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h i g h l i g h t s

• We propose a bottom-up approach to model large life insurance portfolios.
• We use heavy-traffic approximation to derive and justify the structure of the risk processes.
• The risk processes are shown to depend on mortality and insurance contract structure in a tractable manner.
• We formulate and compute ruin probability that takes actuarial reserve into account.
• We identify explicitly the temporal and cross-sectional correlation structure of the derived risk processes.
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a b s t r a c t

We explore a new framework to approximate life insurance risk processes in the scenario of plentiful
policyholders, via a bottom-up approach. Given the insurance contract structure, we aggregate the
balance of individual policy accounts, and derive an approximating Gaussian process with computable
correlation structure. The methodology is borrowed from heavy traffic theory in the literature of many-
server queues, and involves the so-called fluid and diffusion approximations. Our framework is different
from the individual risk model in that it takes into account the time dimension and the specific policy
structure including the premium payments. It is also different from classical risk theory in that it builds
the risk process from micro-level contracts and parameters instead of assuming aggregated claim and
premiumprocesses outright. As a result, our approximating process behaves differently depending on the
issued contract structure.We also illustrate the flexibility of our approach by formulating a finite-horizon
ruin problem that incorporates actuarial reserve in the consideration.

© 2013 Elsevier B.V. All rights reserved.
The study of risk processes is a central topic in actuarial science.
Most of the literature focuses on the calculation of ruin probabil-
ity and deficits (or overshoots) at the time of ruin, as well as the
optimal control of premiums, reinsurance levels, and investment
allocation. These questions have been studied under a variety of
stochastic settings, from the classical Cramer–Lundberg approxi-
mation to diffusion processes. The central theme is that random-
walk-type models, with a negatively drifted premium process and
a jump process of claims, provide a rich framework to allow plenty
of extensions, modifications and problem formulations (see, for
example, Asmussen and Albrecher, 2010 for the survey on ruin
probability calculations, and Schmidli, 2008 for the counterpart in
stochastic control problems).

In this paper, we take a different view from the existing
literature. Rather than focusing on the computation of risk-related
quantities, we explore the question of the construction of risk
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process itself. The approach we use is bottom-up: given the
structure and parameters of the individual insurance contracts,
how does the risk process of the insurer look like on an aggregate
scale?

Naturally, the risk process under this framework is the sum of
all the individual accounts i.e. the balances of policyholders who
entered contract with the insurer over time. For actuaries, this
points to the standard one-period individual and collective risk
models. However, these standard models do not consider the time
dimension. This in turn also restrains the power of such models to
capture the specific contract structure involved e.g. the premium
payments.

In this regard, our work can be seen as a generalization of the
standard risk models to a process-level approximation. Of course,
mere summation of all individual accounts might end up getting
an unpleasant process that is hardly computable. To tackle this is-
sue, we borrow techniques in so-called heavy traffic theory in the
queueing literature. The basic idea is that under the assumption of
large number of customers or policyholders, one can approximate
the functionals of these policyholders’ statuses using fluid and dif-
fusion approximations. In the statistics literature, these correspond
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to stochastic-process versions of Law of Large Numbers and Cen-
tral Limit Theorems. With the sheer scale of major insurance com-
panies, the assumption of plentiful policyholders is sensible, and so
these approximation techniques can be used. As we will see, these
heavy traffic approximation would then lead to a Gaussian process
that is as analyzable as many standard processes used in the cur-
rent risk theory literature. In particular, the correlation structure
of this Gaussian process is explicitly computable given the contract
structure (see Section 4). To illustrate our argument on tractability,
we formulate a finite-horizon ruin problem based on our Gaussian
approximation (see Section 3).

We distinguish our contribution from the classical risk theory
and standard actuarial risk models in a few ways. First, our model
explains how individual insurance policies lead to certain features
of the aggregate risk process. The construction of our risk process
depends intricately on the premium and benefit structure of single
policies. This means that different types of insurance, such as
whole life insurance, term life, endowment etc. would lead to
different correlation structure of our resulting Gaussian process.
This is in sharp contrast to the current model in risk theory, where
premium and claim processes are modeled separately, each as a
drifted random walk (or its variants) and marked point process.
This feature can potentially provide a framework to analyze the
effect of contract structure on the firm-wide risk level. Second,
our model allows naturally the incorporation of actuarial reserve
in our approximation. Indeed, the finite-horizon ruin problem
that we formulate in Section 3 will involve the calculation of
prospective reserve. Third, since serial correlation is explicitly
computable, this provides a way to capture the fluctuation of
our approximating process over time, which can be potentially
applicable to dynamically monitoring mismatch on the insurer’s
balance sheet with regard to statistical error.

In a more organized fashion, we summarize our contributions
as follows:

(A) Under the assumption of large number of policyholders,
we construct the fluid limit and diffusion limit for the aggregate
risk processes. (As we mentioned, these correspond to functional
Law of Large Numbers and Central Limit Theorem respectively in
the statistics community; throughout the paper we mostly use
the former terminology to align with the queueing literature, but
will also use the latter interchangeably when necessary.) The risk
processes that we are interested in include the insurer’s cash level,
liabilities, and per basis reserve level. These will be discussed in
Section 2. We prove and numerically demonstrate that these risk
processes can be approximated by Gaussian processeswith certain
correlation structures.

(B) Using the theory of Gaussian processes, we illustrate how
our result can be used to approximate the ruin probabilities. We
model ruin as the situation in which the liabilities surpass the
assets (plus the initial capital) within a given time horizon (see
Section 3.1). This highlights the flexibility of our methodology in
incorporating reserve calculation, and also the dependency on the
underlying insurance contracts. In particular, we apply our results
to several common types of insurance.

(C) Our diffusion approximation shows how, under the
Equivalence Principle, the benefit reserve arises as the fluid limit
of the empirical cash level per basis at any point in time (see
Section 2). These results, we believe, provide a useful perspective
into the basic concepts underlying the definition of benefit reserve;
see the discussion following Theorem 1.

(D) We compute the correlation structures of our limiting
processes, thereby showing their tractability. In particular, we
illustrate how our approach allows to evaluate and compare the
autocorrelation (as a function of time) of risk processes with
different insurance types; see Section 4.

Let us emphasize that our purpose in applications such as
(B) and (C) is to illustrate the concepts behind our ideas, and
hence the models we are using in this paper are basic. There are
certainly many practical considerations to make the model more
realistic. We shall list out these generalizations and more realistic
extensions that we believe are worth pursuing in Section 5.

In terms of methodology, as aforementioned, we will invoke
primarily the machinery in heavy traffic theory i.e. fluid and
diffusion approximations in the queueing literature. The ideas
date back to Kingman (1961, 1962) for single-server queues, and
they still constitute an active research area among the queueing
theorists (see the standard surveys of Whitt, 2002 and Billingsley,
1999 for instance). Under fairly mild assumptions, the tools
significantly simplify and single out the important elements of the
system dynamics of interest, and provide approximate solutions to
many important performance measures (in our context, the ruin
probability mentioned in (B) constitutes one such example). More
precisely, the results in this paper relate to the analysis of so-called
many-server queues, which have been substantially studied in
recent years. In these queueing systems, customers arrive and elicit
service for a random amount of time, as long as there are available
servers.When the number of servers is infinite, every customer can
start service right at arrival. Connecting to our work, policyholders
can be thought of as customers in the queueing system. While the
feature of arrivals is not our focus in this paper, the death time
of policyholders is analogous to the end of service, and hence the
approximation technique is translatable. Some relevant references
on the topic include Pang andWhitt (2010) and Decreusefond and
Moyal (2008), which focus on infinite-server models, Halfin and
Whitt (1981), Kaspi and Ramanan (2010) and Reed (2009), which
study finite but large number of servers in different proportion
(or so-called regime) to the number of customers, Puhalskii and
Reiman (2000) that study queues with multiclass customers, and
Dai et al. (2010) on queues with reneging. The common theme of
all these work is the heavy traffic technique being applicable to
various features of the queues.

Finally, we discuss two papers that use similar approach and
highlight our difference. One is a recent working paper by Bensu-
san and El Karoui (2009), who propose a microstructural approach
to model population dynamics to capture mortality/longevity
risk. Their motivation is different from ours: instead of building
our mortality distribution microstructurally, we make common
assumptions on mortality; instead, our focus is on how this mor-
tality assumption, under the interaction with the contract struc-
ture, benefit level and premium calculation, leads to amacroscopic
fluctuation of total assets, liabilities and other actuarial quanti-
ties. Secondly, we note that diffusion approximation has been
invoked by Iglehart (1969) in arguing the use of Brownian mo-
tion in modeling insurance risk process. However, he maintained
a Cramer–Lundberg framework by assuming compound Poisson
claims and constantly drifted premium, and showed that under
certain scaling their difference converges to a diffusion process.
Contract structure, relation between premium and benefit, and ac-
tuarial reserve etc. were not considered in his work.

