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ABSTRACT

Importance sampling has been extensively studied as a variance reduction tool in rare-event simulation.
The design and efficiency of this method often relies on structural knowledge about the target problem in
hand. In this paper, we consider a simple rare-event setting, driven by Gaussian input variates, where there
is no direct information about the system of interest, or where the system of interest can only be evaluated
through a “black-box” model. This setting mimics, on a basic level, situations where the system of interest
could be too complex to analyze as in the conventional importance sampling literature. We investigate an
approach based on two-stage sampling, where the first stage learns the rare-event set of interest, and the
second stage uses a change of measure that exploits the first-stage finding. We present some guarantees
and discuss comparisons of this scheme with more naive approaches.

1 INTRODUCTION

Rare-event simulation concerns the estimation of a probability that is very small, which usually serves
as a risk measurement of the occurrence of catastrophic events. Because of the small target probability,
crude Monte Carlo typically bears a huge relative error, and consequently requires a huge number of
samples to obtain a reasonably accurate estimate. To overcome this issue, importance sampling (IS) is
commonly suggested as an effective variance reduction method in such contexts (early references include,
e.g., Siegmund 1976; Glynn and Iglehart 1989; Sadowsky and Bucklew 1990 etc.).

To design an efficient IS estimator, existing approaches often involve analyzing the structures or
dynamics of the system of interest. A large literature studies the use of large deviations to invent and
mathematically justify IS procedures (see, e.g., the surveys Bucklew 2013; Asmussen and Glynn 2007;
Rubinstein and Kroese 2016; Glasserman 2013; Juneja and Shahabuddin 2006; Blanchet and Lam 2012).
This line of studies requires, in particular, thorough knowledge about the system or the underlying function
at hand. Another line of studies use techniques such as Markov-chain Monte Carlo (MCMC) to sample
from the rare-event set of interest, or approximately from the conditional distribution given the occurrence
of the rare event (Botev et al. 2013; Grace et al. 2014; Chan and Kroese 2012).
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In this paper, we study a setting where we do not have direct information about the underlying
performance function. This happens when, e.g., the function is only accessible as a “black-box”, so that it
can be revealed only at given input values chosen by the user. This situation, on a basic level, mimics the
setting where the function may be too complex to mathematically analyze for designing IS schemes. It is
motivated by several recent applications of IS in self-driving cars evaluation (Zhao et al. 2017; Huang et al.
2017a), neural network training (Bengio and Senécal 2008), and reinforcement learning (Frank, Mannor,
and Precup 2008; Shelton 2001). This is in addition to more established applications in, e.g., finance
(Glasserman et al. 1999), queueing (Dupuis et al. 2007; Dieker and Mandjes 2006; Blanchet et al. 2009),
structural reliability (Au and Beck 1999; Dubourg et al. 2013; Grabaskas et al. 2016; Heidelberger 1995)
and manufacturing (Kanj et al. 2006).

As a motivating example, suppose we have a black-box prediction model ŷ(x) (built from, e.g., a
machine learning model) for the response of a physical system y(x) that is unknown and needs to be
observed. Here x is the input that is random. Think, in the setting of self-driving car, that x encodes the
surroundings and y(x) is the movement of the surrounding objects in the next time unit. The action of
the self-driving car relies on the prediction model, and there would be an accident or a serious loss if the
prediction deviates from the physical outcome too much. Here, we can use g(x) = d (ŷ(x),y(x)) to capture
this deviation, where d(·, ·) denotes some distance measure. The probability P(g(x)≥ γ) captures the risk
of a serious loss. Since a typical machine learning output ŷ(x) can be highly unstructured and reminiscent
of a black box, using IS to speed up the estimation of such type of probability falls into our study setup.

This paper focuses on a simple example of the above setting. In particular, we assume the input variates
are Gaussian and that the rare-event set has one “dominating point” (Sadowsky and Bucklew 1990; Dieker
and Mandjes 2006; Blanchet and Li 2011; Adler et al. 2012). These assumptions could be possibly relaxed,
e.g., to Gaussian mixtures that can be used to model or approximate a wider class of distributions, and
to rare-event sets that have multiple dominant points. We propose a two-stage sampling scheme in the
above situations. In the first stage, we sample from the space using a space-filling design. This stage
serves to learn information about the rare-event set, in particular the dominant point. In the second stage,
we construct IS via an exponential tilting based on the estimated dominant point. From the viewpoint of
sequential learning, one can think of the first stage as the “exploration” phase and the second stage as
“exploitation”.

