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Abstract

We study a natural information dissemination problem

for multiple mobile agents in a bounded Euclidean space.

Agents are placed uniformly at random in the d-dimensional

space {−n, ..., n}d at time zero, and one of the agents holds a

piece of information to be disseminated. All the agents then

perform independent random walks over the space, and the

information is transmitted from one agent to another if the

two agents are sufficiently close. We wish to bound the total

time before all agents receive the information (with high

probability). Our work extends Pettarin et al’s work [10],

which solved the problem for d ≤ 2. We present tight

bounds up to polylogarithmic factors for the case d = 3.

(While our results extend to higher dimensions, for space

and readability considerations we provide only the case

d = 3 here.) Our results show the behavior when d ≥ 3

is qualitatively different from the case d ≤ 2. In particular,

as the ratio between the volume of the space and the number

of agents varies, we show an interesting phase transition

for three dimensions that does not occur in one or two

dimensions.

1 Introduction

We study the following information diffusion problem:
let a1, a2, ..., am be m agents initially starting at loca-
tions chosen uniformly at random in Vd = {−n,−(n −
1), . . . , n}d and performing independent random walks
over this space. One of the agents initially has a mes-
sage, and the message is transmitted from one agent to
another when they are sufficiently close. We are inter-
ested in the time needed to flood the message, that is,
the time when all agents obtain the message. In other
settings, this problem has been described as a virus dif-
fusion problem, where the message is replaced by a virus
that spreads according to proximity. We use informa-
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tion diffusion and virus spreading interchangeably, de-
pending on which is more useful in context. This is
a natural model that has been extensively studied. For
example, Alves et al. and Kesten et al. coined the name
“frog model” for this problem in the virus setting, and
studied the shape formed by the infected contour in the
limiting case [1, 2, 7]. In the flooding time setting, early
works used a heuristic approximation based on simpli-
fying assumptions to characterize the dynamics of the
spread of the message [3, 8, 13]. More recent works
provide fully rigorous treatments under this or similar
random walk models [4, 5, 10, 12, 9].

The most relevant recent works are those of Pettarin
et al. [10] and Peres et al. [9, 12]. The work of Pettarin
et al. examines the same model as ours, but their
analysis is only for one- and two-dimensional grids. The
work of Sinclair and Stauffer [12] considers a similar
model they call mobile geometric graphs, and their
work extends to higher dimensions. However, their
focus and model both have strong differences from ours.
For example, they assume a Poisson point process of
constant intensity, leading to a number of agents linear
in the size of the space. In contrast, our results allow
a sublinear number of agents, a scenario not directly
relevant to their model. Also, they focus on structural
aspects on the mobile graphs, such as percolation, while
we are primarily interested in the diffusion time. There
are additional smaller differences, but the main point
is that for our problem we require and introduce new
techniques and analysis.

Our paper presents matching lower bounds and
upper bounds (up to polylogarithmic factors) for the
flooding problems in d-dimensional space for an arbi-
trary constant d. For ease of exposition, in this pa-
per we focus on the specific case where d = 3, which
provides the main ideas. Two- and three-dimensional
random walks have quite different behaviors – specifi-
cally, two-dimensional random walks are recurrent while
three-dimensional random walks are transient – so it
is not surprising that previous results for two dimen-
sions fail to generalize immediately to three-dimensional
space. Our technical contributions include new tech-
niques and tools for tackling the flooding problem by
building sharper approximations on the effect of agent
interactions. The techniques developed in this paper
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are also robust enough that our results can be extended
to variations of the model, such as allowing probabilis-
tic infection rules, replacing discrete time random walks
by continuous time Brownian motions, or allowing the
agents to make jumps [5]. These extensions will be re-
ported in future work.

Although the information diffusion problem in three
or more dimensions appears less practically relevant
than the two-dimensional case, we expect the model
will still prove valuable. For instance, particles in
a high dimensional space may provide a latent-space
representation of the agents in a dynamic social network
[6, 11], so understanding such information diffusion
processes may be helpful for designing appropriate
latent space models in the future. Also, the problem
is mathematically interesting in its own right.

1.1 Our models and results We follow the model
developed in [10]. Let Vd = {−n,−(n−1), ..., 0, ..., (n−
1), n}d be a d-dimensional grid. Let A = {a1, a2, ..., am}
be a set of moving agents on Vd. At t = 0, the agents
spread over the space according to some distribution
D. Throughout this paper, we focus on the case where
D is uniform. Agents move in discrete time steps.
Every agent performs a symmetric random walk defined
in the natural way. Specifically, at each time step
an agent not at a boundary moves to one of its 2d
neighbors, each with probability 1/(2d). If an agent
is at a boundary, so there is no edge in one or more
directions, we treat each missing edge as a self-loop.
Let Ξ1(t), ...,Ξm(t) ∈ {0, 1} each be a random variable,
where Ξi(t) represents whether the agent ai is infected
at time step t. We assume Ξ1(0) = 1 and Ξi(0) = 0 for
all i ̸= 1. The value Ξi(t) will change from 0 to 1 if at
time t it is within distance 1 to another infected agent
aj . (We use distance 1 instead of distance 0 to avoid
parity issues.) Once a value Ξj(t) becomes 1, it stays 1.

Definition 1.1. (Information diffusion problem). Let
A1, A2, . . . , Am ∈ Vd be the initial positions of the
agents a1, . . . , am and let S1

t (A1), S
2
t (A2), . . . , S

m
t (Am)

be m independent random walks starting at A1, . . . , Am

respectively, so that Si
t(P ) is the position of agent ai at

time t given that at t = 0 its position was P ∈ Vd. The
infectious state of each agent at time step t is a binary
random variable Ξi(t) such that

• Ξ1(0) = 1, Ξi(0) = 0 for all other i, and

• for all t > 0, Ξi(t) = 1 if and only if

(Ξi(t− 1) = 1) or(
∃j : Ξj(t− 1) = 1 ∧

∥∥Si
t(Ai)− Sj

t (Aj)
∥∥
1
≤ 1

)
.

