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ABSTRACT

We consider optimization problems with uncertain constraints that need to be satisfied probabilistically.
When data are available, a common method to obtain feasible solutions for such problems is to impose
sampled constraints, following the so-called scenario generation (SG) approach. However, when the data
size is small, the sampled constraints may not support a guarantee on the feasibility of the obtained solution.
This paper studies how to leverage parametric information and the power of Monte Carlo simulation to
obtain feasible solutions even when the data are not sufficient to support the use of SG. Our approach
makes use of a distributionally robust optimization formulation that informs the Monte Carlo sample size
needed to achieve our guarantee.

1 INTRODUCTION

We consider optimization problems in the form

min
x∈X ⊆Rd

cT x,

subject to P(x ∈Xξ )≥ 1− ε,
(1)

where P is a probability measure governing the random variable ξ , and Xξ ⊂X is a set depending on ξ .
Problem (1) enforces a solution x to satisfy x∈Xξ with high probability, namely at least 1−ε . This problem
is often known as a chance-constrained or probabilistically constrained optimization (e.g., Prékopa 2003).
It provides a natural framework for decision-making under stochastic resource capacity or risk tolerance,
and has been applied in various domains such as production planning (Murr and Prékopa 2000), inventory
management (Lejeune and Ruszczynski 2007), reservoir design (Prékopa and Szántai 1978; Prékopa et al.
1978), communications (Shi et al. 2015), and ranking and selection (Hong et al. 2015).

We focus on the situations where P is unknown, but some data, say ξ1, . . . ,ξn, are available. One
common approach to handle (1) in these situations is to use the so-called scenario generation (SG) or
constraint sampling. This replaces the unknown constraint in (1) with x ∈Xξi , i = 1, . . . ,n, namely, by
considering

min
x∈X ⊆Rd

cT x,

subject to x ∈Xξi , i = 1, . . . ,n.
(2)

Note that the chance-constrained problem (1) is generally difficult to solve, even when the set Xξ is
convex and tractable for any given ξ (Prékopa 2003). Thus, in the latter case, the sampled problem (2)
offers an additional benefit in approximating the intractable problem with a more tractable one.

Our goal is to find a good feasible solution for (1) in the described data-driven context above. Note
that, because of the statistical noise from the data, we can at best find a solution that is feasible with a high
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confidence. Define V (x,P) = P(x /∈Xξ ) to be the violation probability of a solution x for the condition
x ∈Xξ under probability measure P. For any x̂ that is obtained from finite data, we want to make sure that

Pdata(V (x̂,P)≤ ε)≥ 1−α, (3)

for a given confidence level 1−α (e.g., α = 5%), where Pdata denotes the measure generating the data
ξi, i = 1, . . . ,n (and hence x̂).

As n→∞, one would expect that the space of ξ is sufficiently populated by the sample and V (x̂,P)→ 0.
The question is then how many observations are enough to see this behavior. The seminal work of Campi
and Garatti (2008) shows a tight bound on the number of observations, or sampled constraints, needed
to guarantee (3), for given values of ε and α . In particular, define γ(N,ε,d) = ∑

d−1
i=0

(N
i

)
ε i(1− ε)N−i

for positive integers N ≥ d ≥ 1 and 0 < ε < 1. Under the convexity of Xξ and some additional mild
assumptions, Campi and Garatti (2008) proves that an optimal solution obtained from solving (2) satisfies

Pdata(V (x̂,P)> ε)≤ γ(n,ε,d). (4)

Thus, if we can find n such that γ(n,ε,d)≤ α , then we achieve (3).
In this paper, we focus on the small-sample situation, so that our data size n is not enough to support

γ(n,ε,d)≤ α . Note that, in using this result from Campi and Garatti (2008), n can be seen to be linear in
the decision dimension d, and so for high-dimensional problems this small-sample situation can happen
frequently. This dimensional dependence also appears in other sample size bounds (e.g., De Farias and
Van Roy 2004; Luedtke and Ahmed 2008). To overcome this challenge, several recent methods have been
suggested, such as the use of support rank and solution-dependent support constraints (Schildbach et al.
2013; Campi and Garatti 2018), regularization (Campi and Carè 2013), and sequential approaches (Carè
et al. 2014; Calafiore et al. 2011; Chamanbaz et al. 2016; Calafiore 2017). They aim to alleviate the
dependence on d, and thus substantially extend the scope of applicability of SG.

