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ABSTRACT

We propose an iterative algorithm to approximate the solution to an optimization problem that arises
in estimating the value of a performance metric in a distributionally robust manner. The optimization
formulation seeks to find a bivariate distribution that provides the worst-case estimate within a specified
statistical distance from a nominal distribution and satisfies certain independence condition. This formulation
is in general non-convex and no closed-form solution is known. We use recent results that characterize
the local “sensitivity” of the estimation to the distribution used, and propose an iterative procedure on the
space of probability distributions. We establish that the iterations of solutions are always feasible and that
the sequence is provably improving the estimate. We describe conditions under which this sequence can
be shown to converge to a locally optimal solution. Numerical experiments illustrate the effectiveness of
this approach for a variety of nominal distributions.

1 INTRODUCTION

In many computational settings in engineering and management operations, the model assumed on the
underlying system components is based on some convenient approximation of the truth. When the actual
probability distribution that governs the model is different from the assumption, the decision output can
potentially deviate to a substantial degree. This is commonly referred to as model uncertainty or ambiguity,
and there is a sizeable literature devoted to studying this issue. For example, model selection methods based
on classical and Bayesian statistics (Draper 1995; Chick 2001) and construction of input-adjusted confidence
intervals have been proposed in large simulation studies. The latter can be done via delta-method approach
(Zouaoui and Wilson 2004) or more sophisticated techniques, such as metamodel-assisted bootstrapping
(Barton, Nelson, and Xie 2010; Barton 2012). In decision analysis, various forms of robust optimization
have been introduced. The main streams of work include deterministic robust optimization that represents
model ambiguity as deterministic uncertainty sets (Bertsimas, Brown, and Caramanis 2011; Ben-Tal and
Nemirovski 2002), and distributionally robust optimization, where the underlying probability distributions
are assumed to be ambiguous but come from a convenient family (Lim, Shanthikumar, and Shen 2006; Hu
and Hong 2013). The latter approach is also particularly popular among the control community (Hansen
and Sargent 2011), and recently, it has been applied to derive so-called robust Monte Carlo and has been
used to compute robust bounds for performance measures that arise in the context of finance (Glasserman
and Xu 2012).

In this paper, we consider a general form of robust estimation problems in the spirit of Glasserman
and Xu (2012), which aims to generate bounds for performance measures that are subject to model
uncertainty. Typically, these problems can be formulated as constrained maximization and minimization of
the performance measure, say E[h(X)], where h(·) is the cost function that is known (but not necessarily in
closed-form) and X is the random component. The optimization is over the probability distribution P of X
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that generates the expectation E[·]. Constraints are placed on the probability P to lie within an uncertainty
set; one common example of such uncertainty set is a ball around a benchmark distribution, say, P0, measured
via a certain statistical distance, such as Chi-Square or Kullback-Leibler divergence. For instance, the cost
function h can be the indicator of whether a portfolio with underlying stock price X hits a certain level
of loss. While the process driving the stock is not known completely, portfolio managers typically have
certain degree of confidence about the right distribution. The idea of the maximization program under the
distribution constraint is to find the worst possible tail probability under such confidence. Similarly, the
minimization program can be viewed as the best possible scenario. Depending on the application, these
programs can have different interpretations and variations.

In many situations, a careful set-up of the constraints and the program formulation leads to tractable
solution. For example, consider maximizing E f [h(X)] subject to a Kullback-Leibler constraint D(Pf ‖P0)≤η ,
where D denotes the distance between the distribution Pf on X and the benchmark P0, and η captures
the level of confidence around the benchmark. This formulation has a neat explicit characterization of the
optimal solution, which can be represented as an exponential change of measure on the cost h(X) and an
exponential parameter that is related to the confidence level η (Hansen and Sargent 2011). Analogous
results have been shown to hold under other statistical distances, such as χ2-distance (Chen and Lam 2013),
with different forms of representation for the optimal changes of measure.