The finishing time of the diffusion process, or the
diffusion time, is T = inf{t ≥ 0 : |{Ξi(t) = 1}| = m}.

The following results for the diffusion time for one-
and two-dimensional spaces are proved in [10].

Theorem 1.1. Consider the information diffusion
problem for d = 1, 2 dimensions, and assume the agents
are initially uniformly distributed over Vd. Then, with
high probability,

T = Θ̃(n2 ·m−1/d).(1.1)

It is natural to ask whether Equation 1.1 also holds
for d ≥ 3. Our results show this is not the case.

Theorem 1.2. (Diffusion time for d ≥ 3) Consider the
information diffusion problem for d ≥ 3 with initially
uniformly distributed agents over Vd. Then there exists
a constant c such that

if cnd−2 log2 n < m < nd :

T = Θ̃(nd/2+1 ·m−1/2) with high probability;

if m < cnd−2 log−2 n :

T ≤ Θ̃(nd/m) with high prob. and T ≥ Θ̃(nd/m) a.s.
(1.2)

Notice that Theorems 1.2 and 1.1 yield the same
result for d = 2, as well as when d = 1 and m =
Θ(n). Here when we say with high probability, we
mean the statement holds with probability 1− n−γ for
any constant γ and suitably large n. When we say
almost surely, we mean with probability 1−o(1). When
m ≥ nd, the result is implicit in [7] and the diffusion
time in this case is Θ̃(n). Finally, there are some
technical challenges regarding the case cnd−2 log−2 n ≤
m ≤ cnd−2 log2 n that we expect to address in future
work.

An interesting point of our result is that when
the number of agents m is greater than nd−2, the
finishing time is less than the mixing time of each
individual random walk, and therefore the analysis
requires techniques that do not directly utilize the
mixing time. The rest of this extended abstract focuses
on the lower and upper bounds for this interesting case,
and, as previously mentioned, only for d = 3.

Theorem 1.2 can also be expressed in terms of the
density of agents. Let λ = m/nd be the density. We can
express the diffusion time as T = Θ̃(n/

√
λ) w.h.p. for

cn−2 log2 n < λ < 1, whereas for λ < cn−2 log−2 n we
have T ≤ Θ̃(1/λ) w.h.p. and T ≥ Θ̃(1/λ) almost surely.

We remark that all theorems/propositions/lemmas
in this paper are assumed to hold for sufficiently large
n, but for conciseness we may not restate this condition
in every instance.

2 Lower bound

Let us first state our lower bound result more precisely
as follows.
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Theorem 2.1. Let a1, ..., am be placed uniformly at
random on V3 such that 1600n log2 n ≤ m ≤ n3. Let
ℓ2 =

√
n3/m. For sufficiently large n, the diffusion

time T satisfies the following inequality

Pr[T ≤ 1

81
ℓ2n log−29 n] ≤ exp (− logn log log n) .

We use a local analysis to prove our lower bound.
The key idea is that under uniform distribution of
agents, the extent any particular infected agent can
spread the virus within a small time increment is con-
fined to a small neighborhood with high probability. By
gluing together these local estimates, we can approxi-
mate the total diffusion time. To explain our local anal-
ysis, assume we start with an arbitrary infected agent,
say a1. Let us also assume, for simplicity, that all the
other uniformly distributed agents are uninfected. Con-
sider the scenario within a small time increment, say ∆t.
During this time increment the agent a1 infects who-
ever it meets in the small neighborhood that contains
its extent of movement. The newly infected agents then
continue to move and infect others. The size of the final
region that contains all the infected agents at ∆t then
depends on the rate of transmission and the extent of
movement of all of the infected agents. In particular, if
∆t is small enough, the expected number of transmis-
sions performed by a1 is less than one; even if it infects
another agent, the number of infections it causes within
the same ∆t is also less than one, and so on. The net
effect is an eventual dying-out of this “branching pro-
cess” (which we later model by what we call a diffusion
tree), which localizes the positions of all infected agents
at time ∆t to a small neighborhood around the initial
position of a1.

Before laying out our analysis, let us briefly review
the main methodologies in obtaining lower bound re-
sults in related work, and point out their relation to
our analysis and difficulties in directly applying them
to higher dimensions. Two potential existing methods
arise in [2, 7] and [10]. The former analyzes the growth
rate of the size of the total infected region; an upper
bound on this growth rate translates to a lower bound
for the diffusion time. The latter work, focusing on
d = 1, 2, uses an “island diffusion rule”, which essen-
tially speeds up infection by allowing infections to occur
immediately on connected components in an underlying
graph where edges are based on the distance between
agents. This approach avoids handling the issue of the
meeting time of random walks when they are very close,
a regime where standard asymptotic results may not ap-
ply, while still providing a way to bound the diffusion
time by arguing about the low probability of interaction
among different “islands”.

The results in [2, 7] are not directly applicable in our
setting because the growth rate they obtain is linear in
time, as a result of their assumption of constant agent
density in an infinite space, in contrast to our use of
a size parameter n that scales with the agent density.
It is fairly simple to see that blindly applying a linear
growth rate to our setting of o(1) density is too crude.
On the other hand, analyzing how agent density affects
the growth rate is a potentially feasible approach but
certainly not straightforward.

Our approach more closely follows [10]. The main
limitation of [10], when applied to higher dimensions, is
how to control the interaction among islands. If islands
interact too often, because they are too close together,
the argument, which is based on a low probability of
interaction, breaks down. However, if one parametrizes
islands to prevent such interaction, then the bound
that can be obtained is too weak. For d > 2 this
constraint ultimately limits the analysis for the case
of o(1) density. We attempt to remedy the problem
by using islands as an intermediate step to obtain
local estimates of the influence of each initially infected
agent over small periods of time. This analysis involves
looking at a branching process representing the spread
of the infection, significantly extending the approach of
[10].