We present some theoretical error bounds on this approach. Our analysis, in particular, shows the
impact of using exponential tilting based on a point that only approximates the dominating point in terms
of their distance, which is in general exponential. However, there is a concentration-type behavior in our
first-stage learning on the dominant point, which offsets this exponential dependence. One of the insights
is that, under the particular setting we consider, the two-stage approach is advantageous against more naive
approaches, such as pure uniform sampling, if the sample space is large compared to the location of the
rare-event set.

Our study here is perhaps closest to the setting of cross-entropy method (Rubinstein and Kroese 2004,
De Boer et al. 2005), which can be used when there is no information about the underlying structure of
the rare event. This approach relies on a sequential use of sample average approximation to minimize the
Kullback-Leibler divergence between an IS distribution and the zero-variance distribution to update the
IS parameters. Part of our motivation is that the cross-entropy method, though demonstrated to be very
effective, typically requires an explicit identification of a threshold parameter controlling the rarity level
that can be sequentially adjusted. In contrast, our method does not need this parameter, and instead we rely
on a concentration-type exploration of the rare-event set in the first stage that informs our IS. Furthermore,
our study is also related to a line of IS work based on learning the rare-event set, for instance, through first
or second order approximation (Zhao and Ono 1999), quadratic response surface (Das and Zheng 2000),
neural network (Papadrakakis and Lagaros 2002), support vector machine (Hurtado 2004; Bourinet et al.
2011; Huang et al. 2018), kriging or Gaussian process (Echard et al. 2011; OHagan 2006; Dubourg et al.
2013), and the utilization of monotonic features (Huang et al. 2017b). These methods are all heuristically
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built on the use of data to approximate the rare-event set, and there has been no theoretical guarantees
on their performances. Our study here could provide some basic mathematical insights on the errors and
their impacts on Monte Carlo from such type of learning. Lastly, a rare-event setting where the system is
partially known and learned is theoretically analyzed in Lam (2012), but only confined to the setting of
level-crossing of random walks.

The remainder of this paper is as follows. Section 2 reviews the IS technique including in particular
the Gaussian input case. Section 3 presents our precise setting and the proposed procedure. Section 4
shows numerical results and discusses some extensions.

2 BASIC BACKGROUND

Suppose that we are interested in estimating the probability of hitting a set R, i.e, p = P(X ∈ R). IS
replaces the original probability measure P with P̃, such that the likelihood ratio P(X)/P̃(X), given by the
Radon-Nikodym derivative between P(·) and P̃(·), is well defined on the set R. To adjust for the bias of
this change, IS outputs

Z = I(X ∈R)
P(X)

P̃(X)
. (1)

To measure the efficiency of an IS scheme, we introduce a rarity parameter, say n, that parametrizes
the rare-event probability pn such that pn→ 0 as n→∞. Note that since the probability of interest is small,
one should focus on the relative error of the Monte Carlo estimator with respect to the magnitude of this
probability. To this end, we call an IS estimator Zn for pn asymptotically efficient if

lim
n→∞

log Ẽ[Z2
n ]

log Ẽ[Zn]
= 2. (2)

The notion (2) is equivalent to saying that Ẽ[Z2
n ]/Ẽ[Zn]

2 is at most polynomially growing in n. This ensures
that the second moment, or the variance, does not explode exponentially relative to the probability of
interest as n increases, thus preventing an exponentially large number of simulation replications to achieve
a given relative accuracy. For further details, see, e.g., Asmussen and Glynn (2007).

As an example that will be used in this paper, consider a standard Gaussian random vector X ∼ N(0, I)
and a rare-event set R. We recall the notion of a dominating point a∗ of R, i.e., a point a∗ ∈R such
that R ⊆ {x : a∗′(x−a∗)≥ 0}. Suppose that R is convex, then this condition is equivalent to saying that
a∗ optimizes minx∈R ‖x‖2, as 2a∗′(x−a∗) = ∇(‖x‖2)′(x−a∗)≥ 0 is precisely the first order condition of
optimality for the convex program minx∈R ‖x‖2. Moreover, since we consider standard Gaussian X , we
have a∗ = argmax{φ(x) : x ∈R}, where φ denotes the density of standard Gaussian distribution.