Our main focus of this paper is a natural scenario, especially in the context of simulation, where such
tractable formulation breaks down. In particular, we consider restrictions that are placed on the marginal
distributions of the random variate X, defined as lower-dimensional (typically univariate) distributions that
describe the probability law for sub-sets of components of X. Previous work, such as Delage and Ye
(2010) and Bertsimas, Popescu, and Sethuraman (2000), has considered marginal moment constraints in
robust estimation formulation. In this article, we shall study marginal constraints based on χ2-distance
on a bivariate random vector that generates the objective function E f [h(X1,X2)], together with a natural
constraint that the individual components Xi are i.i.d.. In other words, we restrict the space of feasible
distributions P to those that are product form bivariate:

max E f [h(X ,Y )]
subject to X ,Y ∼ Pf , i.i.d.

χ2(Pf ,P0)≤ η

Pf ∈P0

(1)

(the min formulation is analogous) where the constraint is on the χ2-distance between Pf and P0, given by
χ2(Pf ,P0) = E0(dPf /dP0−1)2, with dPf /dP0 being the Radon-Nikodym derivative of Pf with respect to
P0. The set P0 represents all Pf that are absolutely continuous with respect to P0, a condition needed for
χ2-distance to be defined. The important feature here is that X and Y are assumed to be i.i.d. and they
are both generated according to Pf , which is uncertain. The difficulty with the optimization problem (1)
is that it is usually non-convex, and that no explicit form of the optimal solution is available.

Such formulation, in its more general form, appears commonly in stochastic systems, such as queueing
networks, when many customers in the system each contribute as individual random sources and the
associated vector of inputs (inter-arrival times and service-times) across the customers are i.i.d. The max
and the min optimal values for the formulation type in (1) will together give a bounding interval for the
performance measure subject to the specified constraints. As another motivating example, consider the
following inventory model that will be studied in the numerical experiments section:

Example 1 A retailer has to decide on the size of order to place with a manufacturer that operates a
batch-processing facility. The retailer requires that the order quantity q be sufficient to meet demand in two
successive time periods, where each period’s demand di, i = 1,2 is i.i.d. The distribution of di is determined
to be P0 by running the Chi-Square test statistic over available data, which returns an uncertainty estimate
of χ2(P,P0) ≤ η . A profit of p units is realized on every sale, but the manufacturer charges a cost of c
units for unsold inventory carried over at the end of each period. The net expected profit the retailer stands
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to make under the nominal distribution P0 is

E0h(d1,d2,q) = pE0[min{d1 +d2,q}]− cE0[(q−d1)
+]− cE0[(q−d1−d2)

+]. (2)

Note that this decision problem is distinct from the classical newsvendor problem because of the presence
of the extra carry-over cost charged at the end of the first period, represented in (2) by the middle term.
Such formulations are typical of batch-produced goods such as steel slabs and hot-rolled coils from steel
manufacturing plants.

We view (1) as an initial attempt to tackle more general robust estimation problems. With more
involved analysis, our framework can be extended to the case where the random vector X has more than two
i.i.d. components. It is also plausible that other statistical distances, such as Kullback Leibler divergence,
can be used, as long as they possess a similar type of “local expansion” behavior that we shall discuss
momentarily. Another generalization one might consider is the inclusion of moment constraints considered
in, e.g., Delage and Ye (2010); we believe our method can be extended for this problem instance too.

The main goal of this paper is to derive a descent-type iterative procedure to find local optimum of
(1). A tool that we shall utilize is the optimality characterization of (1) when η is chosen small enough,
as a local expansion in terms of η , which was recently studied in Lam (2013) and Chen and Lam (2013).
The result states that, for a bivariate cost function h, as η → 0,

max
χ2(Pf ,P0)≤η

E f [h(X ,Y )] = E0[h(X ,Y )]+ sd0(H0(X))
√

η +o(η) (3)

where H0(x) is a “symmetrization” form of the cost function h, defined as

H0(x) = E0[h(X ,Y )|X = x]+E0[h(X ,Y )|Y = x]

and sd0(·) denotes the standard deviation under P0. Note that sd0(·) only acts on a single X in (3). This
“symmetrization” arises in a “product rule” when differentiating the Lagrangian formulation in (1) (Lam
2013); alternatively, it can also be derived using a variation of Hoeffding decomposition (Serfling 2009). The
key observation, in either method of derivation, is that on a local level, the optimal probability distribution
within χ2(Pf ,P0)≤ η can be characterized by the change of measure

L∗(x) :=
dPf

dP0
(x) = 1+

H0(x)−E0H0(X)

sd0(H0(X))