2.1 Local diffusion problem This subsection fo-
cuses on the local analysis as discussed above. In Sec-
tion 2.2, we will proceed to discuss how to utilize this
analysis to get the lower bound in Theorem 2.1. The
two main difficulties in our analysis are: 1) probabilis-
tic estimates for the meeting time/position of multiple
random walks are typically only useful asymptotically;
2) walks near the boundary introduce further analytical
complications. To begin with, the following definition
serves to handle the second issue:

Definition 2.1. (Interior region) The interior re-
gion V(r) parameterized by r is the set of lattice points
in V3 that have at least L∞-distance r to the boundary.

For any point P ∈ V3, define B(P, x) = {Q ∈ V3 :
∥Q − P∥∞ ≤ x} as the x-ball of neighborhood of P
under the L∞-norm. We have the following result:

Proposition 2.1. Consider a diffusion following Def-
inition 1.1. Let S0 be the initial position of the only in-
fected agent a1 at time 0, and W be an arbitrary subset
of lattice points in V(20ℓ2 log n), where ℓ2 =

√
n3/m.

Denote ∆t = ℓ22 log
−28 n. Define the binary random

variable b(W) as follows:

• If S0 ∈ W: b(W) is set as 1 if and only if all the
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infected agents at time ∆t can be covered by the ball
B(S0, 9ℓ2 log n).

• If S0 /∈ W: b(W) = 1.

We have Pr[b(W) = 1] ≥ 1− exp(−5 log n log log n).

The proposition yields that with high probability,
all the infected agents lie within a neighborhood of
distance Õ(ℓ2) at time Õ(ℓ22). The variable ℓ2 is chosen
such that the expected number of infections spanned by
an initially infected agent a1 within Õ(ℓ22) units of time
and a neighborhood of Õ(ℓ2) distance is O(1). This can
be seen by solving m(ℓ2/n)

3 × (1/ℓ2) = Õ(1), where
m(ℓ2/n)

3 is the expected number of agents in a cube of
size ℓ2× ℓ2 × ℓ2, and Õ(1/ℓ2) is the meeting probability
within time Õ(ℓ22) between any pair of random walks
with initial distance ℓ2. This choice of ℓ2 appears to
be the right threshold for our analysis. Indeed, a larger
scale than ℓ2 would induce a large number of infections
made by a1, and also subsequent infections made by
newly infected agents, with an exploding affected region
as an end result. On the other hand, a smaller scale
than ℓ2 would degrade our lower bound. This is because
the diffusion time is approximately of order n/ℓ2, the
number of spatial steps to cover V3, times ℓ22, the time
taken for each step, equaling nℓ2. Hence a decrease in
ℓ2 weakens the bound1.

Secondly, we introduce W in Proposition 2.1 to
avoid the case when S0 is close to the boundary. As we
have mentioned, such boundary conditions often com-
plicate random walk analysis. Although the impact of
the boundary’s presence has been addressed in previous
work (e.g., [5, 10]), existing results are not fully satis-
factory. For example, when two simple random walks
S1 and S2 start near the boundary, only a lower bound
for the probability that two walks meet within a specific
number of time steps is available ([10]); we do not know
of an upper bound counterpart. We arrange our proof
so that it is sufficient to analyze the diffusion pattern of
a virus when it starts far from the boundary. Finally,
we note that no effort has been made to optimize the
exponent 28 in ∆t’s definition.

We briefly explain how our global lower bound can
be readily obtained from Proposition 2.1, which is a
strong characterization of the local growth rate of infec-
tion region size. Imagine the following evolution. Start-
ing with a single infected agent, with high probability
the infection spreads to a ball of radius at most 9ℓ2 log n

1In the case of general d-dimensional space, ℓ2 is chosen
such that m(ℓ2/n)d × (1/ℓd−2

2 ) = Õ(1), giving ℓ2 =
√

nd/m.

Throughout the paper such d-dimensional analog can be carried
out in similar fashion, but for ease of exposition we shall not bring
up these generalizations and will focus on the 3-dimensional case.

in ∆t time units. At this time point, the newly infected
agents inside the ball continue to spread the virus to
neighborhoods of size at most 9ℓ2 log n, again with high
probability. This gives an enlarged area of infection with
radius at most 18ℓ2 log n. Continuing in this way, the
lower bound in Theorem 1.2 is then the time for the
infection to spread over V3. This observation will be
made rigorous in the next subsection.

The rest of this subsection is devoted to the argu-
ments of Proposition 2.1. It consists of two main steps.
First, we need to estimate the expected number of in-
fections done by a single initially infected agent within
distance 9ℓ2 log n and time increment ∆t. Second, we
iterate to consider each newly infected agent. The anal-
ysis requires the condition that the global configuration
behaves “normally”, a scenario that occurs with suit-
ably high probability, as we show. We call this condi-
tion “good behavior”, which is introduced through the
several definitions below:

Definition 2.2. (Island, [10]) Let A = {a1, ..., am}
be the set of agents in V3. For any positive integer
γ > 0, let Gt(γ) be the graph with vertex set A such
that there is an edge between two vertices if and only if
the corresponding agents are within distance γ (under
L1-norm) at time t. The island with parameter γ of an
agent ai ∈ A at time step t, denoted by Isdt(ai, γ) is the
connected component of Gt(γ) containing ai.

Definition 2.3. (Good behavior) Let ℓ1 =
nm−1/3. For 1 ≤ i ≤ (ℓ2/ℓ1) log

−3 n, define Bi(P ) =
B
(
P, iℓ1 log

−1 n
)
and let ∂Bi(P ) = Bi(P ) − Bi−1(P ).

For any P ∈ V3, define mi(P ) = (log5 n)|∂Bi(P )|m
(2n+1)3 . Let

us define the following binary random variables:

• Good density. Let {Dt : t ≥ 0} be a sequence of
0, 1 random variables such that Dt = 1 if and only
if for all P ∈ V3 and all i ≤ (ℓ2/ℓ1) log

−3 n, the
number of agents in ∂Bi(P ) is at most mi(P ), for
all time steps up to t. We say the diffusion process
has the good density property at time t if Dt = 1.