Suppose that a∗ is big, so that a∗→ ∞ and R becomes rare. A commonly considered IS scheme is to
use exponential tilting, triggered by a mean shift of X from 0 to a∗, i.e, we use the estimator

Z = I(X ∈R)
φ(X)

φ(X−a∗)
. (3)

The second moment is given by

Ẽ[Z2] = Ẽ

[(
φ(X)

φ(X−a∗)

)2

;X ∈R

]
= Ẽ

[
e−‖X‖

2+‖X−a∗‖2
;X ∈R

]
= e−‖a

∗‖2
Ẽ
[
e−2a∗′(X−a∗);X ∈R

]
.

Since a∗ is assumed a dominating point, we have a∗′(x− a∗) ≥ 0 for any x ∈R, and thus the above is
bounded from above by e−‖a

∗‖2
.

Since Ẽ[Z]2 = P(X ∈R) = poly(a∗)e−‖a
∗‖2

, where poly(a) denotes a polynomial in a∗, the scheme (3)
is asymptotically efficient as defined by (2).
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3 IMPORTANCE SAMPLING FOR UNKOWN RARE-EVENT SETS

Motivated by the discussion and example given in the introduction, we consider the situation where the
rare-event set is unknown. To do so, we refine our setting in Section 2. We assume R is unknown, but,
that we know R is convex, so that the rare-event set has an unknown dominating point a∗. Moreover,
assume it is known that R ⊂ [0,B]m for some B > 0 (these could be the physical boundary of the given
problem). Given a point x ∈ Rm, we have the capability to observe whether x ∈R, but this action would
incur a cost that is equivalent to running a simulation copy of I(X ∈R).

The basic challenge is to attempt to learn R so that we can then apply IS effectively. Given a
budget n on the number of evaluations, we investigate a two-stage IS scheme as follows. In the first
stage, we use a space filling design (e.g. uniform sampling) over the design space [0,B]m and collect
n1 observations (Xi, I(Xi ∈ R))n1

i=1. In the second stage, we construct an IS distribution by shifting
the mean of the standard Gaussian distribution to â = argminXi,i=1,...,n1

{‖Xi‖2 : Xi ∈R}, or equivalently
argmaxXi,i=1,...,n1

{φ(Xi) : Xi ∈R}. In other words, each IS output in the second stage is

Z = I(X ∈R)
φ(X)

φ(X− â)
. (4)

We use n2 simulation replication in the second stage to obtain a sample mean as our final estimate of
P(X ∈R). In the case that â does not exist, i.e., none of the first-stage samples fall into R, we perform a
“back-up” procedure in the second stage that has a second moment of, say, M (this can be, e.g., a uniform
sampling on the whole space). For convenience of analysis, we use n1 = n2. We summarize our procedure
in Algorithm 1.

Algorithm 1: The two-stage IS scheme for unknown rare-event sets.
Input: Sample budget n1,n2.
Output: IS estimator Z.
Stage 1:

1 Use space filling design (e.g. uniform sampling) over the design space [0,B]m to collect n1
observations (Xi, I(Xi ∈R))n1

i=1;
2 Find approximate dominating point by solving â = argminXi,i=1,...,n1

{‖Xi‖2 : Xi ∈R};
Stage 2:

3 If â exists do
4 Obtain the IS estimator as the sample average of n2 copies of Z = I(X ∈R) φ(X)

φ(X−â) ;
5 Else do
6 A back-up procedure (e.g. use space filling design to collect n2 samples and output the

associated IS estimate);
7 End;

3.1 Error When Using an Approximate Dominating Point

The second-stage IS is precisely the classical scheme introduced in Section 2, except that we replace the
unknown a∗ with an estimator â. The following approximates the error from such an estimation:
Theorem 1 (Error from using approximate dominating point) Consider estimating P(X ∈R)where R ∈Rm

is a convex set and X ∼ N(0, I). Denote a∗ as a dominating point of R, and d = ‖â−a∗‖ for a given point
â. Suppose we use the IS scheme (4). Then its second moment satisfies Ẽ[Z2]≤ e−‖a

∗‖2+d2
.
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Proof. Consider the second moment of Z given by

Ẽ[Z2]

= Ẽ[e−‖X‖
2+‖X−â‖2

;X ∈R]

= e−‖a
∗‖2

Ẽ[e‖â‖
2+‖a∗‖2−2X ′â;X ∈R]

= e−‖a
∗‖2+‖â−a∗‖2

Ẽ[e−2(X−a∗)′a∗−2(X−a∗)′(â−a∗);X ∈R]

