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Abstract

This paper investigates techniques for the assessment of model error in the context of insur-

ance risk analysis. The methodology is based on finding robust estimates for actuarial quantities

of interest, which are obtained by solving optimization problems over the unknown probabilistic

models, with constraints capturing potential nonparametric misspecification of the true model.

We demonstrate the solution techniques and the interpretations of these optimization problems,

and illustrate several examples including calculating loss probabilities and conditional value-at-

risk.

1 Introduction

This paper studies a methodology to quantify the impact of model assumptions that are uncertain

or possibly incorrect in actuarial risk analysis. The motivation of our study is that, in many

situations, coming up with a highly accurate model is challenging. This could be due to a lack of

data, e.g., in describing a low-probability event, or modeling issues, e.g., in addressing a hidden

and potentially sophisticated dependence structure among risk factors. Often times, actuaries and

statisticians resort to models and calibration procedures that capture stylized features based on

experience or expert knowledge, but bearing the risk of deviating too much from reality and thus

leading to suboptimal decision-making. The methodology studied in this paper aims to quantify

the incurred errors from these approaches to an extent that we shall describe.

On a high level, the methodology we study in this paper has the following characteristics:
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1) Its starting point is a baseline model that, for any good reasons (e.g., a balance of fidelity

and tractability), is currently employed by the actuary.

2) The method employs optimization theory to find a bound for the underlying risk metric of

interest, where the optimization is non-parametrically imposed over all probabilistic models that

are in the neighborhood of the baseline model.

3) Typically the worst-case model (i.e., the optimal solution obtained from the optimization

procedure) can be written in terms of the baseline model. So the proposed procedure can be

understood as a correction to allow for the possibility of model misspecification.

The key idea of the methodology lies in a suitable formulation of the optimization problem in

2) that leads to 3). This is an optimization cast over the space of models. This formulation has a

feasible region described by a neighborhood of the baseline model, the latter believed to be close to

a “true” or correct one - thanks to the expertise of the actuary. However, despite in the vicinity of

the baseline, the location of the true model is unknown. The neighborhood that defines the feasible

region, roughly speaking, serves to provide a more accessible indication of where the true model is.

When this neighborhood happens to contain the true model, the optimization problem, namely a

maximization or a minimization of the risk metric, will output an upper or a lower bound for the

corresponding true value.

Thus, instead of outputting a risk metric value obtained from a single baseline model, the

bound from our optimization can be viewed as a worst-case estimate from a collection of models

that likely include the truth. In this sense, the bound is robust to model misspecification (to the

extent of the neighborhood we impose). Our approach can also be viewed as a robustification of

traditional scenario analysis or stress testing. Rather than testing the impact of risk metric due to

specific shocks (by running the model at different scenarios or parameter values, say), our bound

is capable of capturing the impact to the risk metric due to any perturbation of the model in the

much bigger non-parametric space. We will illustrate these interpretations in several examples such

as calculating loss probabilities and conditional value-at-risk.

The approach and the formulations that we discuss in this paper have roots in areas such as

economics, operations research and statistics. The notion of optimization over models appears

in the context of decision-making under ambiguity, i.e., when parts of the underlying model is
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uncertain, the decision-maker resorts to optimizing decisions over the worst-case scenario, resulting

in a minimax problem where the maximization is over the set of uncertain models. In the case

of probabilistic models, this machinery involves an optimization over distributions, which is the

framework we study in this paper. In stochastic control, such an approach has been used in

deriving best control policies under ambiguous transition distributions [54, 52, 37]. In economics,

the work of two Nobel laureates L. P. Hansen and T. J. Sargent [35] studies optimal decision

making and its macroeconomic implications under ambiguity. Similar ideas have been used in

quantitative finance including portfolio optimization [29, 30], as well as in physics and biology

applications [3, 4]. In operations research, optimization over probabilistic models dates back to

[60] in the context of inventory management, and has been used in [8, 9, 62] when some moment

information is assumed known. The literature of distributionally robust optimization, which has

been growingly active in recent years, e.g., [21, 32, 66, 38, 50], studies reformulations and efficient

algorithms to handle uncertainty in probabilistic assumptions in various stochastic optimization

settings. The specific type of constraints we study, namely a neighborhood defined via statistical

distance, has been used in [6, 48, 42, 43, 36] under the umbrella of so-called φ-divergence, which in

particular includes the Kullback-Leibler divergence or the relative entropy that we employ heavily.

Other distances of recent interest include, e.g, the Wasserstein distance [28, 15]. In the context

of extreme risks relevant to actuarial applications, [14, 5, 10, 23] study the use of distances, e.g.,

Renyi divergence, to capture model uncertainty in the tail, and [44, 49] study the incorporation

of tail shape information, along with the shape-constrained distributional optimization literature

[56, 34, 47, 63]. In the multivariate setting, [26, 58, 64, 24, 57, 27] study analytical solution and

computation methods for bounding worst-case copulas. [20] investigates the use of moments and

entropy maximization in portfolio selection to hedge downside risks of a mortality portfolio. Lastly,

the calibration of the neighborhood size in distributionally robust optimization has been investigated

via the viewpoints of, e.g., hypothesis testing (e.g., [7]), empirical likelihood and profile inference

(e.g., [65, 46, 11, 25, 41, 33]) and Bayesian (e.g, [7]). For consistency, throughout this paper,

we will adopt the terminology from the operations research literature and call our methodology

distributionally robust optimization.

Our contribution in this paper is to bring the combination of the ideas in the above areas
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to the attention of the actuarial community. In addition, given that risk assessment is of special

importance for actuaries, we also discuss the implications of the distributionally robust methodology

in the setting of tail events beyond these past literatures. We will illustrate our modeling approach

and interpretations, how it can be used in actuarial problems, and solution methods employing a

mix of analytical tools, simulation and convex optimization. We choose to present examples that are

relatively simple for pedagogical purposes, but our goal is to convince the reader that the proposed

methodology is substantially general.

2 Basic Distributionally Robust Problem Formulation

Suppose that in a generic application, one is interested in computing a performance measure in the

form of an expected value of a function of underlying risk factors, i.e., Etrue (h (X)), where X is a

random variable (or random vector) taking values in Rd, and h : Rd → R is a performance function.

The notation Etrue (·) denotes the expectation operator associated with an underlying “true” or

correct probabilistic model, which is unknown to the actuary.

To quantify model error, we propose, in the most basic form, to use the following pair of

maximization and minimization problems, which we call the basic distributionally robust (BDR)

problem formulation:

min /max E (h (X)) (1)

s.t. D (P ||P0) ≤ δ,

The first involves solvingwhere

D(P‖P0) = EP

(
log

(
dP

dP0
(X)

))
=

∫
log

(
dP

dP0
(x)

)
dP (x) , (2)

is the so-called Kullback-Leibler (KL) divergence [40] between P and P0, with the integral in (2)

taken over the region in which X takes its values and dP/dP0 is the likelihood ratio between the

probability models P and P0. Optimization (1) has a decision variable P , and the expectation in

its objective function is with respect to P . Finally, δ should be suitably calibrated (chosen as small
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as possible) to guarantee that

D(Ptrue‖P0) ≤ δ. (3)

The KL divergence defined in (2) plays an important role in information theory and statistics (with

connections to concepts such as entropy [18] and Fisher information [19]; it is also known as the

relative entropy whose properties have been substantially studied. The KL divergence measures

the discrepancy between two probability distributions, in the sense that D(P‖P0) = 0 if and only

if P is identical to P0 (also see discussion below). Thus, the constraint in (1) can be viewed as a

neighborhood around P0 in the space of models, where the size of the neighborhood is measured by

the KL divergence.

The reason for selecting δ depicted above is the following. First, by choosing δ so that inequality

(3) holds, we guarantee that Ptrue is in the feasible region of (1). This translates, in turn, to that

the interval obtained from the minimum and maximum values of (1) contains the true performance

measure Etrue(h(X)). Second, δ is chosen as small as possible because then this obtained interval

is the shortest, signaling a higher accuracy of our estimate.

The probability space of X described above can be substantially more general, including infinite

dimensional objects such as when X denotes a stochastic process like Brownian motion. However,

to avoid technicalities, we will confine ourselves in the framework X ∈ Rd. In fact, to facilitate

the discussion further, first we discuss the case where P is discrete finite. In this case, (1) can be

written as

min /max
M∑
k=1

p (k)h (k) (4)

s.t.

D(p‖p0) =
M∑
k=1

p (k) log

(
p (k)

p0 (k)

)
≤ δ ,

M∑
k=1

p (k) = 1, p (k) ≥ 0 for k ≥ 1 ,

where the decision variable is the probability mass function {p(k) : k = 1, . . . ,M} for some support

size M , and {p0(k) : k = 1, . . . ,M} is the baseline probability mass function.

Let us briefly discuss two key properties of the KL divergence that make formulation (4) ap-
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pealing. First, by Jensen’s inequality, we have that

D(p‖p0) = −
M∑
k=1

p (k) log

(
p0 (k)

p (k)

)
≥ − log

(
M∑
k=1

p (k)
p0 (k)

p (k)

)
= 0,

and D(p‖p0) = 0 if and only if p (k) = p0 (k) for all k. In other words, the D (·) allows us to

compare the discrepancies between any two models, and the models agree if and only if there is no

discrepancy. That is, in principle, the space of decision variables can include any distributions in

the form {p (k) : 1 ≤ k ≤ M}, without confining to any parametric form. Thus the framework is

capable to include model misspecification in a non-parametric manner.