• Small islands. Let {Et : t ≥ 0} be a sequence of
0, 1 random variables such that Et = 1 if and only
if |Isds(aj , ℓ1 log−1 n)| ≤ 3 log n for all aj ∈ A and
0 ≤ s ≤ t. We say that the diffusion process has
the small islands property at time t if Et = 1.

• Short travel distance. Let {Lt : t ≥ 0} be a
sequence of 0, 1 random variables such that Lt = 1
if and only if for all i ∈ [m] and all t1 < t2 ≤ t
with t2 − t1 ≤ ℓ22 log

−12 n, we have ∥Si
t1 − Si

t2∥1 ≤
3ℓ2 log

−4 n. We say the process has the short travel
distance property at time t if Lt = 1.
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Finally, let Gt = Dt × Et × Lt, and say the diffusion
process behaves well at time t if Gt = 1. We also focus
on t ≤ n2.5 and define the random variable G = Gn2.5 .

The value n2.5 in the definition is chosen such that
it lies well beyond our lower bound for the case m < n3,
but is small enough for our forthcoming union bound.
By using properties of random walks and techniques
derived in [10], we have

Lemma 2.1. Let A = {a1, ..., am} be agents that are
distributed uniformly in V3 at t = 0. For sufficiently
large n, we have Pr[G = 1] ≥ 1−exp(−6 log n log log n).

With this global “good behavior”, we have the
following estimate:

Lemma 2.2. Let A = {a1, . . . , am} be agents that
are distributed in V3 in such a way that D0 =
1. Let S1, S2, . . . , Sm be their corresponding random
walks. Consider an arbitrary agent aj with Sj

0 ∈
V(2ℓ2 log

−4 n). Let {ai1 , . . . , aik} be the set of agents
outside B1(S

j
0) at time 0. Define Xj,ℓ as the in-

dicator random variable that represents whether the
agents aj and aiℓ meet within time [0,∆t]. We have

E

[∑
ℓ≤k Xj,ℓ

∣∣∣∣∣D0 = 1, Sj
0 ∈ V(2ℓ2 log

−4 n)

]
< log−3 n.

Lemma 2.2 says that if the initial distribution of
agents possesses good behavior, then the expected num-
ber of direct infections on far-away agents is small. For
agents close to the initially infected agents, we instead
utilize the concept of islands, and formally introduce a
new diffusion process with a modified “island diffusion”
rule. It is easy to see that the new diffusion process can
be coupled with the original diffusion process (evolving
with Definition 1.1) by using the same random walks in
the same probability space.

Definition 2.4. (Diffusion Process with Island Diffu-
sion Rule) Consider a diffusion process in which m
agents are performing random walks on V3. An unin-
fected agent aj becomes infected at time t if one of the
following conditions holds:

1. it meets a previously infected agent at time t. For
convenience, we say aj is directly infected if it is
infected in this way.

2. it is inside Isdt(ai, ℓ1 log
−1 n) where ai is directly

infected at time t.

We shall call the coupled process in Definition 2.4
the diffusion process with island diffusion rule. This

process is different from the diffusion models introduced
in [10, 12, 9]. In our formulation, an island is infected
only if meeting occurs between one uninfected and
one previously infected agent. In [10, 12, 9] (using
our notations), an island is infected once it contains a
previously infected agent. As a result, infections occur
less frequently in our model than the models in [10,
12, 9]. This difference is the key to getting a tight lower
bound for dimensions higher than 2. More precisely, our
infection rule allows us to build a terminating branching
process, or what we call a “diffusion tree” in the
following definition, whose generations are defined via
the infection paths from the source. The termination of
this branching process constrains the region of infection
to a small neighborhood around the source with a
probability of larger order than obtained in [10]. This
in turn leads to a tighter global lower bound.

Definition 2.5. (Diffusion tree) Let W ⊆
V(2ℓ2 log n) be a subset of lattice points. Consider a
diffusion, following the island diffusion rule, that starts
with an initially infected island Isd0(a1, ℓ1 log

−1 n).
Recall that S1

0 denotes a1’s position at t = 0. The
diffusion tree Tr with respect to W has the following
components:

1. If S1
0 /∈ W, Tr = ∅.

2. If S1
0 ∈ W,

• The root of Tr is a dummy node r.

• The children of r are all the agents in
Isd0(a1, ℓ1 log

−1 n).

• aℓ′ is a child of aℓ (aℓ′ ∈ child(aℓ)) if aℓ′ is
infected by aℓ before time ∆t.

• aℓ′ is a direct child of aℓ (aℓ′ ∈ dchild(aℓ)) if
aℓ′ ∈ child(aℓ) and it is directly infected by aℓ.

For technical reasons, if aℓ′ is not in Tr, we let
child(aℓ) = ∅ and dchild(aℓ) = ∅.

We refer to the root of the tree as the 0th level of the
tree and count levels in the standard way. The height
of the tree is the number of levels in the tree. Note
that a diffusion tree defined in this way can readily be
interpreted as a branching process (See, e.g., Chapter
0 in [14]), in which the jth generation of the process
corresponds with the jth level nodes in Tr.

Next we incorporate the good behavior variable Gt

with the diffusion tree. The motivation is that, roughly
speaking, consistently good behavior guarantees a small
number of infections, or creation of children, at each
level. This can be seen through Lemma 2.2.
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Definition 2.6. (Stopped diffusion tree)
Consider a diffusion process with island diffusion
rule, and let T (ℓ) be the time that aℓ becomes infected
in the process. The stopped diffusion tree Tr′ (with
respect to ai and W) is a subtree of Tr induced by the
set of vertices {aℓ : aℓ ∈ Tr ∧ GT (ℓ) = 1}. We write
aℓ ∈ child′(aℓ′) if aℓ ∈ child(aℓ′) and aℓ ∈ Tr′. Also,
aℓ ∈ dchild′(aℓ′) if aℓ ∈ dchild(aℓ′) and aℓ ∈ Tr′.