The organization of this paper is as follows. In Section 1 we lay
out our model assumptions and define the key quantities that we
approximate. Section 2 is devoted to the statement of our main
result and its discussion. Section 3 relates to applications in ruin
probability computations and shows some examples. Section 4
identifies the autocorrelation structure of our approximatingGaus-
sianprocesses. Section 5discusses someextensions. Appendix con-
stitutes an appendix, which is divided into two parts. The first part
discusses basic facts about heavy traffic limit theorems and gives
the proof of our main result; the second part contains a discussion
on the simulationmethodology that is used to generate various ex-
amples in this paper.
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1. Model, assumptions and basic quantities

We consider a portfolio of n independent policyholders at
time 0. For simplicity assume that policyholders have the same
profile i.e. identicalmortality distribution. This assumption ismade
mainly for simplicity, the extensions of which will be discussed
later in the paper. Also we assume a constant rate of interest. We
use the following notations throughout the paper:

• δ: constant rate of interest (continuous compounding)
• Xi: the death time of the i-th policyholder (the Xi’s are

independent and identically distributed (i.i.d.))
• f (t), F(t), F̄(t): density, distribution and survival functions ofXi
• T : upper limit of the support for the death time i.e. T = sup{t >

0 : F(t) < 1}
• P(t): accumulated premium payment discounted at time 0 if

the policyholder dies at t
• B(t): benefit payment discounted at time 0 if the policyholder

dies at t; note that, the case where benefits are paid at times
other than death (such as regular bonus prior to death) can
be merely redefined as a deduction in accumulated premium
payment, and hence is also covered in our framework.

In addition, we make the following technical assumptions that
are commonly used:

Assumption 1. We assume that f (t) > 0 for all t ∈ (0, T ), with
T < ∞.

Assumption 2. Define H(t) := P(t) − B(t). We assume that
P(·) and B(·) are continuously differentiable and have bounded
first derivatives almost everywhere (with respect to the Lebesgue
measure), and hence so is H(·).

Assumption 1 is natural in the setting of life insurance, which
is the focus of this paper. Assumption 2 is satisfied by all
common insurance contracts. For example, in the case of whole life
insurance with continuous level premium payment p and benefit
b, P(t) =

 t
0 pe−δsds = p(1 − e−δt)/δ and B(t) = be−δt , which

clearly satisfy Assumption 2.
Wenow look at somebasic quantities of interest that are related

to the n policyholders with assumptions described above. To keep
our discussion simple for illustration, throughout the paper we
will focus on this setting. There are many natural extensions, such
as the arrivals of policyholders over time and multi-profile multi-
product business lines. These will be left for future exploration.
A companion paper by Blanchet and Lam (2011) discusses the
scenario of policyholder arrivals.

Let Nn(t) be the number of deaths before time t . With the
notation above, we write

Nn(t) =

n
i=1

I(Xi ≤ t). (1)

Similarly, wewrite N̄n(t) for the number of surviving policyholders
at time T , namely

N̄n(t) = Nn(T ) − Nn(t) = n − Nn (t) . (2)

Our results involve the following three basic quantities of
interest, all of which can be expressed in terms of (1) and (2) above.
For convenience, we name these quantities as Total Cash Process,
Total Reserve Process and Average Cash Process respectively:
Total Cash Process. We define the Total Cash Process as the present
value at time t of the total accumulated cash generated by all
individual accounts, excluding the initial surplus. We denote it by
Cn(t):

Cn(t) := eδt
n

i=1

[(P(Xi) − B(Xi))I(Xi ≤ t) + P(t)I(Xi > t)].
Observe that we can write more neatly as

Cn(t) = eδt
 t

0
H(s)dNn(s) + P(t)N̄n(t)


.

We also define m (t) to be the mean of the cash contribution from
an individual account over time i.e.

m(t) = E[(P(Xi) − B(Xi))I(Xi ≤ t) + P(t)I(Xi > t)]

= eδt
 t

0
H(s)f (s)ds + P(t)F̄(t)


. (3)

The Equivalence Principle indicates that one should select the
premium level in such a way that the total (i.e. up to the end
of the time horizon) actuarial net present value of the premiums
is equal to that of the benefits paid (see Bowers et al., 1997). In
our notation, assuming the validity of the Equivalence Principle
amounts to saying thatm(T ) = eδT

 T
0 H(s)f (s)ds = 0.

Total Reserve Process. The actuarial reserve at time t of a given
contract is the amount of capital that the insurance company
should set aside for future contingencies, defined by the expected
present value of the contract’s future net cost. In other words, it
is the difference of the actuarial net present value at time t of the
benefits to be paid and the premiums to be earned. (This definition
is used under the prospective method Bowers et al., 1997.) We
denote V (t) as the actuarial reserve. In mathematical terms, this is

V (t) := eδt
 T

t
(B(s) − (P(s) − P(t)))ft(s)ds

= eδt

P(t) −

 T

t
H(s)ft(s)ds


where ft(s) = f (s|Xi > t) = f (s)/F̄(t). If the Equivalence Principle
holds, one can also compute V (t) using the retrospective method
(Bowers et al., 1997), thereby obtaining

V (t) =

eδt
 t

0 H(s)f (s)ds + P(t)F̄(t)


F̄(t)
. (4)

If the Equivalence Principle is used, we also call V (t) the benefit
reserve.

Insurance company must reflect the total reserves in their
balance sheets as liability. We define the Total Reserve Process at
time t , denoted by C̄n(t), as the sum of the actuarial reserves from
all surviving policies. Hence

C̄n(t) := N̄n(t)V (t)

= N̄n(t)eδt
 T

t
(B(s) − (P(s) − P(t)))ft(s)ds

= N̄n(t)eδt

P(t) −

 T

t
H(s)ft(s)ds


.

We also define the related quantity m̄(t) as

m̄(t) = eδt

P(t)F̄(t) −

 T

t
H(s)f (s)ds


, (5)

which as we shall see is the fluid limit of C̄n(·) as n → ∞.

Average Cash Process. As mentioned earlier, at time t , insurance
company must recognize the liabilities reflected by the total
reserves of the surviving policyholders. Those liabilities are to
be faced, ideally, with the generated cash from the past. This
motivates associating an Average Cash Process to each surviving
policyholder, which we denote by Vn(t). This quantity divides up
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the accumulated cash equally among the current survivors. In
mathematical terms, it is

Vn(t) :=

eδt
 t

0 H(s)dNn(s) + P(t)N̄n(t)


N̄n(t)
=

Cn(t)
N̄n(t)

.

As we shall study, under the Equivalence Principle, the process
Vn (·) fluctuates around V (·).

In the next section, we will describe our main results involving
limit theorems and approximations to these key quantities.

2. Main result

In order to describe our results we need to recall the defini-
tion of Brownian bridge, an important process obtained out of con-
ditioning the value of Brownian motion at time 1. We introduce
(W0(t), 0 ≤ t ≤ 1) as our notation for a Brownian bridge. It turns
out that W0 (t) is equal in distribution to W (t) − tW (1), where
W (t) is a Brownian motion. It is also the unique Gaussian pro-
cess with mean 0 and covariance function Cov(W0(s),W0(t)) =

s(1 − t), s ≤ t . This implies that we can write the identities in
distribution (for whole stochastic processes)

W0(F(·))
D
= W (F(·)) − F(·)W (1)

D
=


·

0


f (s)dW (s) − F(·)

 T

0


f (s)dW (s). (6)

See, for example, Steele (2001) and Karatzas and Shreve (2008).
We are now ready to state and discuss our results. They are

formulated in terms of weak convergence in a useful topology on
spaces of functions, called the Skorokhod topology. The discussion
of this topology and its preliminary theorems will be discussed
in the Appendix. Our main result provides a joint approximation
to the Total Cash Process, Total Reserve Process and Average Cash
Process. The proof is given in the Appendix.

Theorem 1. Assume that the Equivalence Principle holds and there-
fore that the identity (4) is in force. Regarding (Cn(·), C̄n(·), Vn(·))
as elements in D[0, T ] × D[0, T ] × D[0, T − ϵ] for any ϵ ∈ (0, T )
equipped with Skorokhod product topology, we have that
Cn(·)/n, C̄n(·)/n, Vn(·)


⇒ (m(·), m̄(·), V (·)) (7)

as n → ∞. Moreover,√
n (Cn(·)/n − m(·)) ,

√
n

C̄n(·)/n − m̄(·)


,

√
n(Vn(·) − V (·))


⇒


eδt
 t

0
H(s)dW0(F(s)) − P(t)W0(F(t))


,

W0(F(t))eδt
 T

t
H(s)ft(s)ds − P(t)


,

eδt

F̄(t)

 t

0
H(s)dW0(F(s)) − P(t)W0(F(t))



+
V (t)
F̄(t)

W0(F(t))


(8)

as n → ∞.