Our main contribution in this paper is to study a different path in obtaining guarantee (3) in small-sample
situation, in the settings where P is assumed a parametric structure. The unknown and estimable quantity is
the set of parameters in P. We also assume that one can simulate from the parametric model P using Monte
Carlo (an assumption applied for all common parametric models). We will see how such a capability, which
can be viewed as a way of generating additional synthetic data, can be combined with the relation (4) to
obtain a scheme applicable when n does not support using (4) directly. Unlike some other techniques that
reduce the data size needed for SG, our procedure resembles closely the standard SG (2). The differences
are in the algorithmic parameters and the distribution we sample from in the Monte Carlo scheme.

Our derivation relies on casting the uncertain-parameter problem as a distributionally robust optimization
(DRO) (Delage and Ye 2010; Wiesemann et al. 2014). This approach considers the worst-case situation
among all parameters that lie in a so-called uncertainty set or ambiguity set. In the chance constraint
framework, this entails replacing the chance constraint with unknown distribution with a worst-case chance
constraint within the uncertainty set (Hanasusanto et al. 2015; Zymler et al. 2013; Hanasusanto et al.
2017; Li et al. ; Jiang and Guan 2016; Zhang et al. 2016). The DRO approach has been used in stochastic
simulation, bearing names such as the robust Monte Carlo (Hu et al. 2012; Glasserman and Xu 2014;
Lam 2016; Hu and Hong 2015; Lam 2018; Ghosh and Lam 2018). Our procedure will rely on a suitable
DRO formulation using statistical distances (Petersen et al. 2000; Ben-Tal and Nemirovski 2000; Lim
et al. 2006; Love and Bayraksan 2015), and the particular SG we use has a similar favor as the robust
Monte Carlo considered in Hu et al. (2012) and Glasserman and Xu (2014), as we also utilize a change-
of-measure argument in arriving at our scheme. Lastly, Erdoğan and Iyengar (2006) considers an SG for
robust chance-constrained problems that is related to our proposal. Erdoğan and Iyengar (2006) considers
uncertainty set based on the Prohorov distance and derives bounds for the required sample size. On the
other hand, our approach uses the class of φ - or f -divergences, which is readily estimatable especially in
the parametric setting. Moreover, our focus is on utilizing the convexity-based sample size estimate in
Campi and Garatti (2008), in contrast to the Vapnik-Chervonenkis dimension used in Erdoğan and Iyengar
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(2006). We will study the required Monte Carlo size in relation to the data size, and the choice of the
Monte Carlo distribution, which are quite different from Erdoğan and Iyengar (2006).

2 OUTLINE OF THE METHOD

Recall that we are interested in finding a solution x̂ such that (3) holds, in the case that P is observable
only through data. Suppose that P ∈P , the class of all possible probability distributions for ξ (which we
shall exemplify later). Suppose that given our data, we can find an uncertainty set Udata ∈P such that

Pdata(P ∈Udata)≥ 1−α. (5)

We then proceed to consider a distributionally robust chance-constrained problem

min
x∈X ⊆Rd

cT x,

subject to inf
Q∈Udata

Q(x ∈Xξ )≥ 1− ε,
(6)

where Q is the probability measure for ξ . If we can find a solution x̂ feasible for (6), then this x̂ is also
feasible for (1) with confidence at least 1−α . This is because if P ∈Udata, then for any x feasible for (6),
P(x ∈Xξ )≥ infQ∈Udata Q(x ∈Xξ )≥ 1− ε , and therefore Pdata(V (x̂,P)≤ ε)≥ Pdata(P ∈Udata)≥ 1−α .

We now consider a Monte Carlo scheme from some “baseline” distribution P0 (which can depend on
the data), to obtain a solution that is feasible for (6) with a confidence of, say, 1−β . This is achievable by
using a certain Monte Carlo size N. To obtain this number, we find a bound on sup

Q∈Udata

V (x̂(P0),Q), where

x̂(P0) is obtained from solving (2) using ξi’s generated from P0. Call this bound M(P0,Udata,V (x̂(P0),P0)).
In other words, it satisfies

sup
Q∈Udata

V (x̂(P0),Q)≤M(P0,Udata,V (x̂(P0),P0)). (7)

Moreover, suppose we also have that M(P0,Udata,v) is non-decreasing in v > 0. We then find a δ > 0
such that