Note that the definition of the stopped diffusion
tree involves global behavior of the whole diffusion
process due to the introduction of Gt. On the other
hand, Tr = Tr′ with overwhelming probability, so we
can translate the properties of Tr′ back to Tr easily.
The main property of the stopped diffusion tree is the
following:

Lemma 2.3. Consider a diffusion process with the is-
land diffusion rule. Let aℓ be an arbitrary agent with
infection time T (ℓ). We have

E
[
|dchild′(aℓ)|

∣∣∣FT (ℓ), S
ℓ
T (ℓ) ∈ V(2ℓ2 log

−4 n)
]
≤ log−3 n,

(2.3)
where dchild′(·) is defined for a stopped diffusion tree
with respect to an arbitrary set W ⊆ V(20ℓ2 log n).

We regard the conditional expectation in Equa-
tion 2.3 as a random variable, and Ft is the filtration up
to time t. The interpretation is that the expected num-
ber of aℓ’s direct children is less than log−3 n, regardless
of the global configuration at the infection time of aℓ,
as long as it lies in V(2ℓ2 log

−4 n) at that time.
Recursive utilization of Lemma 2.3 on successive

tree levels leads to the following lemma:

Lemma 2.4. Consider a diffusion process with the is-
land diffusion rule starting with an infected island
Isd0(a1, ℓ1 log

−1 n). For the stopped diffusion tree Tr′

with respect to any W ⊆ V(20ℓ2 log n), let Height(Tr′)
be its height. Then we have Pr[Height(Tr′) > 2 log n] ≤
exp(−3 log n log log n).

This lemma is the key to proving Proposition 2.1.
The bound on the height of the diffusion tree limits
the number of infected generations from the initially in-
fected a1. Together with short travel distance property
in Definition 2.3, it effectively constrains the positions
of all infected agents into a small ball around a1, which
leads to Proposition 2.1.

2.2 From local to global process This subsection
will be devoted to proving Theorem 2.1 via Proposi-
tion 2.1, or in other words, to turn our local probabilis-
tic bound into a global result on the diffusion time.

We note that Proposition 2.1 deals with the case
when there is only one initially infected agent. As dis-
cussed briefly in the discussion following the proposi-
tion, we want to iterate this estimate so that at every
time increment ∆t, the infected region is constrained
within a certain radius from the initial positions of all
the agents that are already infected at the start of the in-
crement. Our argument is aided by noting which agents
infect other agents. To ease the notation for this pur-
pose, we introduce an artificial concept of virus type,
denoted by νi,t. We say an agent gets a virus of type
νi,t if the meeting events of this agent can be traced
upstream to the agent ai, where ai is already infected
at time t. In other words, assume that ai is infected at
time t, and imagine that we remove the viruses in all
infected agents except ai but we keep the same dynam-
ics of all the random walks. We say a particular agent
gets νi,t if it eventually gets infected under this imagi-
nary scenario. Note that under this artificial framework
of virus types it is obvious that an agent can get many
different types of virus, in terms of both i and t.

In parallel to Proposition 2.1, we introduce the
family of binary random variables bi,t to represent
whether a virus of type νi,t can be constrained in a ball
with radius 9ℓ2 log n:

Definition 2.7. (bi,t and virus of type νi,t) Let
B = B(P, n

4 ) where P = (n/2, n/2, n/2). Let a1, ..., am
be agents that are uniformly distributed on V3 at t = 0
and diffuse according to Definition 1.1. Let t be an
arbitrary time step and i ∈ [m]. At time t, a virus of
type νi,t emerges on agent ai and diffuses. Define the
binary random variable bi,t as follows:

• If Si
t ∈ B: bi,t is set as 1 if and only if all the agents

infected by the virus of type νi,t at time t+∆t can
be covered by the ball B(Si

t , 9ℓ2 log n).

• If Si
t /∈ B: bi,t = 1.

Let us start with the observation that bi,t = 1 for
all i and t with high probability. This can be seen easily
by applying Proposition 2.1 to every agent and taking
a union bound across all i and t.

Corollary 2.1. Consider the family of random vari-
ables {bi,t : i ∈ [m], t ≤ n2.5} defined above. We have

Pr

 ∧
i∈[m],t≤n2.5

(bi,t = 1)

 ≥ 1− exp(−4 log n log log n).

We also need the following lemma on the den-
sities of agents in a linearly sized ball centered at
(n/2, n/2, n/2), which can be shown using a standard
Chernoff bound and taking a union bound across all t.
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Lemma 2.5. Let B = B(P, n/8), where P =
(n/2, n/2, n/2). Let Bt be the indicator variable that
there is at least one agent in B at time t. Let B =∏

t≤n2.5 Bt, the indicator variable that there is at least

one agent in B at all times in [0, n2.5]. We have

Pr[B = 0] ≤ exp(− log2 n)

for sufficiently large n.

We next present our major lemma for this subsec-
tion.

Lemma 2.6. Let a1, ..., am be placed uniformly at ran-
dom on V3 such that m ≥ 1600n log2 n. Let ℓ2 =√
n3/m. Let {bi,t : i ∈ [m], t ≤ n2.5} and B be

the random variables described above. If bi,t = 1 for
all i, t and B = 1, then the diffusion time is at least
Tc =

1
81ℓ2n log−29 n.

Notice that by Corollary 2.1 and Lemma 2.5,

Pr
[∧

i≤m,t≤n2.5 (bi,t = 1)
]
≥ 1− exp(−4 logn log log n).

Pr[B = 1] ≥ 1− exp(− log2 n).

Together with Lemma 2.6, Theorem 2.1 then follows.

Proof. Without loss of generality, we assume the x, y,
and z coordinates of S1

0 are all negative. We can always
rotate the space V3 at t = 0 correspondingly to ensure
this assumption holds.