The ϵ > 0 in the theorem is to avoid zero divider at time T . The
approximation in (8) suggests that when n is large, the Total Cash
Process can be approximated by

Cn(t) ≈ nm(t) +
√
neδt

 t

0
H(s)dW0(F(s))

− P(t)W0(F(t))


. (9)
Simultaneously, we have that the Total Reserve Process admits the
approximation

C̄n(t) ≈ nm̄(t) +
√
nW0(F(t))eδt

 T

t
H(s)ft(s)ds − P(t)


, (10)

and that the Average Cash Process is approximated by

Vn(t) ≈ V (t) +
1

√
n


eδt

F̄(t)

 t

0
H(s)dW0(F(s))

− P(t)W0(F(t))


+

V (t)
F̄(t)

W0(F(t))


. (11)

The first two processes can be interpreted as the insurer’s total
asset and total liability respectively. The fluctuation around the
average in the these processes is smallest at the two ends of the
time horizon, namely, at time 0 and at T , since we know for sure
that there are 0 and n decrements respectively; the fluctuations
become larger in the middle of the time range. The maximum
fluctuation of the net asset process, obtained as the difference of
the Total Cash Process and the Total Reserve Process, will occur at
a time t∗ which is characterized in Section 3.1.

The approximation (8) is joint in function space, so thanks to
the continuous mapping principle (Theorem 2 in the Appendix),
we can approximate the distribution of a whole (continuous)
functional of the sample paths Cn (·) and C̄n(·). This is precisely
the significance of the previous result. As a particular application,
we will show in the next section how to exploit the continuous
mapping principle to estimate the ruin probabilities under
different types of life insurance contracts. In Section 4 we will
provide closed-form formulas for the joint correlation of the
limiting Gaussian processes in the right hand side of (8); thereby
fully characterizing the whole asymptotic distribution of assets
and liabilities across time.

The approximation dictated by the third component, namely
Vn (·), provides a link between our stochastic formulation for a
large pool of policyholders and the classical reserve evaluation
V (t). It also provides support for the use of the Equivalence
Principle from a micro-structural perspective. In particular, we
show that under the Equivalence Principle the individual cash
accounts fluctuate around the benefit reserve as the number of
policyholders increases. Moreover, the result provides a Central
Limit Theorem correction. We envision that our results in this
section are potentially useful in evaluating in practice whether the
difference between assets and liabilities on the balance sheet is
within normal statistical error, although such application certainly
requires being able to include other stylized features (such as
investments in risky assets and so forth), which we plan to
investigate in the future.

To illustrate Theorem 1 and the approximations (9)–(11), con-
sider a batch of n = 1000 policyholders, each with a mortality dis-
tribution following amixture of uniformdistribution. Suchmixture
distribution arises as linear interpolation of the life table (see Bow-
ers et al., 1997). For illustration, consider T = 50 i.e. a maximum
life span of 50 years from present, and a monthly precision of the
life table k = 50 × 12. More specifically, we have the density of
death random variable given by

f (t) =

k
j=1

p(j)
k
T
I

T
k
(j − 1) ≤ t <

T
k
j


.

We further assume that p(j) follows a discretized Gompertz’s law
given by

p(j) ∝ e−e0.001(j−1)
− e−e0.001j , j = 1, . . . , k.
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(a) Actual dynamic. (b) Approximation using Gaussian process.

Fig. 1. 100 sample paths of Total Cash Process by generating the actual dynamic versus via approximation.
Moreover, we assume that δ = 0.01. The following graphs com-
pare each of our approximations (9)–(11) to the actual dynamic.
Fig. 1(a) shows 100 sample paths of Cn(t) i.e. the Total Cash Pro-
cess generated by n = 1000 policyholders with the aforemen-
tioned mortality distribution. Fig. 1(b) shows 100 sample paths of
our Gaussian approximation, namely the right hand side of (9), by
generating a sequence of Gaussian random variables. As shown in
the graphs, the sample paths behave very similarly between the
actual and our approximate processes.

Along the same line, Fig. 2(a) shows 100 sample paths of C̄n(t)
i.e. the Total Reserve Process by 1000 policyholders, whereas
Fig. 2(b) shows the counterpart using our approximation in the
right hand side of (10). Again, the sample paths behave similarly
between the actual and approximate processes.

Fig. 3(a) shows 100 sample paths of Vn(t), the Average Case
Process, and also the value of benefit reserve V (t). The sample
paths of Vn(t) center around V (t), which is guaranteed by the Law
of Large Numbers (7) in Theorem1.Moreover, we can approximate
Vn(t) by our Gaussian approximation in (11). This is illustrated by
Fig. 3(b), which again shows 100 sample paths of the right hand
side of (3(b)) using Gaussian random variables.

From both Fig. 3(a) and (b)we see that the fluctuation of the Av-
erage Cash Process around the deterministic benefit reserve grows
as time approaches T . In both figures, the Average Cash Process is
close to the reserve only before t = 30. This phenomenon occurs
because the Average Cash Process involves dividing by the number
of survivals in the portfolio, and as time goes on, this number de-
creases to 0 almost surely. As a result, the process can attain very
small or large values. It is worth noting that this phenomenon has
nothing to do with our approximation i.e. it is an intrinsic property
of the Average Cash Process itself from its definition laid out in Sec-
tion 1 (as can be seen by the similar behavior of both Fig. 3(a) and
(b)). Moreover, Theorem 1 makes clear that the Functional Law of
Large Numbers and Central Limit Theorem works for the Average
Cash Process only on [0, T − ϵ] for some prefixed ϵ > 0, hence
excluding the period of time close to T .

We explain how to implement the simulation procedure in
Appendix A.2 to generate the approximations (9)–(11).

3. Applications and examples

Prevailing insurance practice calculates reserve based on the
mathematical expectation of cash flows (i.e. the actuarial net
present value of future benefits minus premiums) on individual
basis. The aggregation of these individual reserves forms the
liability for the insurer. Considering the process (9) we derived
in the previous section as the fluctuation of overall assets, an
interesting problem would be to analyze the mismatch between
the liability process and the asset process. More precisely, when
the size of assets are below the net premium reserve requirement,
we say that a ruin occurs. Because the heavy traffic limit is
Gaussian, and the theory of Gaussian processes is well developed,
one can approximate such ruin probability easily.

3.1. Ruin probabilities

Here we formulate a ruin problem based on reserve require-
ment. Suppose that the prospective method is employed to set
up required reserve on the balance sheet. Bankruptcy then occurs
whenever the total asset falls short of the liability, plus initial sur-
plus. More precisely, let the initial surplus be Un that is scaled with
n. The interpretation of the scaling is natural as a company with
large number of policyholders in the system will naturally start
with a large initial amount of capital requirement; this is precisely
the initial surplus. We define Un (t) = Uneδt to be the value at time
t of the initial surplus.

Ruin occurs if Un (t) + Cn(t) − C̄n(t) < 0 (assuming a constant
rate of investment interest). Under a finite-time formulation, the
ruin probability is given by

P(Un (t) + Cn(t) − C̄n(t) < 0 for some t ∈ [0, T ]).

This formulation differs from the classical setting mainly in two
aspects: (1) the risk processes Cn(t) and C̄n(t) depend on the
structure of the insurance contracts rather than separate modeling
of premium and claim processes; (2) the per-basis reserve that
resembles the actual practice of the insurance company can be
incorporated naturally into our framework.

We make two main assumptions in our formulation. First, we
assume the Equivalence Principle for calculating premiums, due to
market competition. Under this assumption the process Cn(t) −

C̄n(t) is essentially centered. Second, we assume that the surplus
is scaled as Un = u

√
n for some u > 0. Note that other scaling of

Un would lead to different approximations. For example, if Un is of
order n, then rather than using our diffusion-type approximation
in the previous sections, onewould have to turn to large deviations
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(a) Actual dynamic. (b) Approximation using Gaussian process.

Fig. 2. 100 sample paths of Total Reserve Process by generating the actual dynamic versus via approximation.
(a) Actual dynamic. (b) Approximation using Gaussian process.

Fig. 3. 100 sample paths of Average Cash Process by generating the actual dynamic versus via approximation.
asymptotic. The details of such are reported in Blanchet and Lam
(2011), which also presents asymptotics and simulation design for
estimating ruin problem under policyholder arrivals.

By Theorems 1 and 2 in the Appendix, we have

Cn(t) − C̄n(t)
n

⇒ m(t) − m̄(t)

= eδt
 t

0
H(s)f (s)ds +

 T

t
H(s)f (s)ds


.

Note that, under the Equivalence Principle this process will be
identically zero. To find the fluctuation of this process, again we
use Theorem 2, scale by

√
n and get

√
n

Cn(t) − C̄n(t)

n
− (m(t) − m̄(t))


⇒ eδt

 t

0
H(s)dW0(F(s)) − P(t)W0(F(t))


−W0(F(t))eδt

 T

t
H(s)ft(s)ds − P(t)



= eδt

 t

0
H(s)dW0(F(s)) − W0(F(t))

 T

t
H(s)ft(s)ds


. (12)

Now the ruin probability is written as

P(ruin) = P(Un (t) + Cn(t) − C̄n(t) < 0 for some t ∈ [0, T ])

= P


sup
0≤t≤T

C̄n(t) − Cn(t)
√
n

> ueδt


= P


sup
0≤t≤T

X(t) > u


(1 + o (1)) (13)

as n → ∞, where

X(t) =

 t

0
H(s)dW0(F(s)) − W0(F(t))

 T

t
H(s)ft(s)ds. (14)

This follows from (12) and the fact that X(·)
D
= −X(·).