M(P0,Udata,δ )≤ ε. (8)

Then, by using the result in Campi and Garatti (2008) discussed in the introduction, we know that
PMC,0(V (x̂(P0),P0)> δ )≤ γ(N,δ ,d) where PMC,0 is the measure generating N Monte Carlo samples from
P0 to obtain x̂(P0), which holds independent of the choice of P0. We find N such that

γ(N,δ ,d)≤ β . (9)

This choice of N then gives us, with confidence 1−β , thatV (x̂(P0),P0)≤ δ and hence sup
Q∈Udata

V (x̂(P0),Q)≤

ε by (7), (8) and the monotonicity of M. This in turn leads to the conclusion that x̂(P0) is feasible for (6)
with confidence at least 1−β .

Thus, overall, if we choose Udata to satisfy (5) and N to satisfy (8) and (9), our obtained solution x̂(P0)
is feasible for (1) with confidence at least 1−α−β . Note that our argument relies crucially on generating
a bound M that translates the ambiguous violation probability sup

Q∈Udata

V (x̂(P0),Q) into a quantity depending

instead on the baseline violation probability V (x̂(P0),P0). Next section will address how to do so.

2.1 Bounding Ambiguous Violation Probability

We study the bound M(P0,Udata,V (x̂(P0),P0)). In fact, we will consider a more general result. Consider
any measurable set A ⊂ Y and set U ⊂P . We will find an M such that

sup
Q∈U

Q(ξ ∈A )≤M(P0,U ,P0(ξ ∈A )).
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For two probability measures P1 and P2 that are both dominated by a common measure ν on Y , with
Radon-Nikodym derivatives dP1

dν
and dP2

dν
respectively, we define the χ2-distance between P1 and P2 as

χ
2(P1,P2) =

∫
Y

(dP2
dν
− dP1

dν
)2

dP1
dν

ν(dy) =
∫

Y
(
dP2

dν
/

dP1

dν
−1)2 dP1

dν
ν(dy).

When P2 is absolutely continuous with respect to P1, we have in particular

χ
2(P1,P2) =

∫
Y
(
dP2

dP1
−1)2P1(dy) =

∫
Y

dP2

dP1
P2(dy)−1.

Suppose that Q is absolutely continuous with respect to P0. We have

sup
Q∈U

Q(ξ ∈A ) = P0(ξ ∈A )+
(

sup
Q∈U

Q(ξ ∈A )−P0(ξ ∈A )
)

= P0(ξ ∈A )+ sup
Q∈U

∫
1{y ∈A }Q(dy)−

∫
1{y ∈A }P0(dy)

= P0(ξ ∈A )+ sup
Q∈U

∫
1{y ∈A }

(
dQ
dP0
−1
)
P0(dy)

≤ P0(ξ ∈A )+ sup
Q∈U

(∫
Y

1{y ∈A }P0(dy)
)1/2(∫

Y

( dQ
dP0
−1
)2

P0(dy)
)1/2

= P0(ξ ∈A )+P0(ξ ∈A )1/2 · ( sup
Q∈U

χ
2(P0,Q))1/2, (10)

where the inequality follows from the Cauchy-Schwarz inequality. Note that the bound (10) holds if A
and U are random sets, potentially dependent on each others, but independent from ξ generated from Q
or P0 above. Thus, by plugging in x̂(P0) /∈Xξ as ξ ∈A and Udata as U , we have

sup
Q∈Udata

V (x̂(P0),Q)≤V (x̂(P0),P0)+V (x̂(P0),P0)
1/2 · ( sup

Q∈Udata

χ
2(P0,Q))1/2.

Thus, we have identified

M(P0,Udata,v) = v+ v1/2 · ( sup
Q∈Udata

χ
2(P0,Q))1/2, (11)

which is non-decreasing in v.

2.2 Choices of Baseline and Uncertainty Set

Our next step as outlined in the beginning of Section 2 is to find δ such that M(P0,Udata,δ ) ≤ ε , and
moreover a Udata that satisfies (5). For these, we now make an assumption that P, the true distribution of
ξ , is known to lie in a parametric family P = {Pθ}θ∈Θ⊂Rp indexed by θ , which has dimension p.