We shall prove by contradiction. Consider two balls
B and B defined above. Assume the diffusion time
is less than Tc. First, because B = 1, a necessary
condition for the diffusion to complete is that an infected
agent visits the smaller ball B at a time T ′ ≤ Tc (since
otherwise the agents in B would be uninfected all the
time, including at Tc). We call this agent ai′ . Next,
for the infection to get into B, it must happen that
there is an infected agent that enters B from outside,
whose infection trajectory eventually reaches ai′ . We
denote T ′′ to be the last time that this happens, and the
responsible agent to be ai′′ . We focus on the trajectory
of infection that goes from ai′′ to ai′ that lies completely
insideB (which exists since T ′′ is the last time of entry).
Note that we consider at most ⌈Tc/∆t⌉ time increments
of ∆t. Now, since bi,t = 1 for all i and t, by repeated
use of triangle inequality, we get

∥Si′

T ′ − Si′′

T ′′∥∞ ≤ 9ℓ2 log n

⌈
Tc

∆t

⌉
≤ 9ℓ2 log n

(
(1/81)ℓ2n log−29 n

ℓ22 log
−28 n

+ 1

)
≤ n

9
+ 9ℓ2 log n

<
n

8
− 1

On the other hand, the physical dimensions of B
and B give that

∥Si′

T ′ − Si′′

T ′′∥∞ ≥ n

8
− 1

which gives a contradiction.

3 Upper bound

We now focus on an upper bound for the diffusion time.
Our main result is the following:

Theorem 3.1. Let a1, . . . , am be placed uniformly
at random on V3, where n ≤ m ≤ n3. Let ℓ̂2 =√
n3/m log n. When n is sufficiently large, the diffusion

time T satisfies

Pr[T ≥ 128nℓ̂2 log
47 n] ≤ exp(−1

2
log2 n).

Note that this theorem shows that an upper bound
of Õ(n

√
n3/m) holds for the diffusion time with high

probability. Hence the upper and lower bounds “match”
up to logarithmic factors. We remark that the constant
47 in the exponent has not been optimized.

The main goal of this section is to prove this theo-
rem. Our proof strategy relies on calculating the growth
rate of the total infected agents evolving over time; such
growth rate turns out to be best characterized as the
increase/decrease in infected/uninfected agents relative
to the size of the corresponding population. More pre-
cisely, we show that for a well-chosen time increment,
either the number of infected agents doubles or the
number of uninfected agents reduces by half with high
probability. The choice of time increment is complex,
depending on the analysis of the local interactions in
small cubes and the global geometric arrangements of
these cubes with respect to the distribution of infected
agents.

As with the lower bound proof, our technique for
proving Theorem 3.1 is different from existing methods.
Roughly, existing methods can be decomposed into two
steps (see for example [10]): 1) In the first step, consider
a small ball of length r that contains the initially
infected agent. One can see that for d = 2, when the
number of agents in the ball is Θ̃(m(r/n)2), within time
increment r2 the number of infections to agents initially
in this ball is Ω̃(1) w.h.p.. 2) The second step is to
prove that for any ball that has Ω̃(1) infected agents
at time t, its surrounding adjacent balls will also have
Ω̃(1) infected agents by time t + r2. From these two
steps, one can recursively estimate the time to spread
infection across the whole space V2 to be n/r× r2 = nr
w.h.p.. In other words, at time nr all the balls in V2

will have Ω̃(1) infected agents. Moreover, every agent in
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V2 is infected in the same order of time units, because
Ω̃(1) is also the total number of agents in any ball under
good density condition. Finally, it is then clear that a
good choice of r is then n/

√
m, which would give the

optimal upper bound.
The critical difference in the analysis for d > 2 lies

primarily in the magnitude of the meeting probability
of random walks. In the case of d = 2, the meeting
probability of two random walks at distance r within
time r2 is Θ̃(1), whereas for d > 2 the meeting
probability is Θ(1/rd−2). For d = 2, this means that
it is easy, i.e. w.h.p., for infection to transmit from a
ball with Ω̃(1) infected agents to an adjacent uninfected
ball, so that the latter also has Ω̃(1) infected agents after
a time increment of r2. In the case d > 2, however,
Ω(rd−2) infected agents must be present in a ball to
transmit virus effectively to its adjacent uninfected ball
within r2 time. Consequently, arguing for transmission
across adjacent balls becomes problematic (more details
are in the full paper). In light of this, we take an
alternate approach to analyze both the local interactions
and the global distribution of infected agents. Instead
of focusing on transmission from one infected ball to
another, we calculate the spreading rate across the
whole space. This turns out to be fruitful in obtaining
a tight upper bound.

We briefly describe the forthcoming analysis. As
with the lower bound, we start with local analysis. We
partition the space V3 into disjoint subcubes each of
size ℓ̂2 × ℓ̂2 × ℓ̂2. Here ℓ̂2 is just a logarithmic factor
larger than ℓ2, the size of subcubes used for the lower
bound, so that with overwhelming probability there are
at least ℓ̂2 agents in a subcube. We show that, within
every subcube, over a time increment of length Θ(ℓ̂22)
the number of infections is roughly a Ω̃(1)-fraction of
the minimum of the number of infected and uninfected
agents. Hence, at least locally, we have the desired
behavior described above.

We then leverage the local analysis to obtain the
global result. However, this is not straightforward.
For example, consider the beginning when the number
of infected agents is small. If infected agents are
distributed uniformly throughout the whole space, it
would be easy to show that new infections would
roughly grow in proportion to the number of infected
agents. However, if infected agents are concentrated
into a small number of subcubes, we have to show that
there are enough neighboring subcubes on the boundary
of these infected subcubes that these subcubes become
infected suitably rapidly, so that after the appropriate
time increment the number of infected agents doubles.
Similar arguments arise for the case when infected
agents are dominant, with the end result being a halving

of the uninfected population.
We now make the above discussion rigorous. First,

let b = (2n + 1)/ℓ̂2, so there are in total b3 subcubes.
As in the previous section, we divide the time into small
intervals. We reuse the symbol ∆t to represent the
length of each interval but here we set ∆t = 16ℓ̂22. Our
local bound is built within each subcube (and pair of
neighboring subcubes) in the time increment ∆t:

Lemma 3.1. Let W ⊂ V3 be a region that can be covered
by a ball of radius 2ℓ̂2 under the L∞-norm. Let Af

and Au be subsets of infected and uninfected agents in
W at time t such that |Af | = m1, |Au| = m2, and

max{m1,m2} = ℓ̂2/ log
2 n. Given any initial placement

of the agents of Af and Au, let M(t) be the number
of agents in Au that become infected at time t + ∆t.

