1

1 + r0

2. {ci
t, hi

t, di
t+1}∞

t=1 solve (111), given ai
1 = T(di

1)− di
1.

Proof. Again, the proof is standard and is therefore omitted.

Lemma X.3. In any equilibrium with transfers, for all t ≥ 2 and for all i, rt = r∗ = β−1 − 1, wt = 1,
di

t = di
2, ci

t = ci
2 = h2 − (1− β)di

2.

Proof. First, suppose that households solve a relaxed problem in which φt = ∞ for all t ≥ 3. In
this case, household first order conditions yield

Uc(ci
t, hi

t) = β(1 + rt)Uc(ci
t+1, hi

t+1) for all t ≥ 2

I will show that the borrowing constraint does not bind, so households are indeed liquidity
unconstrained after date 2.

If rt = r∗, ∀t ≥ 2, then wt = 1, ∀t ≥ 2, and −Uh = −Uc, which defines h as a function h(c) of
c. Since β(1 + rt) = 1, marginal utility must be constant, so consumption and labor supply must
also be constant. Then budget constraints impose that ci

t = ci
2 = h2 − (1− β)di

2, as claimed.
Suppose by contradiction that there is also an equilibrium with rt > r∗ for some t ≥ 2. Then

for each household i, Uc(ci
t, hi

t) > ci
t+1. Integrating, we have yt =

∫
ci

t di <
∫

ci
t+1 di = y∗. So

yt < y∗, which implies rt = 0 by the definition of ZLB-constrained equilibrium, a contradiction.
Suppose by contradiction that rt < r∗. Then a similar argument implies that yt+1 =

∫
ci

t+1 di <
y∗ and rt+1 = 0. Iterating forward, we see that we must have rt+s = 0, yt+s < y∗ for all s ≥ 1.
This deflationary equilibrium is clearly Pareto inferior to an equilibrium with yt = y∗, so we can
rule this equilibrium out when considering optimal policy.5

From the budget constraints, it follows that ci
t = ci

2 = y∗ − (1− β)di
2, di

t+1 = di
t, for all t ≥ 2.

Since di
2 ≤ φ, households’ unconstrained borrowing decisions happen to satisfy the borrowing

constraint, as claimed.
5Equivalently, we could append to our definition of equilibrium the condition that limt→∞ yt = y∗.

56



Lemma X.4. {ct, ht} can be implemented as an equilibrium with transfers if and only if there exists r1 ≥ 0
such that

ci
t = ci

2, hi
t = hi

2, t > 2 (115)

cS
t + cB

t = hS
t + hB

t , ∀t (116)

Uc(ci
2, hi

2) + Uh(ci
2, hi

2) = 0, i = S, B (117)

−Uh(cS
0 , hS

0)

Uc(cS
0 , hS

0)
= −Uh(cB

0 , hB
0 )

Uc(cB
0 , hB

0 )
(118)

Uc(ci
1, hi

1) ≥ β(1 + r1)Uc(ci
2, hi

2), ci
2 ≥ hi

2 − (1− β)φ, with at least one equality, i = S, B (119)

U(cS, hS, θS) ≥ U(cB, hB, θS) (120)

U(cB, hB, θB) ≥ U(cS, hS, θB) (121)

Proof. Take any equilibrium with transfers. From Lemma X.3, we know the first three conditions
hold. (118) follows from households’ date 0 first order conditions, given that they face the
same wage. (119) follows from households’ date 1 problem. Finally, the incentive compatibility
conditions (120), (121) hold by a standard mimicking argument.

Next, we show that these conditions are sufficient for the allocation to be implementable.
Suppose we have an allocation {ct, ht} and associated r1 ≥ 0 such that these conditions hold. Set

rt = r∗, wt = 1 for all t ≥ 2. Set w0 = −Uh(cS
0 , hS

0)

Uc(cS
0 , hS

0)
. If w0 < 1, set r0 = 0; otherwise, choose any

r0 ≥ 0. Set w1 = 1 and let τ(a) be any continuous function such that τ(ai
1) = 1 +

Uh(ci
1, hi

1)

Uc(ci
1, hi

1)
,

i = S, B, where for each i, we define

ai
1 = ci

1 − hi
1 +

ci
2 − hi

2
(1 + r1)(1− β)

It remains to show that each household solves (111). Given prices, and given the transfer function
τ, the argument in Lemma G.3 applies directly, and the incentive compatibility conditions (120),
(121) imply this. So we are done.

As in the previous sections, it is straightforward to show that any solution to the Pareto
problem satisfies the conditions in Lemma X.4.

Y Proof of Proposition 7.10.