√
η (4)

assuming that sd0(H0(X)) > 0 and η is small enough, under certain regularity conditions on h (such as
boundedness, which we shall state in the sequel). In other words, the approximation (3) can be achieved
by

E0[h(X ,Y )L∗(X)L∗(Y )] = E0[h(X ,Y )]+ sd0(H0(X))
√

η +o(η) (5)

We propose an iterative scheme whose local move is based on (5); Section 2 provides an outline of the
proposed iterative procedure. In Section 3, we will prove some theoretical guarantees on the procedure.
We show that our scheme is always feasible and ascending for the maximization formulation (1). Note
that our proof does not need to know (3); it merely provides a guidance to find an ascending local move.
Under mild boundedness conditions on the function h, we establish in Sub-section 3.2 that this sequence
must then converge. Sub-section 3.3 provides a local optimality guarantee on the limit under stronger
assumptions on the function h.

The iterative procedure described in Section 2 can be computed exactly for any benchmark distribution
P0 that has a discrete support. Section 4 describes a heuristic scheme to apply this procedure using a particle
approach to the case where the support of the nominal distribution is continuous. Section 5 applies this
heuristic to the inventory model in Example 1 under two assumptions of the benchmark P0 and illustrates
the efficiency of this approach.
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2 THE ALGORITHM

We state an algorithm to approximate the solution of (1). Note that we can rewrite (1) in terms of the
likelihood ratio L := dPf /dP0 as

max E0[h(X ,Y )L(X)L(Y )]
subject to E0(L−1)2 ≤ η

L ∈L
(6)

where the χ2-distance is expressed as E0(L−1)2, and L = {L : E0[L] = 1, L ≥ 0 a.s.}. It is easy to see
that in general the program (6) is non-convex. As such, it is impossible to find a scheme that is guaranteed
to approach the global optimum. We shall instead focus on finding the local optimum of (6). One heuristic
to find the global optimum is to, for instance, run our algorithm at different initial points in the feasible
set, in the space L . Also, throughout our analysis we assume that h is bounded.

Suppose we start from the initial distribution P0. At each step k, suppose that the current distribution is
updated to Pk, and the distance from the benchmark is Dk := χ2(Pk,P0). Moreover, let Lk := dPk/dP0 and

Hk(x) = Ek[h(X ,Y )|X = x]+Ek[h(X ,Y )|Y = x]

be the “symmetrization” of the system under Pk, with Ek[·] being the expectation taken with respect to the
distribution Pk. We also let H̄k(x) = Hk(x)−EkHk(X) as the centered version of Hk(x). Then, the following
quantities are needed to define the next movement for Pk+1:

1. Define

Ak :=− sdk(Hk(X))3

2(Ek[h(X ,Y )H̄k(X)H̄k(Y )])

2. Define

Bk := min
{
−sdk(Hk(X))

H̄k(x)
: x ∈ supp(Pk) with H̄k(x)< 0

}
3. Define

Ck := sdk(Hk(X))

√
(E0[Lk(X)2H̄k(X)])2 +E0[Lk(X)2H̄(X)2](η−Dk)−E0[Lk(X)2H̄k(X)]

E0[Lk(X)2H̄k(X)2]

where supp(Pk) denotes the support of Pk. We introduce a step size parameter δk+1, which defines the
χ2-distance that one should move in the next (k+1)-th step. To compute this parameter, we divide into
two cases. Suppose that Hk(X) is non-degenerate under Pk,

1. If Ek[h(X ,Y )H̄k(X)H̄k(Y )]< 0, then√
δk+1 = min{Ak,Bk,Ck}

2. If Ek[h(X ,Y )H̄k(X)H̄k(Y )]≥ 0, then √
δk+1 = min{Bk,Ck}

Next, we let

νk(x) =
H̄k(x)

sdk(Hk(X))
.

With δk+1 and νk(·), we define our change of measure at the (k+1)-th step as

Lk+1(x) = Lk(x)
(

1+νk(x)
√

δk+1

)
(7)
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i.e. the probability distribution at the (k+1)-th step is

Pk+1(x) = Pk(x)
(

1+νk(x)
√

δk+1

)
(8)

This updates the probability distribution. After each iteration, the values of Dk+1 and Hk+1(x) are also
updated. Repeat the procedure until either

1. Dk = η or
2. Hk(x) is degenerate under Pk.

We shall provide a few remarks on the algorithm. First, we explain some intuition on the purpose of
the quantities Ak, Bk and Ck:

1. Ak ensures that the algorithm is strictly ascending from step k to k+1. As we shall see, the form of
Ak comes from the analysis of a quadratic form that represents the increment from step k to k+1.