≤ e−‖a
∗‖2+‖â−a∗‖2

Ẽ[e−2(X−a∗)′(â−a∗);X ∈R]

since (x−a∗)′a∗ ≥ 0 for any x ∈R by the definition of dominating point

≤ e−‖a
∗‖2+‖â−a∗‖2

Ẽ[e−2(X−a∗)′(â−a∗)]

= e−‖a
∗‖2+‖â−a∗‖2

where the last step follows by noting that X − a∗ ∼ N(â− a∗, I) under P̃, and Ẽ[e−2(X−a∗)′(â−a∗)] is the
moment generating function of X−a∗ at−2(â−a∗), so that Ẽ[e−2(â−a∗)′(X−a∗)] = e−2‖â−a∗‖2+4‖â−a∗‖2/2 = 1.
This concludes the theorem.

Note that Theorem 1 does not assume how â is obtained. It is applicable for any â. An implication of
the theorem is that the IS scheme (4) using â is asymptotically efficient, except for an extra multiplicative
error ed2

in the ratio Ẽ[Z2]/Ẽ[Z]2 that, depending on how close â is to a∗, could potentially be significant.

3.2 Efficiency of the Two-stage Procedure

Intuitively, if we use large enough n1 in the first stage, we could get a good estimate of a∗, i.e., d = ‖â−a∗‖
is small probabilistically. To further analyze this error, let us denote

α =
Area(R)

Area([0,B]m)

We recall that the first-stage observations of X are sampled uniformly on [0,B]m and used to obtain
â. Consider P(‖â−a∗‖2 > y). Note that ‖x‖2 = ‖x−a∗‖2 +‖a∗‖2 +2(x−a∗)′a∗ ≥ ‖x−a∗‖2 +‖a∗‖2 =
‖x−a∗‖2 +η2 for any x ∈R, where we denote η = ‖a∗‖. We have

P(‖â−a∗‖2 > y) ≤ P(‖â‖2 > y+η
2) since â ∈R, if exists

= P(‖Xi‖2 > y+η
2 or Xi /∈R)n1

by our construction of â as the minimizer of ‖Xi‖2 among Xi ∈R

= (1−αP(‖Xi‖2−η
2 ≤ y|Xi ∈R))n1 (5)

To proceed, we make several simplifying assumptions. We let m = 2. Moreover, we consider an
additional assumption that

Area({x ∈R : ‖x‖2−η2 ≤ y1})
Area({x ∈R : ‖x‖2−η2 ≤ y2})

≥ k
y1

y2

for y1 < y2 running from 0 to a constant c > 0, where k is a constant such that 0 < k≤ 1. This assumption
holds for m = 2 if the rare-event set roughly looks like a cone with rays generated from a∗. This includes,
in particular, shapes in the form of a semi-disk.

Under the above assumptions, from (5), we have

P(‖â−a∗‖2 > y)≤
(

1−αk
y
c

)n1
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Consider the second moment of the overall estimator of the two-stage procedure, which is e−‖a
∗‖2

E[ed2
]

where E[·] is under the first-stage uniform sampling. Here we define ed2
= e‖a

∗‖2
M if â and hence d does

not exist (Recall that if â does not exist, then we use a back-up procedure giving a second moment M in
each second-stage replication). Now, denote F̄(y) = P(d2 > y), and consider

E[ed2
] =−

∫ c

0
eydF̄(y)+(1−α)n1eη2

M

≤ 1+(1−αk)n1(eη2
M− ec)+

∫ c

0

(
1−αk

y
c

)n1
eydy (6)

Consider the term ∫ c

0

(
1−αk

y
c

)n1
eydy = c

∫ 1

0
(1−αkz)n1 eczdz

= c
∫ 1

0
en1 log(1−αkz)+czdz

≤ c
∫ 1

0
e−bn1αkz+czdz (7)

for some constant b> 0, where the last step follows since we can find such a b such that log(1−αkz)≤−bαkz
for all 0≤ z≤ 1.