It should be noted that D (·) is not a distance in the mathematical sense, because it does not

obey the triangle inequality. However, and as the second key property of the KL divergence, D(p‖p0)

is a convex function of p (·). To see this, first note that the function l (x) = x log (x) is convex on

(0,∞). Second, observe that if {p (k) : 0 ≤ k ≤M} and {q (k) : 0 ≤ k ≤M} are two probability

distributions and α ∈ (0, 1), then, because of Jensen’s inequality, for any fixed k,

l

(
αp (k) + (1− α) q (k)

p0 (k)

)
≤ αl

(
p (k)

p0 (k)

)
+ (1− α) l

(
q (k)

p0 (k)

)
.

Thus, we conclude

D(αp+ (1− α) q‖p0) =
M∑
k=1

p0 (k) l

(
αp (k) + (1− α) q (k)

p0 (k)

)

≤
M∑
k=1

[
αp0(k)l

(
p (k)

p0 (k)

)
+ (1− α) p0(k)l

(
q (k)

p0 (k)

)]
= αD(p‖p0) + (1− α)D(q‖p0).

Consequently, BDR problem (4) is a convex optimization problem with a linear objective function.

These types of problems have been well-studied and are computationally tractable using operations

research tools.

Later in the paper we will discuss the implications of KL divergence as a notion of discrepancy

and propose other notions and constraints. For now, we argue that there are direct variations of the

BDR problem formulation that can be easily accommodated within the same convex optimization
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framework. For this discussion, it helps to think of p(k) as the mortality distribution at each age (so

k = 1, . . . , 100 for instance). Suppose that an actuary is less confident in the estimate for ptrue (k)

for small values of k; that is, assume that p0 (k) ≈ ptrue (k) for large values of k, but the actuary is

uncertain about how similar p0 (k) is to ptrue (k) for small values of k (this arises if the mortality

estimate is more credible for some age groups for instance). Then we can replace the first inequality

constraint in (4) by introducing a weighting function {w (k) : 1 ≤ k ≤M} with w (k) > 0 which is

increasing, thus obtaining
M∑
k=1

w (k) p (k) log

(
p (k)

p0 (k)

)
≤ δ . (5)

To understand why w (·) should be increasing in order to account for model errors from misspecifying

p0 (k) for small values of k, consider the following exemplary case. Suppose for some k0 > 0, we

have 1) w (k) = ε > 0 for k ≤ k0 and ε small, and 2) w (k) = 1 for k > k0. Then observe that

the constraint (5) is relatively insensitive to the value of p (k) for k ≤ k0. Therefore, the convex

optimization program will have more freedom for the p(k) on k ≤ k0 to jitter and improve the

objective function without having a significant impact on feasibility.

Another variation of the BDR formulation includes moment constraints. For instance, suppose

additional information is known for the expected time-until-death for individuals who have a par-

ticular underlying medical condition and are at least 30 years old (from a series of medical studies,

say). Using such information one might impose a constraint of the form E(X|X ≥ 30) ∈ [a−, a+]

for a specified range [a−, a+], or equivalently E(XI(X ≥ 30)) ∈ [P (X ≥ 30)a−, P (X ≥ 30)a+]

(throughout the paper, we use I (A) to denote the indicator of A, i.e., I (A) = 1 if A occurs and

= 0 if not). Using this information, one can add the constraints

a−

M∑
k=30

p (k) ≤
M∑
k=30

p (k) k ≤ a+

M∑
k=30

p (k) , (6)

which are linear inequalities, and therefore the resulting optimization problem is still convex and

tractable. In Section 9 we will continue discussing other constraints that can inform the BDR

formulation with alternate forms of expert knowledge.

At this point, several questions might be in order: How do we solve the BDR optimization

problem and its variations? How can we understand such solution intuitively? What is the role



8

of the constraint in (1)? How do we choose δ? How do we extend the methodology to deal with

possibly multidimensional distributions? Our goal is to address these questions throughout the rest

of this paper.

3 Solving the BDR Formulation

This section describes how to solve (4) and then transitions toward the more general problem (1)

in an intuitive way. We concentrate on the problem of maximization; the minimization counterpart

is analogous, and we will summarize the differences at the end of our discussion.

3.1 The Maximization Form

We introduce Lagrange multipliers to solve the convex optimization problem (4). The Lagrangian

takes the form

g (p (1) , ..., p (M) , λ1, λ2) =
M∑
k=1

p (k)h (k)− λ1

(
M∑
k=1

p (k) log

(
p (k)

p0 (k)

)
− δ

)
− λ2

(
M∑
k=1

p (k)− 1

)
.

The Karush-Kuhn-Tucker (KKT) [16] conditions in our (convex optimization) setting characterize

an optimal solution. Denoting an optimal solution for (4) as {p+ (k) : 1 ≤ k ≤M}, and the corre-

sponding Lagrange multipliers as λ+
1 and λ+

2 , the KKT conditions are as follows (we use “+” to

denote an optimal solution for the maximization formulation, as opposed to “−” for the minimiza-
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tion counterpart, which we shall discuss momentarily as well):

∂g

∂p (k)

(
p+ (1) , ..., p+ (M) , λ+

1 , λ
+
2

)
= h (k)− λ+

1

(
1 + log

(
p+ (k)

p0 (k)

))
− λ+

2 ≤ 0,

k = 1, . . . ,M, (7)

p+(k)
∂g

∂p (k)

(
p+ (1) , ..., p+ (M) , λ+

1 , λ
+
2

)
= p+(k)

[
h (k)− λ+

1

(
1 + log

(
p+ (k)

p0 (k)

))
− λ+

2

]
= 0,

k = 1, . . . ,M, (8)
M∑
k=1

p+ (k) log

(
p+ (k)

p0 (k)

)
≤ δ,

M∑
k=1

p+ (k) = 1, p+ (k) ≥ 0 for 1 ≤ k ≤M, (9)

λ+
1 ≥ 0, λ+

2 is free, (10)

λ+
1

(
M∑
k=1

p+ (k) log

(
p+ (k)

p0 (k)

)
− δ

)
= 0. (11)

The relations (7) and (8) correspond to the so-called stationarity conditions, (9) the primal feasi-

bility, (10) the dual feasibility, and (11) the complementary slackness condition.

Define

M+ = argmax{h (k) : 1 ≤ k ≤M},

i.e., M+ is the index set on which h (·) achieves its maximum value. Also, denote h∗ = max{h(k) :

1 ≤ k ≤ M} as the maximum value of h(·). We analyze the solution by dividing it into two cases,

depending on whether log
(

1
P0(X∈M+)

)
≤ δ:

Case 1: log
(

1
P0(X∈M+)

)
≤ δ.

Consider

p+(k) =
p0 (k) I (k ∈M+)∑

j∈M+
p0 (j)

= P0 (X = k | X ∈M+) . (12)

for k ∈M+, and p+(k) = 0 otherwise, i.e., p+(·) is the conditional distribution of X given X ∈M+.

Note that this choice of p+(·) gives

M∑
k=1

p+ (k) log

(
p+ (k)

p0 (k)

)
= log

(
1

P0 (X ∈M+)

)
≤ δ

so that (9) holds. Moreover, choosing λ+
1 = 0 and λ+

2 = h∗, we have (7), (8), (10) and (11) all hold.

Thus, (12) is an optimal solution in this case.



10

Case 2: log
(

1
P0(X∈M+)

)
> δ.

Consider setting

h (k)− λ+
1

(
1 + log

(
p+ (k)

p0 (k)

))
− λ+

2 = 0, k = 1, . . . ,M,

giving p+(k) = p0(k) exp((h(k) − λ+
1 − λ

+
2 )/λ+

1 ). Denoting θ+ = 1/λ+
1 and ψ+ = λ+

2 /λ
+
1 + 1, we

can write

p+ (k) = p0 (k) exp (θ+h (k)− ψ+) . (13)

To satisfy
∑M

k=1 p+(k) = 1 in (9), we must have ψ+ = log
∑M

k=1 p0 (k) exp (θ+h (k)), i.e., ψ+ is the

logarithmic moment generating function of h(X) under p0(·) at θ+. Now, to satisfy (11), we enforce

θ+ to be the positive root of the equation

M∑
k=1

p+ (k) log

(
p+ (k)

p0 (k)

)
= θ+

∑M
k=1 p0 (k) exp (θ+h (k))h (k)∑M

k=1 p0 (k) exp (θ+h (k))
− log

(
M∑
k=1

p0 (k) exp (θ+h (k))

)
= δ,

(14)

where the first equality is obtained by plugging in the expression of p+(·) in (13). We argue that

such a positive root must exist. Note that the left hand side of (14) is continuous and increasing

(continuity is immediate, and monotonicity can be verified by somewhat tedious but elementary

differentiation). When θ+ → 0 in (14), the left hand side goes to 0. When θ+ →∞, it becomes

θ+h
∗ +O(exp(−cθ+))−

θ+h
∗ + log

∑
k∈M+

p0(k) +O(exp(−cθ+)


= − log

∑
k∈M+

p0(k) +O(exp(−cθ+))

for some constant c > 0, by singling out the dominant exponential factor exp(θ+h
∗) and noticing

a relative exponential decay in the remaining terms in the expression in (14). But note that

− log
∑

k∈M+
p0(k) + O(exp(−cθ+)) > δ as θ+ → ∞ in our considered case. Thus we must have

a positive root for (14). Consequently, one can verify straightforwardly that the choice of p+(·) in

(13) with θ+ > 0 solving (14) satisfies all of (7), (8), (9), (10) and (11).