The next figure depicts a sample path of the approximating
net asset process Cn(t) − C̄n(t) and the deterministic trajectory of
−Un(t). We use n = 100, δ = 0.01, whole life insurance with b =
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Fig. 4. Net asset process Cn(t) − C̄n(t) (in red) and deterministic trajectory of
−Un(t) (in blue). (For interpretation of the references to colour in this figure’s
legend, the reader is referred to the web version of this article.)

Table 1
Samplemean and 95% confidence interval for ruin probability using 10,000 samples
of actual dynamic for different n and u.

Value of u Value of n Estimated probability 95% confidence interval

0.1 10 0.687 (0.658, 0.716)
0.1 100 0.784 (0.758, 0.810)
0.1 1000 0.829 (0.810, 0.852)

0.5 10 0.311 (0.282, 0.340)
0.5 100 0.342 (0.313, 0.371)
0.5 1000 0.353 (0.323, 0.383)

1.0 10 0.059 (0.044, 0.074)
1.0 100 0.066 (0.051, 0.081)
1.0 1000 0.081 (0.064, 0.098)

Table 2
Samplemean and 95% confidence interval for ruin probability using 10,000 samples
of approximating Gaussian process for different u.

Value of u Estimated probability 95% confidence interval

0.1 0.839 (0.831, 0.846)
0.5 0.353 (0.344, 0.362)
1.0 0.062 (0.057, 0.067)

1 and continuous level premium calculated under the Equivalence
Principle, with mortality distribution as the interpolation of Gom-
pertz’s lawas specified in generating all the figures in Section 2 (the
level premium rate is calculated to be p = 0.038). For the specific
sample path depicted in Fig. 4, ruin happens at around time 8.5.

Next, we investigate the precision of the approximation (13). To
do so, we compare our approximation with the actual probability
by running simulation for both quantities, using different portfolio
size n and initial surplus Un = u

√
n. Namely, for each n = 10, 100,

1000 and u = 0.1, 0.5, 1 (note that the initial surplus Un is based
at u and scaled in

√
n), we run simulation with 10,000 samples

to estimate the probability. We use δ = 0.01 and whole life
insurance with b = 1, and the interpolated Gompertz’s law as in
the example in Section 2. Table 1 shows the estimated probabilities
and 95% confidence intervals for the simulation that uses the actual
dynamics i.e. by generating the portfolio of policyholders.

To compare, we also estimate the approximation P(sup0≤t≤T
X(t) > u) in (13) by simulating the process X(t) defined in (14).
Table 2 shows the simulation result of our approximating process
for different values of u, each using 10,000 samples.
The approximation (13) predicts that the values in Table 2
should be close to those in Table 1 for equal values of u, when n
is large enough. This is indeed the case as demonstrated, with the
approximation being better for larger n. For n = 1000, the 95% con-
fidence interval for the actual dynamic and the Gaussian approx-
imation overlaps for all three values of u. As a side observation,
the 95% confidence intervals for the Gaussian approximation are
consistently smaller than those of the actual dynamic when using
10,000 samples for each.

For u larger than 1, it typically takes a long time to simulate the
probability using either the actual process or our approximating
Gaussian process (note that for n = 1000, u = 1 means the
initial surplus is u

√
n = 31.6). This is where our approximation

(13) can be useful in tackling the problem. While the probability
(13) typically does not have closed-form solution, a fair amount
is known for sharp asymptotics of the maximum of a Gaussian
process (see for instance, Husler and Piterbarg, 1999 and Dieker,
2005); these approximations depend on the local correlation
structure which is obtained in the next section. Moreover,
designing efficient Monte Carlo method, such as importance
sampling, for Gaussian process is well-studied (see for example
Blanchet and Li, 2011) and can be easier to handle than the actual
dynamic.

Here we will present an analytical approximation that is
popular in the context of Gaussian queues (see Chapter 5 in
Mandjes, 2007) and is easy to develop. The approximation works
well for large values of u. Of course, one has to be careful when we
use this approximation because our diffusion limit is established
assuming that u is O (1). The Gaussian approximation, however,
still remains valid for the tail if u is allowed to grow as n → ∞

at a sufficiently slow speed. In the presence of a large deviations
result, which can be derived in our current setting, it suffices to
let u := un → ∞ in such a way that un = o


n1/2


. This is what

is known as moderate deviations scaling (see Chapter 8 in Ganesh
et al., 2004). This is the type of asymptotic environment that we
have in mind when we use our Gaussian approximation for tail
probabilities.

We have

P


sup
0≤t≤T

X(t) > u


≥ sup
0≤t≤T

P(X(t) > u). (15)

We now analyze the right hand side of (15). Using (6), X(t) can be
shown to be equal in distribution to t

0
H(s)


f (s)dW (s) −

 t

0
H(s)f (s)ds

×

 T

0


f (s)dW (s) −

 t

0


f (s)dW (s)

×

 T

t
H(s)ft(s)ds + F(t)

 T

0


f (s)dW (s)

×

 T

t
H(s)ft(s)ds

=

 t

0


H(s) −

 T

t
H(s)ft(s)ds


dW (F(s))

+


F(t)

 T

t
H(s)ft(s)ds −

 t

0
H(s)f (s)ds


W (1)

=

 t

0


H(s) −

 T

t
H(s)ft(s)ds


dW (F(s))

+W (1)
 T

t
H(s)ft(s)ds

D
=N(0, σ 2(t))
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where the second equality comes from the Equivalence Principle,
and

σ 2(t) =

 t

0


H(s) −

 T

t
H(v)ft(v)dv

2

f (s)ds

+

 T

t
H(s)ft(s)ds

2

+ 2
 t

0


H(s) −

 T

t
H(v)ft(v)dv


f (s)ds

×

 T

t
H(s)ft(s)ds

=

 t

0
H(s)2f (s)ds − 2

 T

t
H(s)ft(s)ds

×

 t

0
H(s)f (s)ds +

 T

t
H(s)ft(s)ds

2

F(t)

+

 T

t
H(s)ft(s)ds

2

+ 2
 t

0
H(s)f (s)ds

×

 T

t
H(s)ft(s)ds − 2

 T

t
H(s)ft(s)ds

2

F(t)

=

 t

0
H(s)2f (s)ds + F̄(t)

 T

t
H(s)ft(s)ds

2

(16)

by Ito’s isometry. Obviously, then,

P


sup
0≤t≤T

X(t) > u


≥ sup
0≤t≤T

P(N(0, σ 2(t)) > u). (17)

On the other hand, the upper bound of the ruin probability is
provided by Borell’s inequality, a standard result in the theory of
Gaussian process (see, for example, Adler, 1990)

P


sup
0≤t≤T

X(t) > u


≤ eCu−
1
2 u

2/σ 2(t∗) (18)

where t∗ = argmax0≤t≤Tσ
2(t) and C is a constant depending on

E sup0≤t≤T X(t).
With (17) and (18), we obtain that
1

√
2πσ(t∗)

e−
1
2 u

2/σ 2(t∗)
≤ P


sup

0≤t≤T
X(t) > u


≤ eCu−

1
2 u

2/σ 2(t∗).

Taking logarithms and dividing by u2, we get
1
u2

log


1
√
2πσ(t∗)


−

1
2σ 2(t∗)

≤
1
u2

log P


sup
0≤t≤T

X(t) > u


≤
C
u

−
1

2σ 2(t∗)
.

Letting u → ∞ and using a sandwich argument, we have the
asymptotic result

lim
u→∞

1
u2

log P


sup
0≤t≤T

X(t) > u


= −
1

2σ 2(t∗)
. (19)

In fact, we can strengthen (19) to obtain computable exact
bounds for P


sup0≤t≤T X(t) > u


. The obvious lower bound is

given in (17). For the upper bound, note that in general the bound
in (18) depends on the constant C that is hard to obtain (and so (18)
can only serve as guidance to the logarithmic asymptotic in (19)).
Hence we use a result from Piterbarg (1996), which applies to our
setting as follows. Let a be a constant such that P(sup0≤t≤T X(t) >
a) ≤ 1/2. Then for any u > a, we have

P


sup
0≤t≤T

X(t) > u


≤ 2Φ

u − a
σ(t∗)


(20)
where Φ(x) = P(N(0, 1) > x) for a standard Gaussian variable
N(0, 1). In the next subsections we will demonstrate through
examples how one can use these bounds in practice.

Lastly, to simplify the calculations needed to characterize
σ 2(t∗), we impose the following additional regularity assumption
on H(·), which will be satisfied by all the examples in the next
subsection. We stress that our main result, Theorem 1, is not
subject to this assumption.

Assumption 3. The function H(·) is non-decreasing and that
H(0) < 0 while H(T ) > 0.