We have Pr
[
M(t) ≥ τ0 min{m1,m2}

log4 n

∣∣∣Ft

]
≥ τ0 log

−6 n for

some constant τ0, where Ft denotes the information of
the whole diffusion process up to time t.

The high level idea in proving Lemma 3.1 is to
count the total number of times the infected agents meet
the uninfected ones between time t and t + ∆t. The
probability two agents in W can meet each other within
time ∆t is approximately Ω̃(1/ℓ̂2) (this fact is proved
in the full paper). The expected number of meetings

is thus Ω̃(1/ℓ̂2) × m1m2 = Ω̃(min{m1,m2}). The
total number of newly infected agents is the number of
meetings modulo possible overcounts on each originally
uninfected agent. Hence we show that the number of
meetings is Õ(1) for each uninfected agent to conclude
that Ω̃(min{m1,m2}) more agents become infected at
time t+∆t.

The next step is to characterize the growth rate
at a larger scale. This requires more notation. We
denote the set of b3 subcubes of size ℓ̂2 × ℓ̂2 × ℓ̂2 as
C = {hi,j,k : i, j, k ∈ [b]}. For an arbitrary subcube
hi,j,k, we define its neighbors as N(hi,j,k) = {hi′,j′,k′ :
|i− i′|+ |j − j′|+ |k− k′| = 1}. In other words, hi′,j′,k′

is a neighbor of hi,j,k if and only if both subcubes share
a facet. Let H be an arbitrary subset of C. We write
N(H) =

∪
h∈H N(h).

Definition 3.1. (Exterior and interior surface)
Let H be a subset of C. The exterior surface of H is
∂H = N(H) − H. Let H be the complement of H.
The interior surface of H is ∂̇H = N(H)−H, i.e., the
exterior surface of the complement of H.

At time step t = i∆t, let Gt be the set of all
subcubes that contain more than ℓ̂2/2 infected agents
and let gt = |Gt|; let Bt = Gt be the rest of the subcubes
and let bt = |Bt|. We call a subcube in Gt an infected
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(good) subcube and a subcube in Bt an uninfected (bad)
subcube.

We classify the agents in the process according to
the subcubes they reside in. To facilitate our analysis,
we adopt the notational system A·

t and A·,·
t to represent

the total number of agents that belong to the type
specified in the superscript. Specifically, let Af

t be the

set of infected agents at time t; decompose the set Af
t

as Af
t = Af,G

t ∪ Af,B
t , where Af,G

t is the set of infected

agents residing in the subcubes in Gt and Af,B
t the

set of infected agents in Bt. Similarly, let Au
t be the

set of all uninfected agents; decompose the set Au
t as

Au
t = Au,G

t ∪ Au,B
t , where Au,G

t is the set of uninfected

agents residing in the subcubes in Gt and Au,B
t the set of

uninfected agents in Bt. Furthermore, we denote ∆AG
t

and ∆AB
t as the set of agents in Gt and Bt respectively

that are infected between t and t+∆t. Hence the total
increase in infected agents, or equivalently the total
decrease in uninfected agents, between t and t + ∆t is

given by ∆At = ∆AG
t ∪ ∆AB

t . Lastly, we let ∆̃AG
t be

the set of agents in Gt ∪ ∂Gt that are infected between t
and t+∆t.

Similar to the lower bound analysis, here we also
introduce good density conditions that can be easily
verified to hold with high probability, and reuse the
symbols Dt and D with slightly different meanings from
the last section:

Definition 3.2. Let {Dt : t ≥ 0} be a sequence of
binary random variables such that Dt = 1 if for all
time steps on or before t, the number of agents for any
subcube in V3 with size ℓ̂2 × ℓ̂2 × ℓ̂2 is between ℓ̂2 and
2ℓ̂2 log

2 n. Also, let D = Dn2.5 .

The following lemma shows that Dt = 1 with high
probability:

Lemma 3.2. For any t ≤ n2.5, Pr[Dt = 0] ≤
exp(− 1

15 log
2 n) for sufficiently large n.

We now state two bounds on the growth rate of the
agent types, one relative to the “boundary subcubes”
∂Gt and one relative to the total agents of each type:

Corollary 3.1. For some constant τ0,

Pr

|∆̃AG
t ∩∆AB

t | ≥ |∂Gt| ·
τ0ℓ̂2

4 log13 n

∣∣∣∣∣∣Ft, Dt = 1

 ≥ τ0 log
−6 n.

Consequently,

Pr

|∆̃AG
t | ≥ |∂Gt| ·

τ0ℓ̂2

4 log13 n

∣∣∣∣∣∣Ft, Dt = 1

 ≥ τ0 log
−6 n

and

Pr

|∆AB
t | ≥ |∂Gt| ·

τ0ℓ̂2

4 log13 n

∣∣∣∣∣∣Ft, Dt = 1

 ≥ τ0 log
−6 n.

Corollary 3.2. We have

Pr

[
|∆AG

t | ≥
τ2
0

4 log38 n
|Au,G

t |
∣∣∣∣Ft, Dt = 1

]
≥ τ0 log

−6 n

and

Pr

[
|∆AB

t | ≥
τ2
0

4 log38 n
|Af,B

t |
∣∣∣∣Ft, Dt = 1

]
≥ τ0 log

−6 n.

The proofs of these two corollaries both rely on us-
ing coupled diffusion processes that have slower diffu-
sion rates. These processes only allow infection locally
i.e. within each “pair” of subcubes on the surface of Gt

in the case of Corollary 3.1 and within each subcube in
Corollary 3.2, and hence can be tackled by Lemma 3.1.
The surface ∂Gt in Corollary 3.1 appears naturally from
a matching argument between neighboring infected and
uninfected subcubes. Roughly speaking, the bounds
in Corollary 3.1 are tighter and hence more useful for
the cases where infected/uninfected agents are dense in
the infected/uninfected subcubes, while those in Corol-
lary 3.2 are for cases where the agent types are more
uniformly distributed.