We comment that Case 1 can be regarded as a degenerate case and rarely arises in practice,
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while Case 2 is the more important case to consider. From (13) in Case 2, p+ (·) can be interpreted

as a member of a “natural exponential family”, also known as an “exponential tilting” distribution

that arises often in statistics, large deviations analysis and importance sampling in Monte Carlo

simulation. On the other hand, the form of p+(·) in (12) in Case 1 can be interpreted as a limit of

(13) as θ+ →∞, namely

p+ (k) = lim
θ→∞

p0 (k)
exp (θh (k))∑M

j=1 p0 (j) exp (θh (j))
=
p0 (k) I (k ∈M+)∑

j∈M+
p0 (j)

= P0 (X = k | X ∈M+) .

3.2 The Minimization Form

The minimization form of the BDR problem is analogous to the maximization one. In this case,

the Lagrangian takes the form

g (p (1) , ..., p (M) , λ1, λ2) =

M∑
k=1

p (k)h (k) + λ1

(
M∑
k=1

p (k) log

(
p (k)

p0 (k)

)
− δ

)
+ λ2

(
M∑
k=1

p (k)− 1

)
.

With the corresponding KKT conditions and similar discussion as before, we arrive at the two

analogous cases. Here, we define

M− = argmin{h (k) : 1 ≤ k ≤M}.

Case 1: log
(

1
P0(X∈M−)

)
≤ δ.

An optimal solution is given by

p− (k) = P0 (X = k|X ∈M−) .

Case 2: log
(

1
P0(X∈M−)

)
> δ.

An optimal solution is given by

p− (k) = p0 (k) exp (−θ−h (k)− ψ (θ−)) ,

ψ (θ−) = log

M∑
k=1

p0 (k) exp (−θ−h (k)) ,
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with θ− > 0 satisfying

−θ−
∑M

k=1 p0 (k) exp (−θ−h (k))h (k)∑M
k=1 p0 (k) exp (−θ−h (k))

− log

(
M∑
k=1

p0 (k) exp (−θ−h (k))

)
= δ.

3.3 Solutions for the General Formulation

The insights of the solutions obtained in Sections 3.1 and 3.2 can be extended to the general BDR

formulation (1). First, denoting E0 (·) as the expectation under the baseline model P0 (·), (1) can

be written equivalently as optimizing over all random variables Z (ω), where ω is an element of the

underlying outcome space Ω, in the form

max E0 (h (X)Z) (15)

s.t.

E0 (Z log (Z)) ≤ δ

Z (ω) ≥ 0, for all ω, and EP0 (Z) = 1 .

The object Z(ω) is the likelihood ratio between P and P0, which is well-defined since the KL

divergence is defined only for P absolutely continuous with respect to P0. The solution to (15),

denoted (Z+ (ω) : ω ∈ Ω), can be used to obtain the solution P+ (·) to (1), by defining P+ (·) via

P+ (X ∈ A) = E0 (Z+I (X ∈ A)) .

Conceptually, the general problem formulation is not much different from the finite outcome case

(4). It can be shown (e.g., [54, 17]) that exactly the same form of the optimal solution applies. For

instance, if f0 (·) is the density of X in Rd, then

Z+ =
f+ (X)

f0 (X)
= exp (θ+h (X)− ψ (θ+)) ,

ψ (θ+) = logE0 (exp (θ+h (X))) ,



13

with

θ+
E0 (exp (θ+h (X))h (X))

E0 (exp (θ+h (X)))
− log (E0 (exp (θ+h (X)))) = δ

in case log (1/P0 (X ∈M+)) > δ, where

M+ = argmax{h (x) : x ∈ Rd}.

However, if log (1/P0 (X ∈M+)) ≤ δ, then the optimal solution is a probability distribution given

by

P+ (X ∈ A) = P0 (X ∈ A|X ∈M+) .

3.4 Numerical Example of BDR Formulation

Let us assume that X is the time-until-death of an individual entering a whole life insurance contract

that pays $1 benefit to the beneficiaries at the time of death. Assume that the force of interest

(continuously compounded) is given by r > 0. We are interested in the expected net present

value of the benefits paid, denoted as h (X) = exp (−rX). This expected value is thus given by

Etrue (h (X)) = Etrue (exp (−rX)). A more realistic example might consider stochastic interest

rates or a portfolio of different types of contracts, but here we stay with this simple example for

clear illustration.

Consider the more concrete setting where X takes values only on the set {1, ..., 100}, the benefit

is paid in integer years, and the individual in consideration is 20 years old so that the individual

could die at ages 21, 22,..., 120. Now, imagine a situation in which we know that the individual

has a medical condition for which not much is known, so there might be substantial variability in

our estimation of the distribution of X. Or perhaps there is a significant likelihood that medical

advances might be expected to occur in the next 10 years or so, and therefore, if p0 (·) were calibrated

based on historical data, p0 (·) might simply be an incorrect model.

To illustrate numerically the BDR formulation (4), we set the baseline distribution p0(k) from

the recent static mortality table under the Internal Revenue Code ([2], Appendix, “unisex” column),

and consider the estimation of the worst-case expected payoff when the true mortality distribution

deviates from p0(k) as described by (4).
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Figure 1 shows the maximum and minimum values of (4) under different δ, when the force of

interest is set at r = .015. The maximum value increases with δ, while the minimum value decreases

with δ, both at a decreasing rate. The effects on the maximum values seem to be stronger than the

minimum values when the distribution changes from the baseline, as shown by a larger magnitude

of the upward movement as δ increases. Note that the bounds, especially the upper one, grow quite

wide as δ increases. This indicates that under no other information, the worst-case impact of model

uncertainty can be quite significant. This impact can be reduced if one adds auxiliary information,

either from additional data source or from expert knowledge (e.g., moment equalities or inequalities

in (6) and in the subsequent Section 9).

Figures 2, 3 and 4 show the shapes of the distributions giving rise to the maximum and minimum

expected payoffs, compared with the baseline distribution, at δ = 1, 2 and 5 respectively. We can

see a sharp concentration of mass close to 0 for the maximal distribution, as higher chance of sooner

death leads to a larger expected present value of payoff. In contrast, more mass is located toward

older ages for the minimal distribution, leading to a reduction in the expected present value of

payoff. As δ increases, the accumulation of the mass at 0 for the maximal distribution tends to be

heavier, as well as the shift of mass to older ages for the minimal distribution. The mass shift for

the maximal distribution seems to be more dramatic than for the minimal one, which is consistent

with Figure 1 that shows a wider bound for the maximization problem.
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Figure 4: Optimal probability mass function at δ = 5

4 Distributionally Robust Analysis of Dependence

We consider a variation of the BDR formulation that is suitable for quantifying the impact of

dependence. We revisit the example of whole life insurance in Section 3.4 as an illustration, but

now we assume that a couple is interested in a contract that pays $1 benefit at the time of the first

death between the couple. In this case, the payoff equals h (X,Y ) = exp (−rmin(X,Y )), where X

and Y are the time-until-death of the individual and his or her spouse, respectively. We assume

that both spouses are 20 years old at the time of signing the risk premium valuation, so that the

pair (X,Y ) is supported on the set {1, ..., 100} × {1, ..., 100}.

We are interested in the potential impact on the estimated actuarial net present value of the

benefits due to unaccounted dependence structures. Suppose that, this time, enough information

is available to estimate the distributions of X and Y marginally with relatively high accuracy, but

the joint distribution is difficult to estimate. That is, the marginals are known to be

Ptrue (Y = j) =

100∑
i=1

P0 (X = i, Y = j) ,

Ptrue (X = i) =

100∑
j=1

P0 (X = i, Y = j) .

A joint baseline model p0(i, j) = P (X = i, Y = j) can be conjectured (e.g., using an independent

marginal assumption).

To capture the above type of uncertainty, the distributionally robust (maximization) formulation
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is given by

max
M∑
i=1

M∑
j=1

p (i, j)h (i, j) (16)

s.t.
M∑
i=1

M∑
j=1

p (i, j) log

(
p (i, j)

p0 (i, j)

)
≤ δ,

M∑
j=1

p (i, j) = P0 (X = i) for all i,
M∑
i=1

p (i, j) = P0 (Y = j) for all j,

p (i, j) ≥ 0 for all i, j,

where we write (16) in a more general fashion that outputs the worst-case expected value E[h(X,Y )]

over P (X,Y ) supported on {(i, j) : 1 ≤ i ≤M, 1 ≤ j ≤M}. The first constraint is a KL divergence

from the baseline p0(i, j) like in (1). The second constraint stipulates that the marginal distributions

are known to be P0(X = i) and P0(Y = j). In the joint whole life insurance example, M would be

set as 100.