This assumption facilitates the search for the value of t∗.
Namely, to find t∗, one merely differentiates (16) to get

dσ 2(t)
dt

= −
f (t)
F̄(t)

 T

t
H(s)f (s)ds

2

−
2

F̄(t)

 T

t
H(s)f (s)dsH(t)f (t) + H(t)2f (t)

= f (t)


H(t)2 − 2H(t)

 T

t
H(s)ft(s)ds

−

 T

t
H(s)ft(s)ds

2


= f (t)

H(t) − (1 +

√
2)
 T

t
H(s)ft(s)ds


×


H(t) + (

√
2 − 1)

 T

t
H(s)ft(s)ds


. (21)

Note that f (t) > 0 for all t ∈ (0, T ). Since H(t) is non-
decreasing, we have

 T
t H(s)ft(s)ds ≥ H(t) and so H(t) − (1 +

√
2)
 T
t H(s)ft(s)ds < 0 for all t ∈ [0, T ). Also, by the Equiva-

lence Principle and that H(0) < 0 and is continuous, we have
H(t) + (

√
2 − 1)

 T
t H(s)ft(s)ds < 0 for a punctured neighbor-

hood of t = 0 i.e. t ∈ (0, ϵ) for some ϵ > 0. On the other hand,
since

 T
t H(s)ft(s)ds ≥ H(t) and that H(T ) > 0 and is continuous,

we haveH(t)+(
√
2−1)

 T
t H(s)ft(s)ds > 0 for a punctured neigh-

borhood of t = T i.e. t ∈ (T − ϵ, T ) for some ϵ > 0. These lead
to the conclusion that there is a global maximum in the interior of
the domain i.e. (0, T ).

To solve for the global maximum, one can numerically solve
for the zeros of H(t) + (

√
2 − 1)

 T
t H(s)ft(s)ds. Then the

global maximizer is either the zero or the discontinuous point of
dσ 2(t)/dt that gives the highest value of σ 2(t).

3.2. Examples of calculation of σ 2(t∗)

In this subsectionwewill discuss some examples on calculating
the value of σ 2(t∗) in the Gaussian approximation we described.
The first example assumes uniform mortality distribution and
unit time horizon, as a simple illustration of our method. Then
we will consider a more realistic distribution that comes from
interpolation of the life table, and show our analysis proceeds
equally handily in this case.

Example 1 (UniformMortality). Suppose Xi follows uniform distri-
bution on [0, T ]. We consider three different contracts: whole life
insurance with level premium, increasing premium, and term life
insurance.
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Whole life insurance with level premium. Assume whole life
insurance with continuous level premium p and benefit b
i.e. H(t) = p(1 − e−δt)/δ − be−δt . By the Equivalence Principle
we can calculate

p =
bδ(1 − e−δT )

δT − 1 + e−δT

and so

H(t) + (
√
2 − 1)

 T

t
H(s)ft(s)ds

=
p
δ

−

p
δ

+ b

e−δt

+ (
√
2 − 1)

×


p
δ

−
1

δ(T − t)

p
δ

+ b


(e−δt
− e−δT )


.

Assuming the inputs T = 1, b = 1 and δ = 0.01, we have
t∗ = 0.414. Note that

σ 2(t) =
1
T


p2t
δ2

−
2p
δ2

p
δ

+ b


(1 − e−δt)

+
1
2δ

p
δ

+ b
2

(1 − e−2δt)


−


1 −

t
T



×


p
δ

−
1

δ(T − t)

p
δ

+ b


(e−δt
− e−δT )

2
.

Plugging in t∗, we have σ(t∗) = 0.256.
Whole life insurance with increasing premium. Suppose the same
benefit amount b = 1 is guaranteed. However, let us consider an
increasing premium rate peµt . Let µ = 0.05. Then the Equivalence
Principle gives

p =
b(δ − µ)2

δ

1 − e−δT

δ − µ − 1 + e−(δ−µ)T
.

In this case

H(t) =
p

δ − µ
−

p
δ − µ

e−(δ−µ)t
− be−δt

and

H(t) + (
√
2 − 1)

 T

t
H(s)ft(s)ds

=
p

δ − µ
−

p
δ − µ

e−(δ−µ)t
− be−δt

+ (
√
2 − 1)

×


p

δ − µ
−

p
(δ − µ)2

1
T − t

(e−(δ−µ)t
− e−(δ−µ)T )

−
b

δ(T − t)
(e−δt

− e−δT )


.

We get that t∗ = 0.416. Note that

σ 2(t) =
1
T


p2t

(δ − µ)2
+

p2

2(δ − µ)3
(1 − e−2(δ−µ)t)

+
b2

2δ
(1 − e−2δt) −

2p2

(δ − µ)3
(1 − e−(δ−µ)t)

−
2pb

δ(δ − µ)
(1 − e−δt)

+
2pb

(δ − µ)(2δ − µ)
(1 − e−(2δ−µ)t)


+


1 −

t
T



×


p

δ − µ
−

p
(δ − µ)2

1
T − t

(e−(δ−µ)t
− e−(δ−µ)T )

−
b

δ(T − t)
(e−δt

− e−δT )

2

.

Plugging in t∗, we get σ(t∗) = 0.519.
Term life insurance. Assume now a term life insurance with tenor
l < T . Let l = 0.5. Then

P(t) =


p(1 − e−δt)

δ
for t ≤ l

p(1 − e−δl)

δ
for t > l

and

B(t) =


be−δt for t ≤ l
0 for t > l.

The Equivalence Principle gives

p =
bδ(1 − e−δl)

lδ − 1 + e−δl + (T − l)δ(1 − e−δl)
.

Note that

H(t) =


p
δ

−

p
δ

+ b

e−δt for t ≤ l

p
δ
(1 − e−δl) for t > l

and

H(t) + (
√
2 − 1)

 T

t
H(s)ft(s)ds

=



p
δ

−

p
δ

+ b

e−δt

+ (
√
2 − 1)

×


p
δ

l − t
T − t

−

p
δ

+ b
 1

δ(T − t)
(e−δt

− e−δl)

+
T − l
T − t

p
δ
(1 − e−δl)


for t ≤ l

√
2
p
δ
(1 − e−δl) for t > l

which has a zero at t = 0.5. Note that

σ 2(t)

=



1
T


p2t
δ2

−
2p
δ2

p
δ

+ b


(1 − e−δt) +

p
δ

+ b
2

×
1
2δ

(1 − e−2δt)


+


1 −

t
T


p
δ

l − t
T − t

−

p
δ

+ b
 1

δ(T − t)
(e−δt

− e−δl)

+
T − l
T − t

p
δ
(1 − e−δl)

2

for t ≤ l

1
T


p2l
δ2

−
2p
δ2

p
δ

+ b


(1 − e−δl) +

p
δ

+ b
2

×
1
2δ

(1 − e−2δl) + (t − l)
p2

δ2
(1 − e−δl)2


+


1 −

t
T


p2

δ2
(1 − e−δl)2 for t > l.

In fact, in this particular case there are more than one t∗, namely
any value in [0.5, 1). They all give σ(t∗) = 0.679.
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We see that both increasing premium structure with rate 0.05
and term life at time 0.5 have σ 2(t∗) larger than whole life
insurance. In otherwords, implementingwhole life insurance gives
the insurer a better risk profile. An interesting question would be
the type of insurance policy, say P , that minimizes σ 2

P (t∗). In this
case, we have to solve the problem of minimizing max0≤t≤T σ 2

P (t)
over a fixed family of insurance policies P . The general solution to
this question will be explored in future work.

Example 2 (Interpolation of Life Table). Let us now consider the
mortality assumption we use in our simulation in Section 2 i.e. a
linear interpolation of life table with T = 50, k = 50×12, and the
mortality’s density

f (t) = q(j)
k
T
I

T
k
(j − 1) ≤ t <

T
k
j


where q(j), j = 1, . . . , k is the probability that Xi falls into the
interval between (T/k)(j − 1) and (T/k)j. Moreover,

q(j) ∝ e−e0.001(j−1)
− e−e0.001j

follows a discretized Gompertz’s law.

Whole life insurance with level premium. Consider whole life
insurance with continuous level premium p, benefit b = 1, and
assume interest rate δ = 0.1. As in Example 1, H(t) = p(1 −

e−δt)/δ − be−δt
= p/δ − (p/δ + b)e−δt . Note that

F̄(t) = p(j)
k
T


T
k
j − t


+

k
r=j+1

p(r)I(j < k)

for (T/k)(j − 1) ≤ t < (T/k)j. For convenience, let us also define

G(t, λ) =

 T

t
e−λsf (s)ds = p(j)

k
Tλ

(e−λt
− e−λ(T/k)j)

+

k
r=j+1

(e−λ(T/k)(j−1)
− e−λ(T/k)j)I(j < k)

for (T/k)(j − 1) ≤ t < (T/k)j. From the Equivalence Principle the
premium is

p =
bE[e−δXi ]

E[(1/δ)(1 − e−δXi)]
=

bδG(0, δ)
1 − G(0, δ)

.