We make a convenient choice for P0 and Udata. Namely, we choose P0 to be P
θ̂

, where θ̂ is the
maximum likelihood estimator for θ from the data ξi, i = 1, . . . ,n. Then we set

Udata =

{
Q ∈P : χ

2(P
θ̂
,Q)≤

χ2
1−α,p

n

}
, (12)

where χ2
1−α,p is the 1−α-quantile of the χ2-distribution with degree of freedom p. By divergence-based

inference (e.g., Pardo 2005), we have that (12) satisfies

lim
n→∞

Pdata(P ∈Udata) = 1−α.
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Moreover, (11) becomes

v+ v1/2

(
χ2

1−α,p

n

)1/2

.

Thus, we choose δ such that δ +δ 1/2
(

χ2
1−α,p

n

)1/2

≤ ε , or equivalently

δ = ε +
χ2

1−α,p

2n
−

√√√√
ε ·

χ2
1−α,p

n
+

(
χ2

1−α,p

)2

4n2 , (13)

and the Monte Carlo size N such that γ(N,δ ,d) ≤ β . Using this N number of samples generated from
P

θ̂
to construct (2) then guarantees that the obtained solution x̂(P

θ̂
) is feasible for (1) with a confidence

1−α−β +o(1) as n→∞. We note that formula (13) appears in a related context in Proposition 2 in Tseng
et al. (2016), but here we are motivated by the use of SG in very limited data situations and investigate
the joint construction of the uncertainty set and SG with overall statistical guarantees, which is different
from the work of Tseng et al. (2016).

Note that the χ2-distance we used above is one of many distances between probability distributions
that can be categorized under the framework of φ - or f -divergences (Vajda 1972). There are reasons to
believe that χ2 is close to the best under our discussed framework. First is that absolute continuity between
the true distribution P and the baseline distribution P0 to generate Monte Carlo samples is critical for
our approach. Suppose they are not absolutely continuous. One could attempt to form an uncertainty set
Udata that contains both P and P0 with high probability (this can be done using, e.g., Wasserstein distance;
Esfahani and Kuhn 2015; Blanchet and Kang 2016; Gao and Kleywegt 2016). However, the difference

sup
Q∈Udata

Q(ξ ∈A )−P0(ξ ∈A ) becomes more difficult to control as it can depend intricately on the set

A . On the other hand, one can instead use Udata that contains distributions absolutely continuous with
respect to P or vice versa. But if P0 lies outside this set, the difference sup

Q∈Udata

Q(ξ ∈A )−P0(ξ ∈A ) is

again hard to control. Therefore, to apply our framework, choosing a set Udata that contains distributions
absolutely continuous with respect to P0 and also contains P facilitates the error control tremendously.

Next, many other φ -divergences can work under our framework, since one can find Udata in much the
same way using general divergence-based inference tools. This comes from the fact that these divergences
between two distributions indexed by θ1 and θ2 have the same expansion up to the second order (Nielsen
and Nock 2014). Then, as long as we can bound the difference sup

Q∈Udata

Q(ξ ∈A )−P0(ξ ∈A ), the same

argument to look for a suitable N will apply. However, it appears that χ2-distance can perform better
than other common candidates, including the Kullback-Leibler (KL) divergence, precisely because of this
difference bound. In the KL case, Pinkser’s inequality gives rise to an analog of (10) as

sup
Q∈Udata

Q(ξ ∈A )≤ P0(ξ ∈A )+0.51/2( sup
Q∈Udata

KL(P0,Q))1/2.

where KL(P0,Q) denotes the KL divergence between P0 and Q, which, using our machinery described
above, is not as tight as using (10) when the ultimate value of δ is less than 0.5.

Lastly, note that we have constructed Udata that satisfies (5) asymptotically. To provide finite-sample
bound, we can use concentration inequalities regarding the MLE estimators (see Korostelev and Korosteleva
2011). Though we do not go into the details here, we note that our previous discussion is exact for Gaussian
distributions with unknown means.
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3 GENERALIZATIONS AND MIXTURE BASELINE DISTRIBUTIONS

Note that an important element to determine the sample size requirement of our scheme is the quantity
sup

Q∈Udata

χ2(P0,Q) in (11). We have chosen a convenient choice in the last section for this quantity, which

involves choosing P0 and Udata. Within the class of φ - or f -divergences, the choice Udata is asymptotically
the same. To express this more precisely, we re-parametrize the uncertainty set Ũdata to be over the space
of the parameter θ ∈Θ, and work with sup

θ∈Ũdata

χ2(P0,Pθ ) instead. We let

Ũdata ,

{
θ ∈Θ : (θ − θ̂n)

T I(θ̂n)(θ − θ̂n)≤
χ2

1−α,p

n

}
, (14)

where I(θ̂n) is the estimated Fisher information, and θ̂n is the MLE in which we highlight the dependence
on n. All divergence-based uncertainty sets Udata has an equivalent asymptotic form as (14).