We discuss how to solve (16), concentrating on the case analogous to Case 2 analyzed in the

BDR formulation in Section 3.1 (i.e., assuming the neighborhood size δ is not too big, which is the

more interesting case).

It is worth mentioning that p = p0 is a feasible solution, and therefore we can verify the Slater

condition (see [16]). Such a condition guarantees that strong duality holds and that the KKT

conditions are necessary and sufficient for optimality. Consequently, commercial packages can be

used to solve a convex optimization problem like (16) very quickly. Here, we will describe an

iterative procedure based on exponential tilting similar to that for problem (4). In particular, an

analogous argument in using the stationarity KKT condition in Case 2 there leads to an optimal

solution of the form

p+ (i, j) = P0 (X = i, Y = j) exp
(
θ+h (i, j)− αθ+ (i)− βθ+ (j)

)
,
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where

∑
j

exp
(
θ+h (i, j)− βθ+ (j)

)
P0 (X = i, Y = j) = exp

(
αθ+ (i)

)
P0 (X = i) , (17)

∑
i

exp
(
θ+h (i, j)− αθ+ (i)

)
P0 (X = i, Y = j) = exp

(
βθ+ (j)

)
P0 (Y = j) . (18)

where (17) and (18) guarantee the marginal distributions match the known values. The form above

motivates the following iterative scheme (see [22, 31]): Given a θ, define

pθ(i, j) =
exp (θh (i, j)) p0 (i, j)∑

k

∑
l exp (θh (k, l)) p0 (k, l)

.

Then iteratively update pθ(i, j) so that at each step, for each i, j = 1, . . . ,M replace pθ(i, j) with

pθ(i, j)P0(X = i)∑
l pθ(i, l)

and then for each i, j = 1, . . . ,M , replace pθ(i, j) with

pθ(i, j)P0(Y = j)∑
k pθ(k, j)

until convergence. The iteration ensures the marginal distributions of the resulting probability mass

function are equal to P0(X = i), i = 1, . . . ,M , and P0(Y = j), j = 1, . . . ,M , respectively, leading

to a final pθ(·, ·). Then, we solve

min
θ

M∑
i=1

M∑
j=1

pθ (i, j)h (i, j)− 1

θ

 M∑
i=1

M∑
j=1

pθ (i, j) log

(
pθ (i, j)

p0 (i, j)

)
− δ


to get θ+. An optimal mass function is then p+(i, j) = pθ+(i, j).

4.1 Numerical Example on Joint Mortality

We illustrate numerically the solution to optimization (16). Consider, as discussed above, the

estimation of the expected payoff h(X,Y ) = exp(−rmin(X,Y )) in the described setting. We set

the baseline joint distribution p0(i, j) from the same mortality table used in Section 3.4, but now
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assuming independence of the times-until-death of the couple, i.e. p0(i, j) = P0(X = i)P0(Y = j).

This independent baseline model describes the simplest assumption made by insurers when pricing

life products, and we are interested in a robust estimate of the expected payoff when this assumption

is violated.

Figure 5 shows the worst scenario values of (16) under different values of δ, setting r = .015.

As depicted, there is a concavely increasing trend for the worst-case expected payoff as the level of

dependency deviates from independence. While the estimate is 0.0729 according to the independent

model, it can potentially rise to 0.0734 when the true model is misspecified from independence to a

level of δ = 0.002. Note that the magnitude of the changes in worst-case estimates is significantly

less dramatic than the example in Section 3.4. This is because here we have injected complete

marginal information, and the model is allowed to deviate only in terms of dependence structure.

From the small change magnitude, we can see that the marginal information is an important piece

that substantially reduces the freedom of deviation.

Figures 6 and 7 further show the approximate surfaces of the optimal joint probability mass

function at δ = 0.013 and the original independent joint probability mass function respectively.

Their differences are more clearly visualized in Figure 8. First, the maximum difference of the mass

functions is close to .01, which is quite small. This reconciles with the observation in Figure 5 that

the deviations of the models are significantly confined due to known marginal information. Next,

in terms of the shape of the differences, the worst-case distribution falls below the baseline in a

region centered around (70, 70). This seems to be the region where the baseline probability mass

function peaks. The worst-case distribution spreads out this peak and allocates more masses to

other regions to achieve a higher objective function. The positive difference seems clustered around

two regions and is interpreted as a consequence of the spreading period Note that the integration

of the differences must be zero, so both positive and negative differences must be present.

5 Distributionally Robust Rare-Event Analysis

Consider h (X) = I (X ∈ B) for some set B, where we recall I(·) as the indicator function. We are

interested in the probability Ptrue (X ∈ B) = Etrue[I(X ∈ B)], which is known to be small. We
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wish to solve the BDR maximization problem

max P (X ∈ B) (19)

s.t. D (P ||P0) ≤ δ,

where a baseline distribution P0 of X has been suitably calibrated. Since we are in a rare-event

setting, it is reasonable to assume that log (1/P0 (X ∈ B)) > δ. Therefore, applying the general
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solution form of the BDR maximization problem in Section 3.3, a worst-case distribution is given

by P+ (·) defined such that for each set A,

P+ (X ∈ A) =
E0 (exp (θ+I (X ∈ B)) I (X ∈ A))

E0 (exp (θ+I (X ∈ B)))
(20)

=
exp (θ+)P0 (X ∈ A,X ∈ B)

exp (θ+)P0 (X ∈ B) + P0 (X /∈ B)
+

P0 (X ∈ A,X /∈ B)

exp (θ+)P0 (X ∈ B) + P0 (X /∈ B)
,

for some θ+ ∈ (0,∞). To obtain a clearer interpretation of this worst-case distribution, let us write

P+ (X ∈ A) =
(exp (θ+)− 1)P0 (X ∈ A,X ∈ B)

exp (θ+)P0 (X ∈ B) + P0 (X /∈ B)
+

P0 (X ∈ A)

exp (θ+)P0 (X ∈ B) + P0 (X /∈ B)

= α (θ+)P0 (X ∈ A|X ∈ B) + (1− α (θ+))P0 (X ∈ A) ,

where

α (θ+) =
(exp (θ+)− 1)P0 (X ∈ B)

exp (θ+)P0 (X ∈ B) + P0 (X /∈ B)
> 0

and θ+ > 0 satisfies

θ+
exp (θ+)P0 (X ∈ B)

(exp (θ+)− 1)P0 (X ∈ B) + 1
− log ((exp (θ+)− 1)P0 (X ∈ B) + 1) = δ. (21)

Consequently, in simple words, in the context of distributionally robust performance analysis

of rare-event probabilities, the worst-case measure is a (specific) mixture between the conditional

distribution of X given X ∈ B and the unconditional distribution, under the baseline measure

(regardless of how it was calibrated). This allows the actuary to obtain bounds on rare-event

probabilities with the BDR formulation easily using only the baseline measure.

Moreover, note that the worst scenario value is given by

P+ (X ∈ B) =
exp (θ+)P0 (X ∈ B)

exp (θ+)P0 (X ∈ B) + P0 (X /∈ B)
=

exp (θ+)P0 (X ∈ B)

1 + (exp (θ+)− 1)P0 (X ∈ B)
. (22)

Now, we investigate the asymptotic behavior of the worst scenario value (22) when we fix δ and

let P0 (X ∈ B) → 0. This asymptotics at a fixed model uncertainty level δ while the probability

of interest is close to 0 is relevant from an applied standpoint in rare-event analysis. It models the
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situation in which we have limited data, or postulate a specific imperfect parametric model P0, yet

we want to estimate probabilities that are very small.

To perform the asymptotic analysis on P+(X ∈ B), we first need to understand the behavior

of θ+ that satisfies (21). We carry out a heuristic development that follows and can be rigorized

by the argument in Theorem 1 in [10]. Suppose δ > 0 is fixed and P0(X ∈ B) → 0. Let us

postulate that θ+ exp (θ+)P0 (X ∈ B) = η for some η > 0 that remains bounded away from zero

and infinity as P0 (X ∈ B) → 0. This implies that θ+ → ∞ as P0 (X ∈ B) → 0, and therefore

we have exp (θ+)P0 (X ∈ B) → 0 as P0 (X ∈ B) → 0. Consequently, (exp (θ+) − 1)P0 (X ∈ B) →

0 and the left hand side of (21) is asymptotically equivalent to θ+ exp (θ+)P0 (X ∈ B), so that

θ+ exp (θ+)P0 (X ∈ B) ≈ δ as P0(X ∈ B) → 0. This implies θ+ ≈ log(1/P0(X ∈ B)). In turn,

from (22), we get that

P+ (X ∈ B) ≈ δ

θ+
≈ δ

log (1/P0 (X ∈ B))
.