Now consider n1 = ω(1/α), or more precisely n1 = ρ/α where ρ → ∞. Then (7) is equal to

c
∫ 1

0
e−bkρz+czdz =

c
bkρ− c

(1− e−(bkρ−c))

Continuing with the same choice of n1 = ρ/α , the second term in (6) becomes

(1−αk)ρ/α(eη2
M− ec)

Thus, if we use n2 = n1 = ρ/α replications in the second stage, we get an overall second moment of
the final estimator bounded from above by

e−η2
c

bkρ−c(1− e−(bkρ−c))+(1−αk)ρ/α(eη2
M− ec)+1

ρ/α
(8)

3.3 Comparison with Pure Uniform Sampling

To give some insights on (8), we compare our approach with a naive uniform sampling scheme. Since
we have assumed that R ⊂ [0,B]m, using uniform sampling as IS is feasible. To compare fairly with our
two-stage procedure, suppose we use a sample size n = n1 +n2 for this uniform IS. The second moment
for each replication is given by

Ẽ
[
(
φ(X)

1/V
)2;X ∈R

]
where V = Area([0,B]m). This is equal to

V 2Ẽ
[
φ(X)2;X ∈R

]
=V

∫
x∈R

φ(x)2dx≈ V
η2 e−η2

(9)

if we let m = 2.
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For further comparison, we set n1 = n2 = ρ/α , so that the total replication size is n = 2ρ/α . The
second moment becomes approximately

V α

2η2ρ
e−η2

(10)

On the other hand, suppose that, in our two-stage procedure, the back-up algorithm is a pure uniform
sampling, then M is approximately replaced by (9), so that the overall second moment is approximately
bounded by

e−η2
c

bkρ−c(1− e−(bkρ−c))+(1−αk)ρ/α(V/η2− ec)+1

ρ/α
(11)

Now consider the case where α is bounded away from 1, i.e., the rare-event set does not occupy the
whole space, and that c > 0 is fixed, i.e., the volume of the rare-event set does not grow (This can be
relaxed to letting c grow slowly). Since c

bkρ−c(1− e−(bkρ−c)) is bounded, and (1−αk)1/α ≤ e−l for some
constant l > 0, (11) is bounded by

e−η2 α( f + e−lρV/η2)

ρ
(12)

for some constant f > 0.
Thus, comparing (10) and (12), we see that when V/η2 is large or goes to ∞, the second moment

provided by the two-stage procedure is smaller, and thus it is preferable. Note that V/η2 occurs when the
space in consideration is large compared to the position of the rare-event set. Intuitively, in this situation
most of the uniformly sampled points will miss the rare-event set. Thus a pure uniform sampling works
poorly. On the other hand, the two-stage approach makes use of a concentration-type behavior coming
from solving the optimization based on the few hitting samples in the first stage, in order to locate the
dominating point. This operation makes the overall performance of the two-stage approach better.

4 NUMERICAL EXPERIMENTS

This section uses some simple problems to illustrate the performance of our proposed approach and to
compare with uniform IS scheme. We test two types of problems. In the first type of problems, we assume
that the rare-event set is convex. In this case, the assumption for Theorem 1 holds and the proposed
approach has the analyzed efficiency. The second type of problems considers non-convex rare-event set
that violates our assumption, which serves to illustrate potential extensions of our proposed approach.

4.1 Convex Rare-event Set Example

We consider the following problem setting. The design vector x has dimension m = 2 and the design space
is [0,5]m, i.e. B = 5 according to the notation we used in previous sections. Note that X follows standard
Gaussian distribution. We set the rare-event set to be R = {x : (x1−5)2 +(x2−5)2 ≤ 4}. We compare the
performance of the proposed two-stage approach and the uniform IS in two sets of experiments.

In the first set of experiments, we vary the number of total sample budget from n = 1000 to n = 50,000.
For each selection of n, we use n1 = n2 = n/2 samples in the two-stage approach. Results of these
experiments are shown in Figures 1 and 2. Figure 1 presents the final probability estimates from the
two approaches with different sample budgets. We observe that the two-stage approach (red solid line) is
slightly more stable than the uniform IS (black dash line), as the two-stage approach has less fluctuation
when the budget is greater than 30,000. This observation is confirmed in Figure 2, where the confidence
interval half-width of the two-stage approach (red solid line) is shown to be always better than the uniform
IS (black dash line). Roughly speaking, the two-stage approach appears to require only half of the budget
of the uniform IS for achieving the same level of accuracy.

We specifically look at the case where n = 50,000. Figure 3 shows a trajectory of the confidence
interval half-width of the two approaches in a single sample path. The blue horizontal line shows the final
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Figure 1: Probability estimates under different
sample budgets.

Figure 2: Confidence interval half-widths under
different sample budgets.