The natural question to ask is which baseline measure P0 we should choose to generate the Monte Carlo
sample. For convenience, we denote Ddata(P0) = sup

θ∈Ũdata

χ2(P0,Pθ ). Ideally, we would like to choose P0 so

that Ddata(P0) is computable and also minimized, which then leads to a computable and minimized required
number of sample N. To proceed, suppose further that Pθ has a density p(y;θ) on Y . Furthermore, we
focus on P0 that has a density p0(y) in the mixture form

p0(y) =
∫

Ũdata

p(y;θ)µ(dθ),

where µ is a distribution on θ ∈ Ũdata, and for convenience we call this associated class of distributions
P(Ũdata). This choice of density is handy to simulate from because we can simply sample θ ∼ µ(dθ)
and then ξ ∼ Pθ .

To minimize Ddata(P0), we write

Ddata(P0) = sup
θ∈Ũdata

∫
Y

( p(y;θ)

p0(y)
−1
)2

p0(y)dy

= sup
θ∈Ũdata

∫
Y

(p(y;θ))2

p0(y)
dy−1

= sup
θ∈Ũdata

∫
Y

(p(y;θ))2∫
Ũdata

p(y;θ)µ(dθ)
dy−1. (15)

We define

L(µ,θ),
∫

Y

(p(y;θ))2∫
Ũdata

p(y;θ)µ(dθ)
dy and φ(µ), sup

θ∈Ũdata

L(µ,θ).

It follows from (15) that minimizing Ddata(P0) is equivalent to solving:

min
µ∈P(Ũdata)

max
θ∈Ũdata

L(µ,θ) = min
µ∈P(Ũdata)

φ(µ). (16)

Note that the right hand side of (16) is a convex minimization problem, thanks to the fact that 1/x is
a convex function for x > 0.

However, even though the minimization in (16) is convex, solving it exactly is difficult due to the
inner maximization. Thus we will aim for some heuristic methods to improve the choice of the baseline
distribution. To gain some insights, we first consider the value of φ(µ) in the case where we pick
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µ = δ
θ̂n
∈P(Ũdata), the point mass at the MLE estimator at δ

θ̂n
, so that P0 = P

θ̂n
. Now we want to see if

we can find some other µ ∈P(Ũdata) with a smaller value of φ(µ). In this way, even if we cannot exactly
solve (16), we can still decrease the value of Ddata(P0). Here, we propose a mixture µprop(dθ)∈P(Ũdata)

on the boundary of Ũdata that is easy to simulate and shows promising practical performance. Specifically,
we define the support of measure µprop(dθ) to be

Θ(θ̂n) = {θ ∈ Ũdata : (θ − θ̂n)
T I(θ̂n)(θ − θ̂n) =

χ2
1−α,p

n
}.

Now, to sample θ ∼ µprop(dθ), we first sample a random vector η ∈ Rp uniformly on the surface of

the p dimension ball with radius
√

χ2
1−α,p

n . In particular, this can be achieved by sampling from p number of

independent standard normal variables and scale them to have
√

χ2
1−α,p

n unit of length (see Muller (1959)).
Then, we set θ = θ̂n+(I(θ̂n))

−1/2η . In other words, we have chosen µprop such that if θ ∼ µprop(dθ), then

(I(θ̂n))
1/2(θ − θ̂n) is uniformly distributed on the surface of the p-dimensional ball with radius

√
χ2

1−α,p
n .

We want to simplify problem (16) by finding 0 < t < 1 that minimizes

φ(t) = φ((1− t)δ
θ̂n
+ tµprop),

using line search or the bisection method. In the case where we have checked φ(1)< φ(0), we are certain
to make improvement over using µ as the point mass at θ̂n.