To understand decision-making implications, suppose that X models the potential losses of an

insurance company, and the baseline loss probability P0 (X > t) = exp (−Λ0 (t)) for some function

Λ0 (·), i.e., under P0, X has a cumulative hazard function Λ0 (·). Now, say we wish to compute b

so that Ptrue (X > b) ≤ .005. Suppose that δ = .1, but the model Ptrue is not known. Then, based

on the worst-case distribution of our robust analysis above, we must choose b so that

P+ (X > b) ≈ δ

Λ0 (b)
=

.1

Λ0 (b)
≤ .005, (23)

which implies that b ≈ Λ−1
0 (20). For example, if X is exponentially distributed with unit mean

under P0, so that Λ0 (b) = b, then this gives b ≈ 20. In contrast, if one trusts the exponential model

fully, then one would choose exp (−b) = .005, which yields b ≈ 5.3.

Paraphrasing, if b is the value of the statutory solvency capital needed to withstand losses with

probability at least .995, and if the actuary uses an exponential model with unit mean, then a

deviation of .1 units measured in KL divergence between the assumed (exponential) model and the

unknown reality might underestimate the statutory capital by a factor of about 20/5.3 ≈ 3.7.

Another important message is that the BDR formulation might provide very conservative esti-

mates for rare-event probabilities when δ (i.e., the size of the uncertainty) is large relative to the
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rare-event probability of interest. Suppose again that X is exponentially distributed with unit mean

under P0, then (23) indicates that P+ (X > b) ≈ .1/b, giving a Pareto-type tail behavior under P+.

In Section 9, we will discuss other types of distances that can give less conservative estimates for

rare-event probabilities.

5.1 Numerical Example for Rare-Event Probability

Consider calculating the loss probability Ptrue(L > b) for a given reserve level b, where the loss model

is of the simple form L = X1 + · · · + Xn. Under the baseline model P0, Xi’s follow a multivariate

Gaussian distribution, i.e., (X1, . . . , Xd) ∼ N(µ,Σ) for some mean vector µ and covariance matrix

Σ, with specific distributional parameters given momentarily. Consequently,

P0(L > b) = Φ

(
b− 1′µ√
1′Σ1

)
,

where 1 is a vector of entries equal to one, ′ denotes transpose, and Φ (·) is the tail distribution

function of a standard Gaussian random variable.

Now suppose that the actuary is uncertain about whether (X1, ..., Xd) follows a Gaussian model.

So we formulate the corresponding BDR problem (19) with the objective function being P (L > b).

We first check whether log (1/P0 (L > b)) ≤ δ, analogous to Case 1 in Section 3.1. If this is the

case, then the worst-case density of L is

f+(x) =
φ
(

(x− 1′µ) /
√
1′Σ1

)
P0(L > b)

√
1′Σ1

I(x > b), (24)

where φ (·) is the density of a standard Gaussian random variable, and P+ (L > b) = 1. To see this,

note that h (l) = I (l > b), and (24) is precisely the conditional distribution of L given that L > b

under the model P0, which is the solution depicted in Case 1 in Section 3.1.

Otherwise, if log (1/P0(L > b)) > δ, then the worst-case density is given by

f+(x) =


exp(θ+)φ((x−1′µ)/

√
1′Σ1)/

√
1′Σ1

exp(θ+)P0(L>b)+P0(L≤b) for x > b

φ((x−1′µ)/
√
1′Σ1)/

√
1′Σ1

exp(θ+)P0(L>b)+P0(L≤b) for x ≤ b
, (25)



23

where θ+ > 0 is the root of the equation

θ+
exp (θ+)P0(L > b)

exp (θ+)P0(L > b) + P0(L ≤ b)
− log(exp (θ+)P0(L > b) + P0(L ≤ b)) = δ.

These are obtained from (20) and (21), or analogously from Case 2 in Section 3.1. Alternately,

using the interpretation of the associated exponential tilting discussed in Section 3.1, we have

f+ (x) ∝ φ
((
x− 1′µ

)
/
√
1′Σ1

)
exp (θ+h (x))

∝ φ
((
x− 1′µ

)
/
√
1′Σ1

)
exp (θ+) I (x > b)

+φ
((
x− 1′µ

)
/
√
1′Σ1

)
I (x ≤ b) ,

which coincides with (25). Observe that the worst-case density is a weighted version of the original

one, thus largely preserving the shape in the corresponding regions. It assigns more (uniform)

weight to the region where x > b in a way that is as large as possible but preserves the validity of

the KL and the integrating-to-one constraints.

We illustrate the above numerically for n = 5, with means of Xi’s being µ1 = 1.92, µ2 =

1.42, µ3 = 1.13, µ4 = 1.80, µ5 = 1.54 (five numbers generated uniformly between 1 and 2) and

covariance matrix

Σ =



1.11 −0.21 −0.42 −0.72 1.30

−0.21 4.82 0.89 −0.31 −1.50

−0.42 0.89 1.05 0.61 −0.52

−0.72 −0.31 0.61 2.58 −0.45

1.30 −1.50 −0.52 −0.45 1.91


,

which is randomly generated from a Wishart distribution with 5 degrees of freedom and an identity

scale matrix. Setting b = 10, the probability P0(L > b) is now given by 0.23. Figure 9 shows the

worst-case density under δ = 0.1 and the baseline density. Note that the worst-case density puts

more mass on the right side of b, and less on its left side, in order to boost the likelihood of a big loss.

In doing so, there is spike occurring exactly at b. This spike occurs because the adjustment leading

to the worst-case density attempts to maintain the shape of distribution as much as possible, so
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that in each of the regions below and above b the density is multiplied by a constant weight. Finally,

Figure 10 shows, much like Figure 1, a concave growth pattern for the worst-case probability as δ

increases.
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6 The Feasible Region in the BDR Formulation

This section discusses the selection of the parameter δ > 0. We present two main approaches: One

is estimation using historical data. Another is to understand the choice of δ in terms of systematic

stress testing. In the second approach, we will also establish the connection with conventional stress

testing approaches and parametric sensitivity analysis.

6.1 Data-Driven Estimation

For simplicity, we assume that the true model has a density ftrue (·), and the baseline model has a

density f0 (·). The most direct approach is to estimate

D (Ptrue||P0) =

∫
log

(
ftrue (x)

f0 (x)

)
ftrue (x) dx. (26)

Some proposed procedures that guarantee convergence can be found in, e.g., [51, 55]. The

problem with this approach, however, is that the rate of convergence of the estimator depends on
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the dimension of the underlying density. Intuitively, this is because this approach indirectly needs

to estimate density non-parametrically, which has a similar dependence on the dimension. An

alternate approach that is less conservative is based on empirical likelihood that we discuss next.

To explain, first suppose that we observe X1, ..., Xn as an independent and identically distributed

(i.i.d.) sample from X and form the empirical probability mass function

µn (x) =
1

n

n∑
i=1

I (Xi = x) ,

which is uniform on the set {X1, ..., Xn}. Now, for any given set of weights w = (w1, ..., wn) such

that wi ≥ 0 and
∑n

i=1wi = 1, define

vn (x,w) =
n∑
i=1

wiI (Xi = x) .

In simple words, vn (·, w) is a probability mass function that assigns probability wi to the value Xi.

Then consider the so-called profile log-likelihood function [53]

Rn (γ) = min

D (vn (·, w) ||µn (·)) : Evn(·,w) (h (X)) =
∑

x∈{X1,...,Xn}

vn (x,w)h (x) =
n∑
i=1

wih (Xi) = γ

 .

It turns out, under the null hypothesis that Etrue (h (X)) = γ and other mild conditions (including

V artrue (h (X)) <∞), that we have

2nRn (γ)⇒ χ2
1.

That is, under the null hypothesis, 2nRn (γ) follows approximately a chi-square distribution with

one degree of freedom. This result is classical in the theory of empirical likelihood [53]. To make our

discussion as self-contained as possible, we provide formal derivation of the result in the appendix.

The connection with the BDR problem formulation can be established as follows. Assume P0

is built from the empirical distribution function of the observed data; that is, we use µn (·) as the

distribution of X under the model P0. If we knew the specific value γ = Etrue (h (X)), it would

make sense to choose δ ≥ Rn (γ) to solve the BDR problem, because the worst-case distribution,
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Pn+, of the corresponding empirical BDR problem, namely

max
∑

x∈{X1,...,Xn}

vn (x)h (x) (27)

s.t. D (vn (·, w) ||µn (·)) ≤ δ ,

will yield a worst scenario value, E+ (h (X)) =
∑n

k=1w
+
k h (Xk) ≥ γ. So, as n → ∞, the BDR

formulation will result in a correct upper bound for Etrue (h (X)).

Consequently, if one chooses P0 based on the empirical distribution, it is reasonable to select δ

so that

P (δ > Rn (γ)) ≈ P
(
2nδ > χ2

1

)
= .95, (28)

thus providing a 95% confidence upper bound for γ. In other words, we can set δ = χ2
1,.95/(2n),

where χ2
1,.95 is the 95-percentile of χ2

1. This approach hinges on the availability of a sufficiently

large sample size (in the same order as invoking the central limit theorem).

6.2 A Systematic Approach to Stress Testing

In the absence of enough data to perform a non-parametric calibration of P0 and δ as suggested

in the previous subsection, we suggest using the BDR formulation as an approach to perform

systematic stress testing. The idea is to understand how the BDR optimization performs as we

vary δ.