2. Bk ensures that the next probability distribution Pk+1 is a valid distribution, i.e. the likelihood ratio
that represents the change of measure at each step has to be non-negative.

3. Ck ensures that the next probability distribution Pk+1 is feasible, i.e. χ2(Pk+1,P0)≤ η .

We note that the form of the change of measure (7) resembles the best local movement as in (5). The
parameter δk captures the confidence level such that the linear approximation in (3) holds. If δk is chosen
small enough, we can then argue that the movement is ascending in the objective value. The quantities Ak,
Bk and Ck combine to provide such guarantee.

In the next section, we will show rigorously that the algorithm is always strictly ascending, until one of
the two stopping criteria holds. The first criterion means that a boundary point of the set χ2(Pf ,P0)≤ η is
reached. The second criterion, roughly speaking, is a condition for reaching a “stationary point”. We will
discuss in Sub-section 3.3 a semi-definite condition that guarantees that this “stationary point” is a local
maximum in certain sense (the definition of local maximum is not entirely obvious, since χ2-distance is
not a metric).

3 THEORETICAL PROPERTIES

In this section we discuss a few properties of our algorithm. These include the strict ascendency of the
algorithm, an optimality condition on the end value of the algorithm, and a convergence property of the
“derivative” term sdk(Hk(X)) in (5) in a sense that we shall discuss.

3.1 Ascendency Guarantee

The first property can be summarized as follows:
Theorem 1 Suppose the cost function h is bounded. The algorithm in Section 2 is always feasible, i.e.
χ2(Pk,P0) ≤ η , and strictly ascending, i.e. Ek+1[h(X ,Y )] > Ek[h(X ,Y )], until one of the two stopping
criteria is met.

Proof. Note that
√

δk+1 is the minimum of either the three terms Ak, Bk and Ck or the two terms Bk and
Ck, under the corresponding conditions in Section 2. Related to the discussion before, we shall show that

1. Ak ensures that the algorithm is strictly ascending from step k to k+1.
2. Bk ensures that the next probability distribution Pk+1 is a valid distribution.
3. Ck ensures that the next probability distribution Pk+1 is feasible.

We shall show these one by one:
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Ascendency. First, by choosing
√

δk+1 ≤ Ak, we have

Ek+1[h(X ,Y )] = Ek

[
h(X ,Y )

(
1+

H̄k(X)

sdk(Hk(X))

√
δk+1

)(
1+

H̄k(Y )
sdk(Hk(Y ))

√
δk+1

)]
= Ek[h(X ,Y )]+

Ek[h(X ,Y )(H̄k(X)+ H̄k(Y ))]
sdk(Hk(X))

√
δk+1

+
Ek[h(X ,Y )H̄k(X)H̄k(Y )]

Vark(Hk(X))
δk+1

= Ek[h(X ,Y )]+
Ek[Ek[h(X ,Y )|X ]H̄k(X)]+Ek[Ek[h(X ,Y )|Y ]H̄k(Y )]

sdk(Hk(X))

√
δk+1

+
Ek[h(X ,Y )H̄k(X)H̄k(Y )]

Vark(Hk(X))
δk+1

= Ek[h(X ,Y )]+ sdk(Hk(X))
√

δk+1 +
Ek[h(X ,Y )H̄k(X)H̄k(Y )]

Vark(Hk(X))
δk+1 (9)

by using the i.i.d. assumption on X and Y in the last equality. Suppose Ek[h(X ,Y )H̄k(X)H̄k(Y )]≥ 0, then
picking a positive δt+1 will make the algorithm ascending; if Ek[h(X ,Y )H̄k(X)H̄k(Y )]< 0, then

√
δk+1 ≤ Ak

guarantees that

sdk(Hk(X))
√

δk+1 +
Ek[h(X ,Y )H̄k(X)H̄k(Y )]

Vark(Hk(X))
δk+1 ≥ 0.