We have

H(t) + (
√
2 − 1)

 T

t
H(s)ft(s)ds

=
p
δ

−

p
δ

+ b

e−δt

+ (
√
2 − 1)

×
(p/δ)F̄(t) − (p/δ + b)G(t, δ)

F̄(t)

which has a zero at t = 19.03. Now

σ 2(t) =

 t

0

p
δ

−

p
δ

+ b

e−δt

2
f (s)ds

+ F̄(t)
 T

t

p
δ

−

p
δ

+ b

e−δt


ft(s)ds

2

=
p2

δ2
F(t) − 2

p
δ

p
δ

+ b


(G(0, δ) − G(t, δ))

+

p
δ

+ b
2

(G(0, 2δ) − G(t, 2δ))

+
1

F̄(t)

p
δ
F̄(t) −

p
δ

+ b

G(t, δ)

2
.

Comparing the value of σ(t) at 19.03 with all the discontinuous
points of f (t) i.e. (T/k)j, j = 0, . . . ,m, we see that 19.03
maximizes σ(t). This gives t∗ = 19.03 and σ(t∗) = 0.492.

Whole life insurance with increasing premium. As in Example 1,
consider now an increasing premium peµt . By the Equivalence
Principle, we have

p =
b/δG(0, δ)

(1/(δ − µ))(1 − G(0, δ − µ))
.

Also, H(t) = p/(δ − µ) − (p/(δ − µ))e−(δ−µ)t
− be−δt , and

H(t) + (
√
2 − 1)

 T

t
H(s)ft(s)ds

=
p

δ − µ
−

p
δ − µ

e−(δ−µ)t
− be−δt

+ (
√
2 − 1)

1
F̄(t)

×


p

δ − µ
F̄(t) −

p
δ − µ

G(t, δ − µ) − bG(t, δ)


.

Putting µ = 0.05, there is a zero at t = 22.39. Now

σ 2(t) =
p2

(δ − µ)2
F(t) +

p2

(δ − µ)2
(G(0, 2(δ − µ))

−G(t, 2(δ − µ))) + b2(G(0, 2δ) − G(t, 2δ))

−
2p2

(δ − µ)2
(G(0, δ − µ) − G(t, δ − µ))

−
2pb

δ − µ
(G(0, δ) − G(t, δ))

+
2pb

δ − µ
(G(0, 2δ − µ) − G(t, 2δ − µ)) +

1
F̄(t)

×


p

δ − µ
F̄(t) −

p
δ − µ

G(t, δ − µ) − bG(t, δ)
2

.

Again, comparing with all the discontinuous points of f (t), 22.39
dominates and so t∗ = 22.39, with σ(t∗) = 0.645.

Term life insurance. Consider now a term life insurance with tenor
l. By the Equivalence Principle,

p =
bδ(G(0, δ) − G(l, δ))

1 − (G(0, δ) − G(l, δ)) − e−δlF̄(l)
.

So

H(t) + (
√
2 − 1)

 T

t
H(s)ft(s)ds

=



p
δ

−

p
δ

+ b

e−δt

+ (
√
2 − 1)

1
F̄(t)


p
δ
F̄(t) −

p
δ

+ b


× (G(t, δ) − G(l, δ)) −
p
δ
G(l, δ)


for t ≤ l

p
δ
(1 − e−δl) + (

√
2 − 1)

p
δ
(1 − e−δl) for t > l.

Putting l = T/2 = 25, this gives a zero at t = 25. Now

σ 2(t)
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=



p2

δ2
F(t) − 2

p
δ

p
δ

+ b


(G(0, δ) − G(t, δ))

+

p
δ

+ b
2

(G(0, 2δ) − G(t, 2δ))

+
1

F̄(t)


p
δ
F̄(t) −

p
δ

+ b


(G(t, δ) − G(l, δ))

−
p
δ
G(l, δ)

2

for t ≤ l

p2

δ2
F(t) − 2

p
δ

p
δ

+ b


(G(0, δ) − G(l, δ))

+

p
δ

+ b
2

(G(0, 2δ) − G(l, 2δ))

+
p2

δ2
(1 − e−δl)2(F(t) − F(l)) +

1
F̄(t)

p2

δ2
(1 − e−δl)2 for t > l.

In this case t∗ is any value in [25, 50), which all giveσ(t∗) = 0.619.
Comparing the σ(t∗) for all three cases, again whole life

insurance appears to attain the smallest σ(t∗) and hence the best
risk profile among the three.

Remark 1. Suppose we relax the identical profile assumption
for policyholders (as discussed in Section 1)and we replace this
assumption by a distribution of policyholder types. If the distribu-
tion is discrete, then all our results in this paper still hold, except
that rather than using Gaussian process driven by one Brownian
motion, the Gaussian process will be a mixture of Gaussian pro-
cesses each driven by an independent Brownianmotion. The quan-
tity σ 2(t∗) can be found similarly but the optimization problem
will be less linear. On the other hand, if the type of distribution is
continuous, then the limiting process will involve Brownian sheet.
This seems to introduce further technicalities that are therefore left
to future work.

3.3. Obtaining exact analytic bounds for ruin probabilities

In this subsection,wewill use our calculation ofσ 2(t∗) to obtain
exact bounds for the ruin probability P(max0≤t≤T X(t) > u), via
the lower bound (17) and the upper bound (20). To illustrate our
exact bounds, we continue our calculation in Table 2 in Section 3.1.
In particular, we test our bounds for larger values of u, from 1.1 up
to 1.5.

We use σ 2(t∗) = 0.492, obtained from the example on whole
life insurance with level premium and discretized Gompertz mor-
tality in Section 3.2. For the upper bound, we take a = 0.41. This
choice is made by testing sequentially on different values of a and
picking an a such that the 95% upper confidence bound is less than
or close to 0.5. (our upper confidence bound of the estimate of
P(max0≤t≤T X(t) > u) is (0.439, 0.501)). For this choice of a, we
obtain our exact bounds for u = 1.1 up to 1.5. Moreover, we com-
pute themid-point between the lower and upper bound, as a quick
summarizing rule.

We compare our analytic bounds to simulation outputs. First,
we run 1000 samples for the corresponding Gaussian processes
and compute the 95% confidence intervals of our outputs. Second,
we take n = 100 and run the actual dynamic of the portfolio for
1000 times and also output the estimates and the confidence in-
tervals. The results are shown in Tables 3–5.

We make a few comments on the comparisons of these results.
First, in all tested values of u, the analytical lower and upper
bounds contain the sample means of both the simulations of
the Gaussian processes and the actual dynamics, and the mid-
points appear to capture the same magnitudes as the simulation
Table 3
Exact lower and upper bounds for the Gaussian processes for different hit levels.

Value of u Exact lower bound
from (17)

Exact upper bound
from (20)

Mid-point

1.1 0.0127 0.161 0.0867
1.2 0.00736 0.108 0.0579
1.3 0.00412 0.0705 0.0373
1.4 0.00222 0.0442 0.0232
1.5 0.00115 0.0267 0.0139

Table 4
Simulation estimates for the Gaussian processes.

Value of u Simulation estimate 95% confidence interval of simulation
estimate

1.1 0.039 (0.0270, 0.0510)
1.2 0.031 (0.0202, 0.0418)
1.3 0.016 (0.00821, 0.0238)
1.4 0.014 (0.00671, 0.0213)
1.5 0.005 (0.000621, 0.00938)

Table 5
Simulation estimates for the actual dynamic.

Value of u Simulation estimate 95% confidence interval of simulation
estimate

1.1 0.054 (0.0400, 0.0680)
1.2 0.033 (0.0219, 0.0441)
1.3 0.022 (0.0129, 0.0311)
1.4 0.004 (8.12 × 10−05 , 0.00792)
1.5 0.002 (−0.000774, 0.00477)

results. The lower bounds appear to be closer than the simulation
outputs, but the upper bounds are getting tighter as u increases.
Asymptotically, the lower and upper bounds should converge
to the same logarithmic limit, as in (19). Next, the simulation
outputs for the actual dynamic are for n = 100. In general,
running simulation for the actual dynamic is computationally
intensive, with running time from a few hours to several days as
n becomes as large as thousands. We would expect our bounds
as well as the Gaussian simulation to perform better for larger n;
but as we can already see, these approximations are reasonably
accurate for the relatively small n = 100. Third, simulating the
Gaussian process, in our experiments, took place in magnitudes
from minutes to hours. For small enough values of u, it therefore
provides a feasible alternative to simulating the actual dynamic.
We caution, however, that simulating Gaussian processes involves
discretization that introduces extra bias. The choices between
using the analytical bounds and Gaussian simulation should be
decided by users depending on situations. Generally speaking, we
believe that analytical bounds will get more andmore beneficial as
u grows.