To motivate, consider the example of evaluating the expected shortfall or the conditional value-

at-risk (C-VaR) of a given portfolio of risk exposures. C-VaR is the conditional expected size of the

deficit faced by the company, given the unlikely event of insufficiency of statutory solvency capital.

According to Solvency II, the capital should be sufficient to withstand losses with probability not

lower than .995 during a one-year time horizon [1]. To stress test C-VaR, it is customary to

apply arbitrary shocks into the system (i.e., stressing the system by assuming that extreme events

occur). However, such shocks are typically selected in an arbitrary way. Moreover, in the presence

of multiple shocks affecting different risk factors, it might be difficult to argue that a particular

combination of shocks is more reasonable than an alternative combination of shocks.
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In contrast, the approach that we study here can be used to stress test more systematically.

Suppose that an insurance company has a given baseline model, P0, which has been calibrated using

a combination of past observations and expert knowledge. The model P0 is used to compute a given

risk measure (or performance measure), say, C-VaR. Periodically, either by internal procedures or

due to regulatory constraints, the company is requested to perform stress testing. The result of

these stress tests is the determination of capital requirement, which might typically be higher than

the C-VaR obtained under P0.

Let us assume that such a stress-testing procedure has occurred multiple times in the com-

pany—say, n times—using the customary approach described before. So the company has built

certain experience of the increase in the capital requirement relative to the C-VaR determined by

the stress-testing procedure. Based on this experience, one could calibrate values δ1, ..., δn so that

the solution to the BDR formulation matches the increased capital requirement determined dur-

ing the n sessions of stress testing. Ultimately, by choosing a single δ appropriately to embed all

these experiences, the BDR formulation automatically takes care of inducing the shocks that can

potentially cause the highest damage.

To demonstrate in a simple setting how the above could work, suppose that the shocks used in

stress-testing before are introduced by changing the parameters in P0, which is assumed to have a

density lying in a parametric family, say fθ0 , where θ0 = (θ1
0, . . . , θ

m
0 ) denotes a set of m baseline

parameters. In the past stress-testing, the company changes the value of some θj0 to θj1. Now, note

that the KL divergence between fθ and fθ0 , for any θ within a neighborhood of θ0 in the parametric

space, is ∫
log

fθ(x)

fθ0(x)
fθ(x)dx = Eθ(log fθ(X)− log fθ0(X))

where Eθ(·) denotes the expectation under fθ. By a Taylor series expansion, the above is approxi-

mately (see, e.g., [3, 4])

Eθ

(
log fθ(X)−

(
log fθ(X) +∇ log fθ(X)(θ0 − θ) +

1

2
(θ0 − θ)′∇2 log fθ(X)(θ0 − θ)

))
=

1

2
(θ0 − θ)′I(θ0 − θ),
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where ∇ log fθ and ∇2 log fθ denote the gradient and Hessian of log fθ, and I = −Eθ(∇2 log fθ(X))

is the Fisher information matrix. The last equality follows from the fact that the expected value

of the so-called score function ∇ log fθ, i.e, Eθ(∇ log fθ(X)), is 0. With this expression, suppose

that, in a simple setting, the company in a past period changes θj0 to θj1 with θj1 − θ
j
0 = dj . This

means that by selecting δ = (1/2)Ij(dj)2, where Ij is the j-th diagonal entry of I, the worst

scenario value of our BDR formulation gives a valid bound on the changed performance measure

of interest from such a parametric stress test. Suppose that this has been done many times, so

that dj , j = 1, . . . ,m, now denote the maximum perturbation difference used for each of the m

parameters. Then choosing δ = maxj=1,...,m(1/2)Ij(dj)2 will give a robust stress test result that

incorporates all past experience.

7 Simulation-Based Solution Procedure

The optimization problems that we consider in the previous sections may sometimes be difficult

to solve, in the sense that an optimal model P+ is not expressible in closed form, especially in the

context of general continuous distributions. For example, X may comprise a complicated function

or the convolution of many elementary variables. In this situation, one can resort to Monte Carlo

simulation to approximate the optimization problem.

This approach is as follows. Assume that P0 is not analytically tractable or that we do not have

access to a closed-form expression of a density of X under P0, but we can simulate i.i.d. sample

X1, ..., Xn of X from P0. Say we are interested in using BDR formulation (1) to bound Etrue (h (X)).

Using the re-expression (15), an empirical version of (15) takes the form given in (27), which we

write explicitly here as

max

n∑
i=1

h (Xi)wi (29)

s.t.

n∑
i=1

wi log (nwi) ≤ δ ,
n∑
i=1

wi = 1, wi ≥ 0 for all 1 ≤ i ≤ n.

We then proceed to solve (29) using the tools for the discrete mass case in Section 3.1. Formulation

(29) can be viewed as a so-called sample average approximation (SAA) (see [61, 39]), whose general
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idea is to replace expected value with empirical average in an optimization problem. Formulation

(29) bears some differences with conventional SAA since its decision variable also changes with the

Monte Carlo sample (depending on where the support of the sample is). [30, 31] use this approach

to quantify model risk in some financial contexts.

7.1 Simulation-Based BDR Formulation: t-Copula Baseline Model

We illustrate the above simulation-based approach. Connecting with the example in Section 5.1,

suppose now that the loss is given by L = X1 + · · ·+Xd, where (X1, . . . , Xd) has Gaussian marginal

distributions Xi ∼ N(µi, σ
2
i ) and the dependency is modeled by a t-copula. A t-copula is a multi-

variate distribution denoted by

Ctν,%(u1, . . . , ud) = tν,%
(
t−1
ν (u1), . . . , t−1

ν (ud)
)
, (u1, . . . , ud) ∈ (0, 1)d,

where tν,% is the joint distribution function of a d-dimensional t-distribution with degree of freedom

ν, mean 0, and dispersion (or scale) matrix % = (ρij) which is positive definite, and t−1
ν is the

quantile function of a standard univariate t distribution with degree of freedom ν.

Then the distribution function of (X1, . . . , Xd) is

f(x1, . . . , xd) = Ctν,%(Φµ1,σ2
1
(x1), . . . ,Φµd,σ

2
d
(xd)),

where Φµ,σ2(·) denotes the distribution function of N(µ, σ2).

It is difficult to evaluate P (L > b) in closed form, which motivates the use of Monte Carlo

simulation. An unbiased estimate of P0(L > b) can be obtained by outputting L = Φ−1
µ1,σ2

1
(tν(Z1))+

· · ·+ Φ−1
µd,σ

2
d
(tν(Zd)), where (Z1, . . . , Zd) is drawn from the multivariate t distribution tν,%. Repeat

this n times; say we get L1, . . . , Ln.

To solve the empirical BDR formulation, we use the sampled L1, . . . , Ln and combine with our

results in Section 5 as follows. We first check whether log(n/|{j : Lj > b}|) ≤ δ, where |{j : Lj > b}|
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is the cardinality of the set {j : Lj > b}. If this is the case, we let

w+
i =


1

|{j:Lj>b}| for i such that Li > b

0 for i such that Li ≤ b
.

This is the approximate worst-case distribution for L, which gives a corresponding approximate

worst scenario value 1.

Otherwise, if log(n/|{j : Lj > b}|) > δ, then output

wi =


exp(θ+)

exp(θ+)|{i:Li>b}|+|{i:Li≤b}| for i such that Li > b

1
exp(θ+)|{i:Li>b}|+|{i:Li≤b}| for i such that Li ≤ b,

where θ+ > 0 satisfies

θ+ exp (θ+) |{i : Li > b}|
exp (θ+) |{i : Li > b}|+ |{i : Li ≤ b}|

− log

(
1

n
(exp (θ+) |{i : Li > b}|+ |{i : Li ≤ b}|)

)
= δ.

The probability weights (wi)i=1,...,n on (Li)i=1,...,n form an approximation for a worst-case distribu-

tion for L, and

exp (θ+) |{i : Li > b}|
exp(θ+)|{i : Li > b}|+ |{i : Li ≤ b}|

is the approximate worst scenario value P+(L > b).

To illustrate numerically, we consider d = 5 and (X1, . . . , X5) each following a Gaussian marginal

distribution with µ1 = 2.20, µ2 = 2.73, µ3 = 2.73, µ4 = 2.42, µ5 = 2.27 (five numbers generated

uniformly between 2 and 3) and σ1 = 0.92, σ2 = 0.39, σ3 = 0.11, σ4 = 0.56, σ5 = 0.33 (five numbers

generated uniformly between 0 and 1), respectively. We use a t-copula with a degree of freedom 10

and the following dispersion matrix:

Σ =



8.19 −0.92 −3.54 3.35 −3.96

−0.92 6.09 1.07 1.37 −0.08

−3.54 1.07 7.10 1.35 −1.70

3.35 1.37 1.35 3.14 −3.73

−3.96 −0.08 −1.70 −3.73 8.73


,
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which is generated from a Wishart distribution with 5 degrees of freedom and an identity scale

matrix. We use n = 1, 000 to generate the baseline sample from the t-copula model. Setting b = 10,

the estimated loss probability is 0.232 with 95% confidence interval [0.206, 0.258]. The histograms

of the optimally weighted sample at δ = 0.1 and the baseline sample are plotted in Figures 11 and

12. As can be seen, more weights are put on the right side of b, in a uniform manner, to boost the

large loss probability. We also plot the worst-case probability against δ in Figure 13, which, similar

to the example in Section 5.1, shows a concavely increasing pattern.
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Figure 11: Approximate worst-case density under
δ = 0.1
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Figure 12: Approximate original density

8 Robust Conditional Value at Risk

This section demonstrates how our distributionally robust analysis can be further developed to

handle risk-analytic problems involving optimization. For this discussion, we focus on the problem

of computing, say, the 95% C-VaR of a random variable L that represents potential losses in a given

year, i.e.,

C-VaRtrue (α) = Etrue (L− b|L > b) ,

where Ptrue (L > b) = 1− α with α = .95.
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Figure 13: Worst-case probability against δ

It is well known [59] that if L has a continuous distribution under Ptrue, then

C-VaRtrue (α) = min
θ

(
θ +

Etrue (max(L− θ, 0))

1− α

)
.