In fact, picking √
δk+1 =−

sdk(Hk(X))3

2Ek[h(X ,Y )H̄k(X)H̄k(Y )]

maximizes the increase in Ek[h(X ,Y )]. Hence the algorithm is strictly ascending.

Validity of probability distribution. Note that we have defined in (8) that

dPk+1

dPk
= 1+νk(x)

√
δk+1.

To guarantee that Pk+1 is valid, we must have Ek[dPk+1/dPk] = 1, which is easily seen to hold since
Ek[1+νk(X)

√
δk+1] = 1+Ek[νk(X)]

√
δk+1 = 1. Secondly, we also need δk+1 to satisfy the constraint

1+νk(x)
√

δk+1 ≥ 0

for all x ∈ supp (Pk). We need only scrutinize the x that have νk(x)< 0, or H̄k(x)< 0, and make sure that√
δk+1 ≤−

1
νk(x)

for all such x. This gives Bk.

Feasibility. Finally, we need to ensure that Dk+1 = χ2(Pk+1,P0)≤ η . Note that

Dk+1 = χ
2(Pk+1,P0) = E0[Lk(X)2(1+νk(x)

√
δk+1)

2]−1

= E0[Lk(X)2 +2Lk(X)2
νk(X)

√
δk+1 +Lk(X)2

νk(X)2
δk+1]−1

= E0[Lk(X)2]−1+2E0[Lk(X)2
νk(X)]

√
δk+1 +E0[Lk(X)2

νk(X)2]δk+1

= Dk +2E0[Lk(X)2
νk(X)]

√
δk+1 +E0[Lk(X)2

νk(X)2]δk+1.
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Hence we need
Dk +2E0[Lk(X)2

νk(X)]
√

δk+1 +E0[Lk(X)2
νk(X)2]δk+1 ≤ η .

Since this is quadratic and convex in
√

δk+1, we need that√
δk+1 ≤ ξ

where ξ is the positive root of the equation

Dk +2E0[Lk(X)2
νk(X)]

√
δk+1 +E0[Lk(X)2

νk(X)2]δk+1 = η .

This gives √
δk+1 ≤

√
(E0[Lk(X)2νk(X)])2 +E0[Lk(X)2νk(X)2](η−Dk)−E0[Lk(X)2νk(X)]

E0[Lk(X)2νk(X)2]
.

Note that the right hand side above is Ck. This will ensure that Dk+1 ≤ η .

3.2 Convergence

We shall also discuss a convergence property of the algorithm. Let us focus on how the algorithm behaves
in the interior points of the set χ2(Pf ,P0)≤ η . In particular, we have the following:
Proposition 1 Consider a bounded cost function h. Suppose η = ∞, i.e. the constraint χ2(Pf ,P0) ≤ η

is removed from (1). Then our algorithm will converge to a probability distribution P∗ that satisfies
Var∗(H∗(X)) = 0 (where Var∗(·) and H∗(·) are defined as the variance and symmetrization of h under P∗).

Proof. Note that in this case, the quantityCk in our algorithm is not needed. If Ek[h(X ,Y )H̄k(X)H̄k(Y )]< 0,
then

√
δk+1 = min{Ak,Bk}, otherwise

√
δk+1 = Bk.

We shall prove by contradiction. Suppose that the algorithm does not lead the quantity Vark(Hk(X))
to 0, then there must exist a subsequence {ki}i=1,2,... such that Varki(Hki(X))> ε for all i for some ε > 0.

Now, from the calculation in (9), we know the increment Ek+1[h(X ,Y )]−Ek[h(X ,Y )] is

sdk(Hk(X))
√

δk+1 +
Ek[h(X ,Y )H̄k(X)H̄k(Y )]

Vark(Hk(X))
δk+1. (10)

Consider the step ki, and we shall analyze (10) explicitly. We shall divide into three cases:

1. Eki [h(X ,Y )H̄ki(X)H̄ki(Y )]< 0 and
√

δki+1 = Aki: We have (10) equal to

sdki(Hki(X))Aki +
Eki [h(X ,Y )H̄ki(X)H̄ki(Y )]

Varki(Hki(X))
A2

ki

= sdki(Hki(X))

(
− sdki(Hki(X))3

2Eki [h(X ,Y )H̄ki(X)H̄ki(Y )]