Figure 3: Confidence interval half-width in the IS
stage when n = 50,000. The blue horizontal line
shows the final confidence interval half-width of
the uniform IS.

half-width of the uniform IS for easy comparison. It indicates that at roughly 10,000 samples in the second
stage (35,000 samples in total), the two-stage approach obtains the same half-width as the uniform IS using
all 50,0000 samples. Overall, the two-stage approach performs visually better compared to the uniform IS.

Our second set of experiments serves to illustrate the analysis in Section 3.3. We consider a similar
problem setting, but with a growing design space size (so that V/η2 increases). For the design space
[0,B]2, we have B vary from B = 4 to B = 7 with 0.1 increments. We consider the rare-event set
R = {x : (x1−B)2 +(x2−B)2 ≤ 4} that has a stationary size as B changes. For each value of B, we use
n = 50,000 samples for both approaches, where the two-stage approach uses n1 = n2 = n/2. Figure 4 shows
that as the value of B increases, the probability estimate decays exponentially, and the two approaches
give very similar values. However, in Figure 5, we observe that the width of confidence interval from the
two-stage approach (red solid line) is smaller than the uniform approach (black dash line) for all B values.
Figure 6 further presents the ratio between the width of confidence interval for the two-stage approach and
the uniform approach. The ratio decays roughly linearly, which indicates that as the size of the design
space increases, the two-stage approach has more advantages.
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Figure 4: Probability estimates with different
design space sizes.

Figure 5: Confidence interval half-widths with
different design space sizes.

Figure 6: Ratios of the confidence interval half-
widths from the two-stage approach over the
uniform IS.

These experiments indicate that the two-stage approach is efficient for problems with convex rare-event
set compared to the uniform IS. Moreover, it shows more benefits when the design space is big compared to
the location of the rare-event set, which is consistent with the findings in Section 3.3. Next, we investigate
an extension of our approach to non-convex rare-event sets.

4.2 Extension to Non-convex Rare-event Sets

We consider a heuristic approach to generalize our scheme to rare-event set R that is more complex and has
multiple dominating points, say a∗1, ...,a

∗
p, such that R ⊆∪i{x : a∗i

′(x−a∗i )≥ 0} and ai ∈R, i = 1, ..., p. In
the first stage, we attempt to find a collection of approximate dominating points, denoted â1, ..., âp̂, where
we note that p̂ may not necessarily equal p. In the second stage, we build an IS distribution that consists of
a p̂-mixture of Gaussian distributions, where each mixture component has mean âi and identity covariance.

In the first stage, we can find the approximate dominating points sequentially. We first find â1 =
argminxi,i=1...,n0

{‖xi‖2 : xi ∈R}. Then we use a “cutting plane” to find â2 = argminxi,i=1...,n0
{‖xi‖2 : xi ∈

R, â′1(xi− â1)< 0}. We keep adding constraints to these optimization problems in a similar fashion, until
we cover all the rare-event points.
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Figure 7: Probability estimates under different
sample budgets.

Figure 8: Confidence interval half-widths under
different sample budgets.

We use similar problem settings as in Section 4.1 to compare the performances of the two-stage approach
with the uniform IS. We modify the rare-event set in Section 4.1 to R = {x : (x1−5)2+(x2−5)2 ≤ 4}∪{x :
(x1−5)2 +(x2−1)2 ≤ 1}. Note that this set can no longer be contained by any half space in the form of
{x : a′(x−a)}.

We again consider different sample budgets from n = 1,000 to n = 50,000. Figure 7 presents the
probability estimates of the two approaches with different sample budgets. In this figure, it is not that
obvious which approach is more stable. Nonetheless, Figure 8 shows that the two-stage approach (red
solid line) is better than the uniform approach (black dash line) in terms of shorter confidence interval
half-widths. These results are quite similar to the convex set case, and hints that the two-stage approach
shows better performances for such types of rare-event problems as well.

5 CONCLUSION

We have considered the use of IS to estimate rare-event probabilities that lack structural information that
is typically needed to design efficient schemes. We have considered a two-stage approach where the
first, exploration, stage generates a space-filling set of points to learn the rare event of interest, and the
second, exploitation, stage estimates the dominating point to guide an exponential tilting. Our derivation
indicates that our two-stage IS estimator is efficient when, roughly speaking, the volume of the space is
large compared to the position of the rare-event set, when compared to an IS based on a naive uniform
sampling. This phenomenon is confirmed in two sets of numerical experiments. In future studies, we will
extend our efficiency analysis to more general settings and compare with other potential methods.
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