4. Correlation structure

Our model also provides a framework for studying temporal
correlations of the risk processes. The Gaussian nature of the limits
we have discussed allows easy computation. As an illustration,
consider the processes Cn(t) and C̄n(t) in (8). As aforementioned,
they can be interpreted as the assets and liabilities of the
insurance company. Their variances as well as temporal and cross
correlations can be found easily as follows:

Temporal covariances for Cash Process and Reserve Process:

Cov(Cn(t), Cn(t ′))
n

→ eδ(t+t ′)

 t∧t ′

0
(H(s) − P(t))(H(s) − P(t ′))f (s)ds
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−

 t

0
(H(s) − P(t))f (s)ds

 t ′

0
(H(s) − P(t ′))f (s)ds


Cov(C̄n(t), C̄n(t ′))

n

→ eδ(t+t ′)F(t ∧ t ′)F̄(t ∨ t ′)
 T

t
(H(s) − P(t))ft(s)ds

×

 T

t ′
(H(s) − P(t ′))ft ′(s)ds.

Cross temporal covariance between Cash Process and Reserve
Process:

Cov(Cn(t), C̄n(t ′))
n

→ eδ(t+t ′)


F̄(t ′)

 t

0
(H(s) − P(t))f (s)ds

−

 t

t ′
(H(s) − P(t))f (s)dsI(t > t ′)



×

 T

t ′
(H(s) − P(t ′))ft ′(s)ds.

These in particular give:
Variance for Cash Process and Reserve Process:

Var(Cn(t))
n

→ e2δt
 t

0
(H(s) − P(t))2f (s)ds

−

 t

0
(H(s) − P(t))f (s)ds

2


Var(C̄n(t))
n

→ e2δtF(t)F̄(t)
 T

t
(H(s) − P(t))ft(s)ds

2
.

Cross covariance between Cash Process and Reserve Process:

Cov(Cn(t), C̄n(t))
n

→ e2δt F̄(t)
 t

0
(H(s) − P(t))f (s)ds

×

 T

t
(H(s) − P(t))ft(s)ds.

From these one can calculate the temporal and cross correlations

Corr(Cn(t), Cn(t ′)) =
Cov(Cn(t), Cn(t ′))

√
Var(Cn(t))Var(Cn(t ′))

Corr(C̄n(t), C̄n(t ′)) =
Cov(C̄n(t), C̄n(t ′))
Var(C̄n(t))Var(C̄n(t ′))

Corr(Cn(t), C̄n(t ′)) =
Cov(Cn(t), C̄n(t ′))
Var(Cn(t))Var(C̄n(t ′))

.

Nowconsider the net asset process under the Equivalence Principle
approximated by X(t)

√
n defined in (14). We have

Cov(X(t), X(t ′)) =

 t∧t ′

0


H(s) −

 T

t
H(v)ft(v)dv


×


H(s) −

 T

t ′
H(v)ft ′(v)


f (s)ds

+

 T

t
H(s)ft(s)ds

×

 t ′

0


H(s) −

 T

t ′
H(v)ft ′(v)dv


f (s)ds

+

 T

t ′
H(s)ft ′(s)ds
×

 t

0


H(s) −

 T

t
H(v)ft(v)dv


f (s)ds

+

 T

t
H(s)ft(s)ds

 T

t ′
H(s)ft ′(s)ds

=

 t∧t ′

0
H(s)2f (s)ds −

 T

t∧t ′
H(s)ft∧t ′(s)ds

×

 t∧t ′

0
H(s)f (s)ds +

 T

t∧t ′
H(s)ft∧t ′(s)ds

×

 t∨t ′

0
H(s)f (s)ds

+ F̄(t ∨ t ′)
 T

t
H(s)ft(s)ds

×

 T

t ′
H(s)ft ′(s)ds

=

 t∧t ′

0
H(s)2f (s)ds −

 T

t∧t ′
H(s)ft∧t ′(s)ds

×

 t∧t ′

0
H(s)f (s)ds + 2F̄(t ∨ t ′)

×

 T

t
H(s)ft(s)ds

 T

t ′
H(s)ft ′(s)ds

by the Equivalence Principle in the last equality, and so in particular

Var(X(t)) =

 t

0
H(s)2f (s)ds + F̄(t)

 T

t
H(s)ft(s)ds

2

which recovers the value of σ 2(t) in (16).

5. Extensions

We emphasize that the current work serves as a first attempt
to introduce the heavy traffic approach in modeling large life
insurance portfolios on the sample path level. Regarding the
stochastic component, especially in modeling ruin, the biggest
limitation of the current work is the ignorance of the dynamic
arrival process of policyholders. When such arrivals are present,
the risk process will be a functional of an underlying infinite-
server queue, in which the service times are the death times of the
arriving policyholders. Such consideration will be one of our key
future research directions.

As we discussed in the previous section, another important
relaxation is the identical profile assumption. Whereas a discrete
mixture of policyholders is straightforward, technicality arises
when the mixture is continuous. Besides, several other directions
of extensions can be pursued. A few possible and important
extensions are: (1) exploring more complicated policy structures
e.g. unit-linked products (2) modeling the interest rate as a market
risk and stochastically changing (3) incorporating operational
cost and other expenses (4) allowing time-varying correlation
among policyholders e.g.Markov-modulated arrival rate and death
distribution (5) relaxing the Equivalence Principle assumption and
allowing safety loading etc.

Appendix. Technical development and Monte Carlo simulation
methodology

This appendix is divided into two parts. We first provide the
proofs of our main results, which require a quick review of some
basic facts on the heavy traffic and weak convergence theory. The
second part of this appendix concerns the implementation of the
simulations shown in the paper.
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A.1. Review of weak convergence and proofs of main results

Before we provide the proof of our main results, let us review
some results on weak convergence theory in function spaces. Then
we proceed with our proofs.

A.1.1. Review of weak convergence results
Define C[0, T ] as the set of all continuous functions on [0, T ]

equipped with the uniform metric, denoted by d∞ (·). That is,

d∞(x, y) = sup
0≤t≤T

|x (t) − y (t)| .

We also define D[0, T ] to be the set of all cadlag (left continuous
with right limit) functions on [0, T ], and we equip the space with
the standard Skorokhod metric, which we shall denote by dJ (·). In
particular, if we letA be the set of all strictly increasing continuous
functions that map [0, T ] into itself we have that

dJ (x, y) = inf
λ∈A

sup
0≤t≤T

|(x ◦ λ) (t) − y (t)|

(see, for example, Billingsley, 1999). In order to quickly have a
grasp of the Skorokhod topology, it is easy to show that xn → x
in the dJ metric if and only if there exists a sequence of elements
λn ∈ A such that xn ◦ λn → x in the d∞ metric.

The uniform or Skorokhod topologies in a product space such
as C[0, T ] × C[0, T ] (or D[0, T ] × D[0, T ]) are defined as the sum
of the corresponding metrics in each projection. In particular, for
instance, if (x1, x2) and (y1, y2) are elements in C[0, T ] × C[0, T ],
then we define the product uniform metric as

dΠ
∞

((x1, x2) , (y1, y2)) = d∞ (x1, y1) + d∞ (x2, y2) .

Entirely analogous considerations and definitions apply to the
Skorokhod product metric.

Wedenote ‘‘⇒’’ forweak convergence of probabilitymeasure. A
useful characterization of weak convergence is that for a sequence
of probability measures Pn, Pn ⇒ P on the space C[0, T ] (respec-
tively D[0, T ]) if and only if


gdPn →


gdP for any bounded, con-

tinuous function g on C[0, T ] (respectively D[0, T ]). The uniform
and Skorokhod topologies are set to define continuity for g . Equiv-
alently, we say that a sequence of stochastic processes on C[0, T ]

(respectively D[0, T ]), Yn ⇒ Y , if and only if Eg(Yn) → Eg(Y )
for any bounded continuous function g defined on C[0, T ] (respec-
tivelyD[0, T ]). This characterizationwill be useful for our develop-
ment.

The main reason for developing weak convergence results in
spaces of functions is given by the continuous mapping principle,
which allows to derive further approximation results by express-
ing quantities of interest (such as the Total Cash Process and the
Total Reserve Process defined in Section 1) as functions of a suit-
able process. A statement of the continuous mapping theorem is
given next (see, for example, Billingsley, 1999):

Theorem 2. Let h : D[0, T ] → S be measurable and Dh be the
set of its discontinuities in Skorokhod topology. If the sequence of
stochastic processes in D[0, T ], Yn ⇒ Y , and P(Y ∈ Dh) = 0, then
h(Yn) ⇒ h(Y ). In particular, if Y ∈ C[0, T ], the same conditions and
results hold by defining Dh to be the set of discontinuity in the uniform
topology. Moreover, the theorem holds for product of D[0, T ] spaces
(respectively C[0, T ]).

By carefully choosing the continuous functionals (such as
maximal, integral etc.)wewill be able to obtain handy convergence
results. Although the Skorokhod metric is rather explicit, the
reduction to checking continuity in the d∞ metric when Y is
continuous (which is the second statement of the theorem) makes
some of our calculations easier. This reduction comes from the fact
that if xn → x in the dJ metric and if x is in C[0, T ] then xn → x in
the d∞ metric.