We now move to the global diffusion upper bound.
As discussed in the beginning of this section, the balance
between the distributions of each type of subcube and
the distributions of actual agents plays a crucial role in
our analysis. Fix an arbitrary time t, we classify the
joint configurations of the agents into four types:
• type 1 (namely P1,t): when |Gt| ≤ 1

2 ((2n+ 1)/ℓ̂2)
3

and |Af,G
t | ≥ 1

2 |A
f
t |.

• type 2 (namely P2,t): when |Gt| ≤ 1
2 ((2n+ 1)/ℓ̂2)

3

and |Af,G
t | < 1

2 |A
f
t |.

• type 3 (namely P3,t): when |Gt| > 1
2 ((2n+ 1)/ℓ̂2)

3

and |Au,G
t | < 1

2 |A
u
t |.

• type 4 (namely P4,t): when |Gt| > 1
2 ((2n+ 1)/ℓ̂2)

3

and |Au,G
t | ≥ 1

2 |A
u
t |.

Recall that Ft refers to the information on the global
configurations up to time t. We shall abuse notation
slightly and say Ft ∈ Pi,t if the configuration of the
agents at time t belongs to the ith type described above.
Notice that Ft belongs to exactly one of the sets P1,t,
P2,t, P3,t,P4,t. In brief, scenarios P1,t and P2,t have
a majority of uninfected subcubes, while P3,t and P4,t

have a majority of infected subcubes. From another
perspective, P1,t and P3,t refer to situations when the
dominant types (with respect to the status of infection)
are dense in their subcube types (infected/uninfected
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subcubes), while P2,t and P4,t refer to the more uniform
scenarios. The next lemma states that when Ft ∈ P1,t∪
P2,t, the total number of infected agents |Af

t | grows in

proportion to a monotone function of |Af
t | within ∆t

steps. On the other hand, when Ft ∈ P3,t ∪ P4,t, the
total number of uninfected agents |Au

t | is reduced in
proportion to a monotone function of |Au

t | within ∆t
steps.

Lemma 3.3. Fix an arbitrary t, define the following
events,

e1(t) =

{
|∆At| ≥ 0.09τ0

(
|Af

t |
4ℓ̂2 log2 n

)2/3
ℓ̂2

log13 n

}
e2(t) =

{
|∆At| ≥ τ2

0
8 log38 n

|Af
t |
}

e3(t) =

{
|∆At| ≥ 0.015τ0

(
|Au

t |
4ℓ̂2 log2 n

)2/3
ℓ̂2

log13 n

}
e4(t) =

{
|∆At| ≥ τ2

0
8 log38 n

|Au
t |
}
.

We have Pr[ei | Ft ∈ Pi,t, Dt = 1] ≥ τ0 log
−6 n for

i = 1, 2, 3, 4.

Intuitively, e1 and e2 connect the number of newly
infected agents to the original number of infected agents.
When e1 or e2 are triggered sufficiently many times,
the number of infected agents doubles. Meanwhile, e3
and e4 connect the number of newly infected agents to
the original number of uninfected agents. When e3 or
e4 are triggered sufficiently many times, the number of
uninfected agents halves.

The key to proving Lemma 3.3, which will ulti-
mately lead to a bound on the global growth rate of dou-
bling/halving the total number of infected/uninfected
agents as depicted in the next proposition, is a geo-
metric relation between the boundary of Gt, i.e. ∂Gt,
and Gt itself. More specifically, an isoperimetric bound
on Gt guarantees that no matter how packed together
these good subcubes are, there are still an order |Gt|2/3
of them exposed to the bad subcubes, hence the global
infection rate cannot be too slow.

Our major proposition presented next essentially
pins down the number of times these events need to
be triggered to double the number of infected agents or
halve the number of uninfected ones.

Proposition 3.1. Consider the information diffusion
problem over V3 with m agents. For any fixed t ≤
n2.5 − 4

√
m
n log45 n∆t, define the following events

χ1(t) ≡
(
|Af

t+4
√

m
n

log45 n∆t
| ≥ 2|Af

t |
)
and

χ2(t) ≡
(
|Au

t+4
√

m
n

log45 n∆t
| ≤ 1

2
|Au

t |
)
.

We have Pr[χ1(t) ∨ χ2(t)] ≥ 1− exp(− log2 n).

Note that this bound suggests that for each time
increment 4

√
m
n log45 n∆t, either the number of infected

agents doubles or the number of uninfected agents is
reduced by half with high probability. Therefore, within
time at most 2 log n ·

(
4
√

m
n log45 n∆t

)
= 128nℓ̂2 log

47 n
all the agents get infected with probability at least
1− 2 log n exp(− log2 n). This proves Theorem 3.1.

To summarize our approach, Corollaries 3.1 and
3.2 first translate the local infection rate of Lemma 3.1
into a rate based on the subcube types (i.e. good and
bad subcubes). Then Lemma 3.3 further aggregates the
growth rate to depend only on the infected and unin-
fected agents, by looking at the geometrical arrange-
ment of the subcubes. Nevertheless, the bound from
Lemma 3.3 is still too crude, but by making a long
enough sequence of trials i.e. 4

√
m
n log45 n times, at

least one of the four scenarios defined in Lemma 3.3
occurs for a significant number of times, despite the
Ω(log−6 n) probability of occurrence for each individual
step for any of the four scenarios. This leads to the
probabilistic bound for χ1(t) ∨ χ2(t).

4 The case when the number of agents is sparse

Finally, let us state our result on the case where m =
o(n):

Proposition 4.1. Let a1, a2, ..., am be placed uniformly
at random on V3, where m < n log−2 n. Let a1 be the
agent that holds a virus at t = 0, and T be the diffusion
time. We have for any constant c > 0,

Pr[T <
n3

m
log−c n] ≤ log−c n and

Pr[T >
2n3

m
log15 n] ≤ exp(−(log2 n)/2).
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