In general, if we cannot directly compute p0(y) =
∫
Ũdata

p(y;θ)µprop(dθ) and solve for φ(µprop),
an alternate is to use Monte Carlo samples of {θi}i≤S and approximate p̂0S(y) = ∑

S
i=1 p(y,θi)/N =∫

Ũdata
p(y;θ)µemprical(dθ), where µempirical is the empirical distribution of these θi’s. Then we try to

calculate φ((1− t)δ
θ̂n
+ tµempricial) for different 0 < t < 1 to see if there is improvement.

4 NUMERICAL EXPERIMENTS

We present some numerical examples to illustrate the performance of our method. We first focus on the
computational costs for different level of accuracy ε and dimension d. Next, we compare with the result
from standard SG. Finally, we demonstrate how choosing an effective baseline distribution P0 can reduce
the required sample size and decrease the computational cost.

We will perform experiments on multivariate Gaussian random variables and exponential random
variables on single linear chance constrained programs (CCP) and joint linear CCP.

• For every experiment in each problem, we obtain an optimal solution x̂ by solving SG, and evaluate
the violation probability V (x̂,P) under the true probability measure Pθ0 (where θ0 denotes the true
parameter value) either through exact calculation by CDF or numerical expeiments of 10000 times.
Then we calculate the value ε̂ as the average of violation probability V (x̂,P) across 1000 cases. In
addition, we compute the 95th quantile of the violation probability and also the avarage of objective
value as “Ave.Obj.Val” in these 1000 cases.

• In all examples we consider α = 0.05 and β = 0.05 for convenience and alternate between different
values of ε and d.

• For each ε and d, we let Next to be the sample size we need if we can sample from P directly, and
Namb be the Monte Carlo size using our method given the data size n. This number varies under
different choices of baseline measure P0. Note that we must have n < Next < Namb.
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4.1 Single Linear Chance Constraints

We consider a single linear CCP

min
x∈X ⊆Rd

cT x,

subject to P((a+ξ )T x≤ b)≥ 1− ε,

where x ∈Rd is the decision variable, a,c∈Rd and b∈R are constants. The random vector ξ ∈Rd follows
N (ϑ , Id) for some unknown ϑ . We suitably choose the parameters so that our problem is always feasible.
The true underlying measure has ϑ = 0. We choose a baseline measure P0 using ϑ̂n, the MLE estimator.
The χ2-distance in Udata can be explicitly computed in this case. For different levels of ε and d, we
compute Next and set n < N. Then we compare the values of Next and Namb to gain insight on the difference
of the computational cost in our method with that of the standard SG. Finally, we report “Ave.Obj.Val”
and ε̂ and its 95% quantiles Q95 from 1000 experiments. Table 1 shows our results.

Table 1: A Single Linear CCP for Gaussian with unknown mean.

Different levels of ε and d

ε = 0.1 ε = 0.1 ε = 0.1 ε = 0.05 ε = 0.05 ε = 0.05
d = 5 d = 10 d = 20 d = 5 d = 10 d = 20

n 60 100 180 100 200 300
Next 89 154 275 181 311 554
Namb 342 585 1010 748 1144 2209
Ave.Ob j.Val 0.8086 0.8686 0.9054 0.8037 0.8566 0.8944
ε̂ 0.0094 0.0191 0.0221 0.0071 0.0091 0.0097
Q95 0.0203 0.0341 0.0333 0.0137 0.0149 0.0145

Note that the data size is not enough to support a standard SG in all our considered settings. For
comparison, we show the Monte Carlo Namb needed in our method, which are quite big compared to Next ,
though one should keep in mind that the Monte Carlo samples are easy to generate. As we can see, the ε̂

from our method are all below the tolerance level, exhibiting the validity of our method.
Next, we explore the case where ξ ∼ exp(λ ) with some unknown λ . We set the true underlying measure

P to have λ = 1 and we choose the baseline measure P0 to use λ̂n, the MLE estimator. We consider the
case where ε = 0.01, d = 1 and summarize the results in Table 2. Again, the ε̂ we obtain is well below
the tolerance level.