To robustify this calculation, we extend the BDR formulation discussed earlier in a natural way, to

solve an upper and a lower bound for C-VaRtrue (α) in the form

min /maxD(P ||P0)≤δ min
θ

(
θ +

E (max(L− θ, 0))

1− α

)
, (30)

where the outer optimization problems are taken over probability models P .

Problem (30) is challenging to solve in closed form, so it is natural to consider SAA along the

discussion in Section 7. To approximate

C-VaR0 (α) = min
θ

(
θ +

E0 (max(L− θ, 0))

1− α

)
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for a given baseline model P0, we first simulate i.i.d. copies L1, ..., Ln under P0 and then solve

Ĉ-VaR0 (α, n) = min
θ

(
θ +

1

n

n∑
i=1

max(Li − θ, 0)

1− α

)
. (31)

One property of this estimate is, from the theory of SAA, that under mild assumptions (for instance,

if L has a continuous density under P0),

Ĉ-VaR0 (α, n) ≈ C-VaR0 (α) +
σ̂ (θ∗0 (n))

n1/2
Z, (32)

where Z is a standard Gaussian random variable,

σ̂2 (θ∗0 (n)) =
1

n− 1

n∑
j=1

(
θ∗0 (n) +

max(Li − θ∗0 (n) , 0)

1− α
− Ĉ-VaR0 (α, n)

)2

,

and θ∗0 (n) is the solution obtained by solving (31). In simple words, σ̂2 (θ∗0 (n)) is the empirical

estimator of the variance of the objective function evaluated at the estimated optimal solution in

(31).

Approximating (30) involves adding an outer optimization problem. That is, we still keep

L1, ..., Ln simulated under P0, but we consider

min /maxw1,...wn
min
θ

(
θ +

n∑
i=1

wi
max(Li − θ, 0)

1− α

)
(33)

s.t.
n∑
i=1

wi log (nwi) ≤ δ

n∑
i=1

wi = 1, and wi ≥ 0 for all 1 ≤ i ≤ n.

The above discussion is similar to the BDR settings discussed before. However, there are also

some differences. One of these is that calibrating a suitable δ from the non-parametric, data-driven

view in Section 6.1 needs some modification in the C-VaR setting. It turns out that, with i.i.d. data

of size n, δ should be selected so that P
(
2nδ > χ2

2

)
= 1− β, if we want the optimization output to

bound the true C-VaR with (1− β) confidence. Note that the degree of freedom of the chi-square
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distribution has increased from one to two compared with the discussion in Section 6. The reason

for this change is the appearance of the inner minimization in problem (33), which introduces

another equality constraint in the empirical likelihood derivation outlined in the Appendix, in order

to capture the requirement that the derivative of the objective function with respect to θ should

vanish. This derivation is similar to that given in Section 6, and further details can be found in

[45, 46]. Under additional assumptions, the calibration can be further tightened; see, e.g., [25].

Another point to note is that while the outer maximization formulation in (33) is a convex

program, the minimization one is not. Heuristic procedures, such as multi-start or alternating

minimization should be employed in the later case.

8.1 Numerical Example for C-VaR Estimation

We consider the problem of estimating C-VaR in which we assume that the loss L follows a standard

normal distribution under P0. We set α = 0.9 and generate n = 1, 000 observations. Figure 14

shows the upper and lower robust bounds from (33) against different values of δ, showing how the

width of the robust interval widens at a decreasing rate as δ increases.

Moreover, we also test the performance of the 95% (i.e., β = 0.05) confidence bounds using

(33), by selecting δ such that P (2nδ > χ2
2) = 1 − β. We carry out the cases n = 50 and n = 100.

Table 1 reports the point estimate of the coverage probability, mean lower and upper bounds, and

the mean and standard deviation of the interval width for empirical likelihood, while Table 2 shows

the results using the classical SAA theory via (32). These quantities are obtained from repeating

the experiments multiple times, each time generating a new data set. The coverage probability,

for instance, outputs the proportion of repetitions in which the constructed interval covers the

truth. We see that empirical likelihood gives a higher and more accurate coverage, though the SAA

counterpart gives tighter and less varied interval width, at least for this example we conducted.

This demonstrates some benefits of using our BDR formulation with empirical likelihood calibration

over classical SAA, in generating intervals that cover the truth more frequently and hence are more

robust. On the downside, however, these more robust intervals pay the price of being generally

wider. The bottom line is that for a user who is risk-averse, the BDR approach with empirical

likelihood calibration should be preferable over SAA.
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Figure 14: Worst-case C-VaR against δ

n Coverage Mean lower Mean upper Mean interval Standard deviation
probability bound bound width of interval width

50 0.90 1.22 2.33 1.11 0.43
100 0.94 1.32 2.26 0.94 0.26

Table 1: Statistical performances of empirical likelihood for different sample sizes

n Coverage Mean lower Mean upper Mean interval Standard deviation
probability bound bound width of interval width

50 0.86 1.21 2.26 1.05 0.47
100 0.84 1.34 2.05 0.71 0.21

Table 2: Statistical performances of standard confidence interval of SAA for different sample sizes

9 Additional Considerations

We discuss two alternatives that can be used for robust performance analysis. The first one involves

the use of moment constraints, and the second one involving different notions of discrepancy.

9.1 Robust Performance Analysis via Moment Constraints

In some situations, it may not be possible to construct an explicit baseline distribution P0. Alter-

natively, if information on moments is available, we might consider worst-case optimization under
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such information, in the form

max E (h(X))

s.t. E (vi(X)) ≤ αi, i = 1, . . . , s

E(vi(X)) = αi, i = s+ 1, . . . ,m,

(34)

where the maximization is over all probability models P (we focus on maximization here to avoid

redundancy). This is a general formulation that has m moment constraints, and vi(·) can represent

any function. For instance, for moment constraints involving means and variances, we can select

v1(x) = x and v2(x) = −x, v3(x) = x2, v4(x) = −x2, and α1 = µ, α2 = −µ, α3 = σ, α4 = −σ,

and all constraints could be inequalities. There is a general procedure for solving these problems

which builds on linear programming. The most tricky part involves finding the support of the

distribution. Observe that, if the support of the worst-case distribution is known, then problem

(34) is just a problem with a linear objective function and linear constraints, and is solvable using

standard routines.

Finding the support involves a sequential search. More precisely, the procedure for solving (34)

is shown in Algorithm 1 (which borrows from, e.g., [9]).

We discuss Algorithm 1 in the following several aspects:

1. Interpretation: The output of the procedure is an exact optimal value of (34). The worst-case

probability distribution is a finite-support discrete distribution on {x1, . . . , xτ} with weights

{pk1, . . . , pkτ} obtained in the last iteration.

2. Comparison with the BDR formulation: Unlike the BDR formulation, (34) does not have a

baseline input distribution to begin with.

3. Computational efficiency: Step 1 in each iteration of Algorithm 1 can be carried out by

standard linear programming solver, which can output both the optimal {pj} and the dual

multipliers {θk, πk1 , . . . , πkm}. Step 2 is a one-dimensional line search if X is one-dimensional.

4. Minimization counterpart: For a minimization problem, simply replace h with −h in the

whole procedure of Algorithm 1, except in the last step we output
∑τ

j=1 h(xj)p
k
j .
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Algorithm 1 Generalized linear programming procedure for solving (34)

Initialization: An arbitrary probability distribution on the support {x1, . . . , xL}, where l ≤ m+1,
that lies in the feasible region in (34). Set τ = l.
Procedure: For each iteration k = 1, 2, . . ., given {x1, . . . , xτ}:
1. Master problem solution: Solve

max
∑τ

j=1 h(xj)pj
s.t.