)
+

Eki [h(X ,Y )H̄ki(X)H̄ki(Y )]
Varki(Hk(X))

(
− sdki(Hki(X))3

2Eki [h(X ,Y )H̄ki(X)H̄ki(Y )]

)2

= − Varki(Hki(X))2

4Eki [h(X ,Y )H̄ki(X)H̄ki(Y )]
(11)

But since h is bounded, so is −Eki [h(X ,Y )H̄ki(X)H̄ki(Y )], and since we assume Varki(Hki(X))> ε ,
we have (11) bounded away from 0 (and positive).
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2. Eki [h(X ,Y )H̄ki(X)H̄ki(Y )] < 0 and
√

δki+1 = Bki: Let H̄∗k := ess infx∈supp(Pk):H̄k(x)<0H̄k(x) < 0. In
this case, since Aki ≥ Bki , we have

− sdki(Hki(X))3

2Eki [h(X ,Y )H̄ki(X)H̄ki(Y )]
≥−sdki(Hki(X))

H̄∗ki

which gives

−Eki [h(X ,Y )H̄ki(X)H̄ki(Y )]≤−
H̄∗ki

Varki(Hki(X))

2
(12)

Note that (10) is equal to

sdki(Hki(X))Bki +
Eki [h(X ,Y )H̄ki(X)H̄ki(Y )]

Varki(Hki(X))
B2

ki

= sdki(Hki(X))

(
−sdki(Hki(X))

H̄∗ki

)
+

Eki [h(X ,Y )H̄ki(X)H̄ki(Y )]
Varki(Hki(X))

Varki(Hki(X))

(H̄∗ki
)2

= −Varki(Hki(X))

H̄∗ki

+
Eki [h(X ,Y )H̄ki(X)H̄ki(Y )]

(H̄∗ki
)2

≥ −Varki(Hki(X))

2H̄∗ki

(13)

where the last inequality follows from (12). Since Varki(Hki)> ε and H̄∗ki
is bounded from above

since h is bounded, we have (13) bounded away from 0.
3. Eki [h(X ,Y )H̄ki(X)H̄ki(Y )]≥ 0: In this case we have

√
δki+1 = Bki . Similar to above, (10) is equal

to

sdki(Hki(X))Bki +
Eki [h(X ,Y )H̄ki(X)H̄ki(Y )]

Varki(Hki(X))
B2

ki

= −Varki(Hki(X))

H̄∗ki

+
Eki [h(X ,Y )H̄ki(X)H̄ki(Y )]

(H̄∗ki
)2 (14)

Since in this case Eki [h(X ,Y )H̄ki(X)H̄ki(Y )]≥ 0, it follows similarly that (14) is bounded away from
0.

In conclusion, for every step in the sequence ki, the increment Eki+1[h(X ,Y )]−Eki [h(X ,Y )] is always
bounded away from 0. Hence Eki [h(X ,Y )] grows in an unbounded manner. But we have assumed that h
is bounded, hence a contradiction.

3.3 Nesting and Optimality

In this sub-section we shall discuss a simple optimality condition of our algorithm. Before so, we emphasize
that the use of χ2-distance as a measurement of disparateness between distributions, our decision variables,
poses some non-standard features to the definition of optimality. At the foremost, χ2-distance is not a
proper metric: it does not satisfy triangle inequality nor commutativity. This itself does not pose direct
issue for using iterative schemes. However, it leads to a “one-way” update of Pk, or a nesting behavior in
terms of absolute continuity. Namely, the sequence of update {Pk}k=0,1,2,... satisfies Pk+1 ≺ Pk, where ≺
denotes “absolutely continuous with respect to”. In other words, the support of Pk shrinks at each step.

We shall call P∗ a nested locally optimal distribution if for any P≺P∗, we have E[h(X ,Y )]≤E∗[h(X ,Y )].
We call P∗ a nested strict locally optimal distribution if the inequality is strict. The next proposition gives
a condition for local optimality, if the algorithm stops at an interior point of the feasible region. It requires
a semi-definite property on the cost function h.
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Proposition 2 Consider a probability distribution P∗ that satisfies Var∗(H∗(X)) = 0. If h(x,y) is negative
semi-definite in supp(P∗), in the sense that∫

h(x,y)dε(x)dε(y)≤ 0 (15)

for any signed measure ε on supp(P∗) with bounded variation, then P∗ is a nested local maximum of the
program (1). Supposing that h(x,y) is negative definite, i.e. the inequality (15) is strict for any non-zero
measure, then P∗ is a nested strict local maximum.