Table 2: A Single Linear CCP for Exponential with unknown mean.

n Nexact Namb Ave.Ob j.Val ε̂ Q95

Value 100 299 1761 0.3644 0.00036 0.0014

Finally, we consider the case where ξ ∈N (ϑ ,Σ) with both parameters unknown. In such cases, we use
the Wilks’ theorem and construct a joint confidence region for both ϑ and Σ based on the χ2-distribution
(Greene 2008; Arnold and Shavelle 1998). Specifically, We show the results for d = 1, ε = 0.01 for
demonstration. We set the true underlying measure P to have ϑ = 0, σ2 = 1 and we choose the baseline
measure P0 to use (ϑ̂n, σ̂n), the MLE estimator. We summarize the results in Table 3, which show similar
patterns as the previous cases.
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Table 3: A Single Linear CCP for Gaussian with unknown mean and unknown variance.

n Nexact Namb Ave.Ob j.Val ε̂ Q95

Value 200 299 1426 0.5207 0.0011 0.0044

4.2 Joint Linear Chance Constraints

We consider a joint linear CCP

min
x∈X ⊆Rd

cT x,

subject to P((A+ξ )T x≤ b)≥ 1− ε,

where x ∈ Rd is the decision variable and c ∈ Rd ,b ∈ Rl and A ∈ Rd×l are constants. The random vector
ξ ∈Rd×l satisfies vec(ξ )∼N (0,Σ) where Σ∈Rdl×dl is some non-identity positive definite matrix. Again,
we suitably choose the parameters so that our problem is always feasible. Also, we choose different values
of d, l and ε to demonstrate the results. We summarize the results in Table 4.

Table 4: A Joint Linear CCP.

Different levels of d, l and ε

ε = 0.1 ε = 0.1 ε = 0.05 ε = 0.05
d = 5 d = 10 d = 5 d = 10
l = 10 d = 15 l = 10 l = 15

n 60 100 100 200
Next 89 154 181 311
Namb 342 585 748 1144
Ave.Ob j.Val 0.6388 0.6563 0.6387 0.6669
ε̂ 0.0017 0.0024 0.0017 0.0044
Q95 0.0041 0.0052 0.0037 0.0091

In this joint CCP case, the number of samples Namb can grow quickly when ε decreases. Our ε̂ are
still well below the tolerance level, thus showing the validity of our approach. However, to reduce the
computational costs, we should consider choosing a more efficient P0. We will address this question in
the following subsection.

4.3 Different Choices of the Baseline Distribution

We investigate different choices of P0, motivated from results in the last subsection that using P0 at the
MLE estimator θ̂n may lead to a large Namb. For demonstration, we consider the case where the parametric
family is Gaussian with unknown mean and unit variance. We propose different choices of the mixture
distribution µ(dθ), compute p0(y) =

∫
Ũdata

p(y;θ)µdθ and solve directly for Ddata(P0) to compute δ and
Namb. Note that, in the case ξ ∼N (ϑ ,1) and α = 0.05, the uncertainty set Ũdata is simply the interval
[ϑ̂n− 1.96√

n , ϑ̂n +
1.96√

n ].

We compare 4 types of mixture on Ũdata. We denote µ1 to be the point mass δ
θ̂n

, µ2 to be the mixture
of two equal point mass at the two points that split the interval Ũdata into three equal-distance pieces.
Then, we set µ3 to be the uniform distribution on the entire interval Ũdata. Finally, µprop is the uniform
distribution on the boundary of Ũdata, which is just two equal point masses at two end points. We set
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ε = 0.05. We summarize the results in Table 5. As, we can see, in this example, µprop has the best
performance as it gives the lowest number of required Monte Carlo samples.

Table 5: A Comparison among four choices of P0 for single CCP.

Ddata(P0) δ Namb

δ
θ̂n

0.46837 0.0153 195
µ2 0.42611 0.0164 182
µ3 0.36702 0.0182 164
µprop 0.28765 0.0215 138

We also demonstrate the case of multivariate Gaussian with unknown mean. In this case, we can still
explicitly compute the p0(y) under µprop using the hypergeometric function defined in Nath (1951). We
show the comparisons in Table 6. We again set ε = 0.05, d = 2 and n = 80. In this case Next = 93. Our
choice of µprop gives a much smaller Namb than using µ set as the point mass at θ̂n. Moreover, the small
value of ε̂ shows that our solution statistically satisfies feasibility for the CCP, which demonstrates that
this choice of µprop is valid for our method.

Table 6: A Comparison among two choices of P0 for joint CCP.

Ddata(P0) δ Namb Ave.Obj.Val ε̂ Q95

δ
θ̂n

0.0155 0.0153 305 0.9126 0.0016 0.0080
µprop 0.00543 0.0360 130 0.9211 0.0153 0.0402
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