∑τ
j=1 vi(xj)pj ≤ αi, i = 1, . . . , s∑τ
j=1 vi(xj)pj = αi, i = s+ 1, . . . ,m∑τ
j=1 pj = 1

pj ≥ 0, j = 1, . . . , τ

Let {pk1, . . . , pkτ} be the optimal solution. Find the dual multipliers {θk, πk1 , . . . , πkm} that satisfy

θk +
∑m

i=1 π
k
i vi(xj) = h(xj), if pj > 0, j = 1, . . . , τ

θk +
∑m

i=1 π
k
i vi(xj) ≥ h(xj), if pj = 0, j = 1, . . . , τ

πki ≥ 0, i = 1, . . . , s

2. Subproblem solution: Find xτ+1 that maximizes

ρ(x; θk, πk1 , . . . , π
k
m) = h(x)− θk −

m∑
i=1

πki vi(x)

If ρ(xτ+1; θk, πk1 , . . . , π
k
m) > 0, then let τ = τ + 1; otherwise, stop the procedure, and {x1, . . . , xτ}

are the optimal support points, with {pk1, . . . , pkτ} the associated weights.
After the last iteration, output

τ∑
j=1

h(xj)p
k
j
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9.2 Renyi Divergence as Discrepancy Notion

While we have presented our approach based on the KL divergence or relative entropy, other distance

notions can be used. For example, we could consider the BDR formulation using the so-called Renyi

divergence of degree α > 1, defined via

Dα (P ||P0) =
1

α− 1
logE0

((
dP

dP0

)α)
.

As α→ 1, we recover the KL divergence or relative entropy, i.e.,

Dα (P ||P0)→ D (P ||P0) = E

(
log

(
dP

dP0

))
.

The corresponding distributionally robust formulation takes the form

min /max E (h (X)) s.t. Dα (P ||P0) ≤ δ,

and the optimal solution is obtained roughly as follows. First, given θ1, θ2 > 0, define

Z+ (θ1, θ2) = max(θ1 + θ2h (X) , 0)1/(1−α),

with θ1, θ2 chosen so that

E0 (Z+ (θ1, θ2)) = 1, E0 (Z+ (θ1, θ2)α) = exp (δ (α− 1)) ,

which comes from KKT conditions analogous to the one in Section 3.1. Then, a worst-case distri-

bution is defined such that, for any set A,

P+ (X ∈ A) = E0 (Z+ (θ1, θ2) I (X ∈ A)) .

See, e.g., [14, 5] for related derivations.

The use of Renyi divergence typically leads to less conservative estimates (as we discuss mo-

mentarily in the next subsection), but the parameter δ might be more difficult to estimate (e.g., the
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empirical likelihood machinery discussed in Section 6.1 may not apply readily). Next, we consider

rare-event estimation to develop more intuition and contrast the effect of using Renyi divergence

from KL.

9.2.1 Robust Rare-Event Analysis via Renyi Divergence

We consider the case in which h (X) = I (X ∈ B), so that we have

P+ (X ∈ B) = (θ1 + θ2)1/(1−α) P0 (X ∈ B) ,

and

E0 (Z+ (θ1, θ2)α) = θ
α/(1−α)
1 P0 (X /∈ B) + (θ1 + θ2)α/(1−α) P0 (X ∈ B) = exp (δ (α− 1)) ,

E0 (Z+ (θ1, θ2)) = θ
1/(1−α)
1 P0 (X /∈ B) + (θ1 + θ2)1/(1−α) P0 (X ∈ B) = 1.

Letting (θ1 + θ2)α/(1−α) = η/P0 (X ∈ B), and substituting in the previous display, we have

θ
α/(1−α)
1 (1− P0 (X ∈ B)) + η = exp (δ (α− 1)) ,

θ
1/(1−α)
1 (1− P0 (X ∈ B)) + η1/αP0 (X ∈ B)1−1/α = 1.

As P0 (X ∈ B) → 0, since α > 1, we can select θ1 ≈ 1 and (θ1 + θ2)1/(1−α) ≈ η1/α/P0 (X ∈ B)1/α,

with η ≈ exp (δ (α− 1))− 1, concluding that

P+ (X ∈ B) ≈ (exp (δ (α− 1))− 1)1/α P0 (X ∈ B)1−1/α .

Let us revisit the example discussed at the end of Section 5. Assume that X is exponentially

distributed with mean one under P0. Select B = [b,∞) and α = 2. Then we have

P+ (X > b) ≈ (exp (δ)− 1)1/2 exp (−b/2) .

In contrast, when using the KL divergence for the case of exponentially distributed X, we obtain

a much lower rate of decay (of the form δ/b for b large; see (23)). In this sense, KL divergence
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induces a much more cautious robust methodology than Renyi divergence. To illustrate this last

point, we compare the BDR formulations using KL and Renyi divergences with α = 2. We use

h(X) = I(X > b) and an exponential baseline with rate 1, where we set b to be the 99-percentile of

this baseline. We solve the BDR formulations using the technique in Section 5 and the discussion

above. Figure 15 shows that the bounds obtained from the Renyi divergence are tighter than KL in

this small probability estimation context. This is noticeable especially for the upper bounds where

the KL divergence gives values more than double in magnitude than Renyi as δ increases.
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Figure 15: Robust estimates against δ using Renyi and KL divergences

10 Conclusions

We have discussed a systematic approach to quantify potential model errors based on the BDR

formulation, which is a convex optimization problem in the space of probability distributions. This

approach roots in areas including economics, statistics and operations research, and aims to compute

worst-case bounds on the performance or risk measure when the model deviates from a baseline

model in the KL sense. We have demonstrated several properties and advantages of this approach,

including its non-parametric nature, generality in applying to various situations, and computational

tractability.

Building upon the BDR formulation, we have demonstrated how to extend our approach to
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applications that are relevant to actuarial practice, including studying the impact of dependence

in multivariate models, the impact of model uncertainty in rare-event estimation and in computing

risk-analytic measures that involve optimization such as C-VaR. We have also discussed methods

to calibrate the feasible region size in BDR formulations, from the viewpoint of empirical likelihood

and stress testing. Lastly, we have investigated additional ways to define the model uncertainty

region based on Renyi divergence or imposition of moment constraints.

11 Appendix: Approximating Distribution for the Size of the Fea-

sible Region

Similar to the use of the KKT conditions for the solution of the BDR problem formulation, we

obtain that the optimal solution satisfies

wi (θ) =
exp (θh (Xi))∑n
j=1 exp (θh (Xj))

,

where θ satisfies
∑n

i=1wi (θ) (h (Xi)− γ) = 0, namely,

∑n
i=1 exp (θh (Xi)) (h (Xi)− γ)∑n

j=1 exp (θh (Xj))
= 0. (35)

Now suppose that indeed Etrue (h (X)− γ) = 0, and let us consider h̄ (x) = h (x) − γ. We can

rewrite (35)—after multiplying by
∑n

j=1 exp (θh (Xj)− γθ) /n1/2) —as

1

n1/2

n∑
i=1

exp
(
θh̄ (Xi)

)
h̄ (Xi) = 0.

Then let θ = η/n1/2 and perform a Taylor expansion to conclude that

1

n1/2

n∑
i=1

h̄ (Xi)

(
1 + η

h̄ (Xi)

n1/2
+ · · ·

)
= 0. (36)
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Recall that the central limit theorem states the approximation in distribution

1

n1/2

n∑
i=1

h̄ (Xi) ≈ σZ,

where σ2 = V artrue (h (X)), and Z is standard Gaussian. Therefore, solving for η in (36) and

ignoring lower-order error terms, we obtain that

η ≈ − 1

n1/2

∑n
i=1 h̄ (Xi)

1
n

∑n
i=1 h̄ (Xi)

2 ≈
Z

σ
.

Now consider Rn (γ), which can be written as

Rn (γ)

=

n∑
i=1

wi (θ) log

(
exp

(
θh̄ (Xi)

)
n−1

∑n
j=1 exp

(
θh̄ (Xj)

))

= θ
n∑
i=1

wi(θ)h̄(Xi)− log

(
1

n

n∑
i=1

exp(θh̄(Xi))

)

=
θ 1
n

∑n
i=1 exp(θh̄(Xi))h̄(Xi)

1
n

∑n
i=1 exp(θh̄(Xi))

− log

(
1

n

n∑
i=1

exp(θh̄(Xi))

)

=
θ
(

1
n

∑n
i=1 h̄(Xi) + θ

n

∑n
i=1 h̄(Xi)

2 + · · ·
)

1 + θ
n

∑n
i=1 h̄(Xi) + θ2

2n

∑n
i=1 h̄(Xi)2 + · · ·

−

 θ

n

n∑
i=1

h̄(Xi) +
θ2

2n

n∑
i=1

h̄(Xi)
2 − θ2

2

(
1

n

n∑
i=1

h̄(Xi)

)2

+ · · ·


≈ θ

n

n∑
i=1

h̄(Xi) +
θ2

n

n∑
i=1

h̄(Xi)
2

− θ2

(
1

n

n∑
i=1

h̄(Xi)

)2

− θ

n

n∑
i=1

h̄(Xi)−
θ2

2

 1

n

n∑
i=1

h̄(Xi)
2 −

(
1

n

n∑
i=1

h̄(Xi)

)2


=
θ2

2

 1

n

n∑
i=1

h̄(Xi)
2 −

(
1

n

n∑
i=1

h̄(Xi)

)2


≈ η2σ2

2n

≈ Z2

2n
,
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where the third last step follows by collecting terms up to θ2. Therefore, we conclude that

2nRn (γ)⇒ χ2
1, as indicated in our discussion leading to (28).
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