Proof. Suppose P∗ satisfies Var∗(H∗(X)) = 0. Consider any P≺ P∗ in a neighborhood of P∗. The proof
follows from the following decomposition (with some abuse of notation)

E[h(X ,Y )] =
∫

h(x,y)dP(x)dP(y)

=
∫

h(x,y)d(P∗(x)+(P−P∗)(x))d(P∗(y)+(P−P∗)(y))

=
∫

h(x,y)dP∗(x)dP∗(y)+
∫

h(x,y)dP∗(x)d(P−P∗)(y)+
∫

h(x,y)dP∗(y)d(P−P∗)(x)

+
∫

h(x,y)d(P−P∗)(x)d(P−P∗)(y)

= E∗[h(X ,Y )]+
∫

H∗(x)d(P−P∗)(x)+
∫

h(x,y)d(P−P∗)(x)d(P−P∗)(y)

where the last equality follows since x and y are dummies for the variable X . Hence if Var∗(H∗(X)) = 0,
then H∗(X) is degenerate and the second term above vanishes. If h is negative semi-definite in supp(P∗),
then we have E[h(X ,Y )]≤ E∗[h(X ,Y )], and hence P∗ is a nested local maximum. Similarly, if h is negative
definite, then P∗ is a nested strict local maximum.

Note that the proof above resembles the optimality conditions in Euclidean space, the main difference
now being that we are working on the space of distributions. The symmetrization H∗(x) can be interpreted
as the “derivative” in such space (see also Lam (2013)), and the semi-definite condition is also analogous.

4 SIMULATION HEURISTIC FOR CONTINUOUS P0

This section describes an algorithm for efficiently calculating the distributions implied by the iterative
procedure described above. The calculations are exact for benchmark distributions that have finite discrete
support. For the case when the support of the benchmark distribution P0 is continuous, we suggest a naı̈ve
approximation procedure of approximating the original benchmark P0 with a discrete distribution P̂0 that
equi-weighs a set of N0 samples generated from P0 in an i.i.d. fashion.

HEURISTIC 1: ROBUST ESTIMATION APPROXIMATION ALGORITHM

Given: benchmark distribution P0, distribution χ2-discrepancy target η , oracle to measure perfor-
mance metric h(x1,x2)

1. If benchmark P0 has support X that is discrete, set X̂ = X . Else, set X̂ = {xi, i = 1, . . . ,N0},
where each xi is sampled from the benchmark distribution P0. Let P̂0 = {1/N0, . . . ,1/N0} be an
N0-dimensional row-vector that represents the approximate benchmark distribution over support-set
X̂ . L0 = {1, . . . ,1}, a N0−dimensional row-vector that records the likelihood ratio P̂k/P̂0. Record
h0 = {h(x1,x j), ∀xi,xi ∈ X̂ }, the matrix of values taken by the performance oracle h over X̂ ×X̂ .

2. For k = 0,1,2, . . .
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(a) Calculate Ekh = P̂kh0P̂t
k .

(b) Calculate Dk = χ2(P̂k, P̂0) = ∑
N0
i (Lk(i)−1)2 ∗ P̂k(i). If Dk = η , proceed to Step 3.

(c) Calculate Hk = (h0 +ht
0)P̂k, the symmetric measure under the kth density iterate.

(d) Calculate EkHk and sdk(Hk), the mean and standard deviation of the symmetric measure under
P̂k. If sdk(Hk) = 0, then proceed to Step 3.

(e) Calculate the three limits Ak,Bk and Ck on the distributional distance δk as described in Section 2.
Set δk = min{Ak,Bk,Ck}. If δk = 0, proceed to Step 3.

(f) Set Lk+1(i) = Lk(i)∗
(

1+ Hk(i)−EkHk
sdk(Hk)

√
δk

)
, ∀i = 1, . . . ,N0.

(g) Set P̂k+1(i) = P̂0(i)∗Lk+1(i), ∀i = 1, . . . ,N0.
3. Return P̂k and Ekh as estimates of the desired worst-case density and the performance metric.