We shall also use the following standard result of the weak
convergence of empirical process into Brownian bridge (see,
for example, Billingsley, 1999 and Dudley, 1999). This can be
summarized as:

Theorem 3. For any i.i.d. random variables Xi, i = 1, . . . , n with
distribution F(x) supported on [0, T ], define

Fn(t) =
1
n

n
i=1

I(Xi ≤ t)

and regarding Fn(t) as elements of D[0, T ] equipped with the
Skorokhod topology, we have

Fn(t) ⇒ F(t) (22)

and
√
n(Fn(t) − F(t)) ⇒ W0(F(t)) (23)

where W0(t) is standard Brownian bridge on [0, 1] as defined in the
discussion prior to (6).

The limits in (22) and (23) are well-known in statistics and
probability (see for example Dudley, 1999). In the queueing litera-
ture, these types of results are known as fluid and diffusion limits.
Fluid limit refers to approximation by deterministic trajectory and
hence its name. Diffusion limit refers to approximation by diffu-
sion process, in this case driven by Brownian bridge. These conver-
gence results and their various extensions serve as building blocks
of other more complicated limit approximations.

A.1.2. Proofs of main results

Proof of Theorem 1. Our strategy is to show that processes√
n (Cn(·)/n − m(·)) ,

√
n

C̄n(·)/n − m̄(·)


, and

√
n(Vn(·) − V (·))

can be expressed each as continuous functions of the same
underlying process. Therefore, because of the form of the product
metrics, we will have joint convergence in the product topology.
We then can treat each of the three processes separately. We first
concentrate on

√
n (Cn(·)/n − m(·)).

First, Nn(t)/n is the fraction of deaths over time, and is the
empirical process of the n death random variables. By Theorem 3
and (1), we have Nn(t)/n ⇒ F(t) and

Zn(t) :=
√
n

Nn(t)
n

− F(t)


⇒ W0(F(t)) (24)

on D[0, T ]. Here (24) captures the fluctuation of the fraction of
deaths over time, centered around the deterministic mean process
F(t), as n ↗ ∞. Next consider the integral t

0
H(s)dr(s). (25)

Note that by Assumption 2H(s) has a continuous and bounded first
derivative almost everywhere, so for any r ∈ D[0, T ], integration
by parts gives t

0
H(s)dr(s) = H(t)r(t) − H(0)r(0) −

 t

0
H ′(s)r(s)ds. (26)

To ease notation denote ∥ · ∥ as the uniform norm so that
d∞ (x, y) = ∥x − y∥. Note that for r1, r2 ∈ C[0, T ], t

0
H(s)dr1(s) −

 t

0
H(s)dr2(s)


≤


2∥H∥ +

 T

0
|H ′(s)|ds


∥r1 − r2∥
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which shows continuity of
 t
0 H(s)dr(s) on r ∈ C[0, T ]. Now write

Cn(t)
n

= eδt
 t

0
H(s)d


Nn(s)
n


+ P(t)


Nn(T )

n
−

Nn(t)
n


.

Continuity of integral (25) and the fact that elementary operations
are continuous on C[0, T ] yield that

eδt
 t

0
H(s)dr(s) + P(t)(r(T ) − r(t))


is continuous on r ∈ C[0, T ]. Since F(·) is continuous and lies in
C[0, T ], Theorems 2 and 3 concludes the first component of (7).

For the first component of (8), write

√
n

Cn(t)
n

− m(t)


= eδt
 t

0
H(s)dZn(s)

+ P(t)(Zn(T ) − Zn(t))


and (8) follows by similar argument, noting that Zn(T ) = Z(T ) = 0.
The treatment of the processes C̄n(·) is entirely similar. First, it

is clear from Theorem 3 that

C̄n(t)
n

=


Nn(T )

n
−

Nn(t)
n


eδt

P(t) −

 T

t
H(s)ft(s)ds


⇒ F̄(t)eδt


P(t) −

 T

t
H(s)ft(s)ds


= m̄(t).

Moreover, a straightforward application of the continuous map-
ping principle and Theorem 3 (following similar continuity argu-
ments as those given earlier) yield

√
n

C̄n(t)
n

− m̄(t)


= (Zn(T ) − Zn(t))eδt

P(t) −

 T

t
H(s)ft(s)ds


⇒ −W0(F(t))eδt


P(t) −

 T

t
H(s)ft(s)ds


.

Finally, for Vn (·) note that

Vn(t) = eδt

  t
0 H(s)d(Nn(s)/n)

Nn(T )/n − Nn(t)/n
+ P(t)


.

A direct application of Theorem 2 allows us to conclude the third
component of (7). Next write
√
n(Vn(t) − V (t))

=
√
n

Vn(t) −

nV (t)F̄(t)
N̄n(t)


+

√
n

nV (t)F̄(t)

N̄n(t)
− V (t)


=

√
neδt

N̄n(t)/n

 t

0
H(s)d


Nn(s)
n


+ P(t)

N̄n(t)
n

−

 t

0
H(s)dF(s) − P(t)F̄(t)


−

√
nV (t)

N̄n(t)/n


N̄n(t)
n

− F̄(t)


=
eδt

Nn(T )/n − Nn(t)/n

×

 t

0
H(s)dZn(s) + P(t)(Zn(T ) − Zn(t))


−

V (t)
Nn(T )/n − Nn(t)/n

(Zn(T ) − Zn(t)). (27)
Since F̄(t) is deterministic it follows that the following weak
convergence result
Zn(t),

Nn(t)
n


⇒ (W0(F(t)), F̄(t))

follows jointly inD[0, T ]×D[0, T ]. Since the limiting processes are
continuous, it suffices to check that (27) is a continuous mapping
from (W0(F(t)), F̄(t)) on C[0, T − ϵ]2 to R, by Theorem 2. The
argument proceeds as in the analysis of Cn (·) given earlier and we
conclude our result. �

A.2. Simulation methodology

We lay out the simulation methodology we use to generate
the graphs in this paper. The few and elementary steps in the
methodology advocate our use of heavy traffic approximation.
Note that, all the processes we introduced so far are elementary
functions of t

0
H(s)dW0(F(s)),W0(F(t))


(28)

in the pointwise sense. So we will discuss how to generate a path
of these quantities. More precisely, we will generate a discretized
version of this path at time points t0 = 0, t1, . . . , tm = T . Define
Y0 = 0 and

Yi =

 ti

0
H(s)dW0(F(s)), i = 1, . . . ,m.

Note that

Yi = Yi−1 +

 ti

ti−1

H(s)dW0(F(s))

= Yi−1 +

 ti

ti−1

H(s)dW (F(s)) −

 ti

ti−1

H(s)f (s)dsW (1),

i = 1, . . . ,m

by (6). Our simulation algorithm is then as follows. First generate
W (F(t1)), . . . ,W (F(tm)), where

W (F(ti)) = W (F(ti−1)) + N(0, F(ti) − F(ti−1)), i = 1, . . . ,m.

For convenience let the realizations be W (F(ti)) = xi. We have
immediately thatW0(F(ti)) = xi − F(ti)xm for i = 1, . . . ,m.

Using the interpretation of Brownian bridge as the conditional
process given the end points of standard Brownian motion, we
have, given W (F(ti−1)) = xi−1 and W (F(ti)) = xi,W (F(t)), t ∈

[ti−1, ti] is equal in distribution to

xi−1 +
F(t) − F(ti−1)

F(ti) − F(ti−1)
(xi − xi−1) + W̃ (F(t) − F(ti−1))

−
F(t) − F(ti−1)

F(ti) − F(ti−1)
W̃ (F(ti) − F(ti−1))

where W̃ (·) is a standard Brownian motion. Moreover, given the
values of W (F(ti)) = xi, i = 1, . . . ,m, {W (F(t))}ti−1≤t≤ti are
independent portions of sample paths, and hence ti

ti−1

H(s)dW (F(s)) =

 ti

ti−1

H(s)f (s)ds
xi − xi−1

F(ti) − F(ti−1)

+

 ti

ti−1

H(s)dW̃ (F(s))

−

 ti

ti−1

H(s)f (s)ds
W̃ (F(ti) − F(ti−1))

F(ti) − F(ti−1)
.



J. Blanchet, H. Lam / Insurance: Mathematics and Economics 53 (2013) 237–251 251
We then have ti

ti−1

H(s)dW (F(s)) ∼ Ri := N(µi, σ
2
i )

where

µi =

 ti

ti−1

H(s)f (s)ds
xi − xi−1

F(ti) − F(ti−1)

and

σ 2
i =

 ti

ti−1

H(s)2f (s)ds −

 ti

ti−1

H(s)f (s)ds

2
1

F(ti) − F(ti−1)
.

Therefore, to simulate (28), we first output xi, i = 1, . . . ,m, and
then conditional on xi, i = 1, . . . ,m,

(Yi,W (F(ti))) =


Yi−1 + Ri − xm

 ti

ti−1

H(s)f (s)ds,

xi − F(ti)xm


for i = 1, . . . ,m.
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