If the borrowing constraint binds, cS
2 , cB

2 , hS
2 , hB

2 are pinned down by (104), (102) and (108). Let
W(x) solve

W(x) = U(c, h)
Uc(c, h) + Uh(c, h) = 0c− h = x
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Then we can write the Pareto problem as

max
xS

0 ,cS
1 ,hS

1 ,xB
0 ,cB

1 ,hB
1

αθSW(xS
0 ) + αβU(cS

1 , hS
1) + (1− α)θBW(xB

0 ) + (1− α)βU(cB
1 , hB

1 )

xS
0 + xB

0 = 0

cS
1 + cB

1 = hS
1 + hB

1

Uc(cS
1 , hS

1) ≥ βUc(cS
2 , hS

2)

θSW(xS
0 ) + βU(cS

1 , hS
1) + ∆ ≥ θSW(xB

0 ) + βU(cB
1 , hB

1 )

θBW(xB
0 ) + βU(cB

1 , hB
1 ) ≥ θBW(xS

0 ) + βU(cS
1 , hS

1) + ∆

where ∆ :=
β2

1− β
[U(cS

2 , hS
2)−U(cB

2 , hB
2 )] is fixed. First order necessary and sufficient conditions

for an optimum are

(αθS + µS − µB)W ′(xS
0 ) = λ0

((1− α)θB − µS + µB)W ′(xB
0 ) = λ0

(α + µS − µB)Uc(cS
1 , hS

1) + ζUcc(cS
1 , hS

1) = λ1

−(α + µS − µB)Uh(cS
1 , hS

1) + ζUch(cS
1 , hS

1) = λ1

(1− α− µS + µB)Uc(cB
1 , hB

1 ) = λ1

−(1− α− µS + µB)Uh(cB
1 , hB

1 ) = λ1

First, suppose no incentive constraints bind, µS = µB = 0. The first two equations then define
xS

0 , xB
0 as (respectively) strictly increasing and strictly decreasing functions of α. S’s date 1 utility

is also weakly increasing in α. S’s net gain from choosing his own allocation is

θS[W(xS
0 (α))−W(xB

0 (α))] + β[US
1 (α)−UB

1 (α)] + ∆

which is increasing in α, and is positive for sufficiently small α, so there exists αS > 0 such that
ICS binds if α < αS. An analogous argument shows that there exists αB such that ICB binds if
α > αB.

If λ1 > 0, we have

(1 + τ(dS
1)) = −

Uh(cS
1 , hS

1)

Uc(cS
1 , hS

1)
=

α + µS − µB + ζ
Ucc(cS

1 ,hS
1 )

Uc(cS
1 ,hS

1 )

α + µS − µB + ζ
Uch(cS

1 ,hS
1 )

Uh(cS
1 ,hS

1 )

Under the regularity condition
Uch

Uh
>

Ucc

Uc
, the labor wedge τ(dS

1) > 0. With quasilinear prefer-

ences,
Uch

Uh
=

Ucc

Uc
, and the labor wedge is zero.

If λ1 = 0, α + µS− µB = 1 and Uc(cS
1 , hS

1) + ζUcc(cS
1 , hS

1) = −Uh(cS
1 , hS

1)− ζUch(cS
1 , hS

1) = 0, and
so

(1 + τ(dS
1)) =

−Uh

Uc
= 1 + ζ

Ucc + Uch

Uc

Under the regularity condition that Ucc + Uch < 0, again the labor wedge is positive.
To prove part 3, note that if B faces a positive labor wedge, it must be that λ1 = 0, which
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in turn can only be the case if µS > 0 and ICS binds. (Specifically, it can only be the case if
α + µS− µB = 1.) To prove part 4, note that when Uch = 0, λ1 = −(α + µS− µB)Uh(cS

1 , hS
1), which

is positive when α + µS − µB = 1. So we cannot have λ1 = 0.

Z Proof of Proposition 7.11.

Again, it simplifies matters to directly assume uniqueness of equilibrium in the absence of policy.

Assumption Z.1. The economy has a unique equilibrium.

Fix θS, θB. First consider a relaxed Pareto problem without incentive constraints in which
the ZLB never binds. In this case, labor supply is always efficient (Uc + Uh = 0, ∀i, t) and each
household obtains utility W(x) = maxh U(x + h, h) in each period. Thus when the ZLB does not
bind, the economy with endogenous labor supply is isomorphic to a special case of the economy
with persistent types, and the argument presented there establishes that T̃(α) = 0 has at most
one solution in [0, αZLB], where

T̃(α) =
θSUc(c̃S

0(α), h̃S
0(α))

βUc(c̃S
1(α), h̃S

1(α))
x̃B

0 (α) + ãB
1 (α)

and where a tilde denotes the solution to the relaxed Pareto problem. When the ZLB binds,
Uc(cS

1 , hS
1) is fixed by the ZLB constraint, and the same argument above shows that TZLB(α)

(defined in the obvious way) is decreasing. Define T(α) = TZLB(α) if α ≤ αZLB, T(α) = T̃(α) if
α > αZLB. Again, an identical argument to that in the proof of Lemma H.5 shows that T(αS) > 0,
T(αB) < 0. It follows that there exists ᾱ such that T(ᾱ) = 0, T(α) > 0 for α < ᾱ, T(α) < 0 for
α > ᾱ.

Lemma Z.2. Constrained efficient allocations with T(α) > 0 can be implemented with debt relief. Con-
strained efficent allocations with T(α) < 0 can be implemented with a savings subsidy.

Proof. As in Lemma H.3.

Again, the proof that debt relief is Pareto improving at the ZLB is essentially identical to the
proof of Proposition 4.7 presented above, and is omitted.
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