5 NUMERICAL RESULTS

This section analyzes Example 1 that models a retailer of batch-produced goods. Recall that the expected
profit the retailer stands to make under the nominal distribution P0 is given by (2) to be:

E0h(d1,d2,q) = pE0[min{d1 +d2,q}]− cE0[(q−d1)
+]− cE0[(q−d1−d2)

+]. (16)

A retailer has to decide on the size of the order q to place with a manufacturer that operates a batch-processing
facility. The classical approach to this problem is to first determine the benchmark distribution P0 from
available data, and then set the order quantity to be the optimizer of the stochastic optimization problem
that maximizes the realized profit:

q∗ = argminq E0h(d1,d2,q). (17)

Differentiating (16) with respect to q gives us the following optimization criterion:

∂E0h(d1,d2,q)
∂q

= p− cP0(q)− (p+ c)
∫

∞

−∞

P0(q− x)dP0(x) = 0.

where we abuse notation to denote P0 also as the (identical) distribution function of d1 and d2. Suppose
the nominal distribution P0 is exp(λ ) and p = rc,r > 1. Then, the optimal q∗ is the unique solution to the
equation e−λq(r+2+λ (r+1)q) = 2. Taking the second derivative of (16) with respect to q and setting
q = q∗ confirms that this is a maximizer. For instance, if λ = 1 and r = 3, then q∗ = 1.812. As remarked
earlier, the problem (17) is distinct from the newsvendor model because of the presence of the additional
first-period cost term in (16). In its absence, the optimal order quantity from the newsvendor model would
be the p/(p+ c)-th quantile of the distribution of the sum (d1 +d2). In the case where p/c = r = 3 and
P0 ∼ exp(1), (d1 + d2) is an Erlang distribution, and the optimal newsvendor order quantity is 2.6926.
Thus, the optimal order quantity falls to 1.812 because of the additional carryover cost in the first period.

We apply our algorithm in Section 2. Since the exponential distribution P0 is continuous, we use
Heuristic 1 in Section 4 to encode the distribution. For illustrative purpose, we keep track of the discrepancy
distance χ2(Pk,P0) instead of putting a hard constraint that it is bounded by η (when the constraint is
imposed, the algorithm will stop whenever the η-boundary is reached). By Proposition 1, we know that
eventually the algorithm should stop when sdk(Hk(X)) = 0. Figure 1(a) plots the densities of the Pk iterates
generated by applying Heuristic 1 until sdk(Hk(X)) is within a small tolerance around 0. The initial sample
size was set to N0 = 10,000. The performance measure (16) rises from E0[h(X ,Y )] = 5.941 to the optimal
E∗[h(X ,Y )] = 9.076, where χ2(P∗,P0) = 0.33. (Figure 1(a) plots a smoothed version of the empirical
density maintained by Heuristic 1, where the smoothing is obtained by binning the N0 support points
into 50 equi-sized bins and then constructing a Gaussian kernel density with an appropriate smoothing
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Figure 1: Densities Generated by Iterative Heuristic 1, Smoothed Using Gaussian Kernels.

parameter. This smoothing is meant as a visual aid and has no bearing on the calculations in Heuristic 1.)
Figure 1(b) plots the densities of the iterates for the same problem but with P0 ∼U [0,1], q∗= 1.524 and
r = 8.

Of perhaps more interest is Figure 2 that plots the objective function Ek[h(X ,Y )] in (2), the discrepancy
measure χ2(Pk,P0) and the “gradient” sdk(Hk(X)) associated with the k-th iteration of Heuristic 1 for both
the exponential and the uniform benchmark cases. The results show that Heuristic 1 increasingly tends to
concentrate the mass in a subset of the original sample-set of N0 points that reduces the value of sdk(Hk(X)).
In the exponential-P0 case, the method was able to identify a distribution with sdk(Hk(X)) = 0 within k = 22
iterations. The identified solution is however only an approximation of the true optimal density (when no
discrepancy constraint is imposed), since the starting P0 used in Heuristic 1 is a sample set generated from
the original benchmark distribution.
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Figure 2: Performance of Heuristic 1 as Iteration Count Grows, in the Exponential and Uniform Benchmark
Cases.
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