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Abstract Commodity exchange-traded funds (ETFs) are a significant part of the rapidly
growing ETF market. They have become popular in recent years as they provide investors
access to a great variety of commodities, ranging from precious metals to building mate-
rials, and from oil and gas to agricultural products. In this article, we analyze the tracking
performance of commodity leveraged ETFs and discuss the associated trading strategies. It
is known that leveraged ETF returns typically deviate from their tracking target over longer
holding horizons due to the so-called volatility decay. This motivates us to construct a
benchmark process that accounts for the volatility decay, and use it to examine the tracking
performance of commodity leveraged ETFs. From empirical data, we find that many com-
modity leveraged ETFs underperform significantly against the benchmark, and we quantify
such a discrepancy via the novel idea of realized effective fee. Finally, we consider a num-
ber of trading strategies and examine their performance by backtesting with historical price
data.

1 Introduction

The advent of commodity exchange-traded funds (ETFs) has provided both institutional
and retail investors with new ways to gain exposure to a wide array of commodities, in-
cluding precious metals, agricultural products, and oil and gas. All commodity ETFs are
traded on exchanges like stocks, and many have very high liquidity. For example, the SPDR
Gold Trust ETF (GLD), which tracks the daily London gold spot price, is the most traded
commodity ETF with an average trading volume of 8 million shares and market capitaliza-
tion of US $31 billion in 2013.1

Within the commodity ETF market, some funds are designed to track a constant mul-
tiple of the daily returns of a reference index or asset. These are called leveraged ETFs
(LETFs). An LETF maintains a constant leverage ratio by holding a variable portfolio of
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assets and/or derivatives, such as futures and swaps, based on the reference index. For
example, the Dow Jones U.S. Oil & Gas Index (DJUSEN) or the Dow Jones U.S. Ba-
sic Materials Index (DJUSBM) and their associated ETFs track the stocks of a basket of
commodities producers, as opposed to the physical commodity prices. On the other hand,
most LETFs are based on total return swaps and commodity futures. The most common
leverage ratios are ±2 and ±3, and LETFs typically charge an expense fee. Major issuers
include ProShares, iShares, VelocityShares and PowerShares (see Table 1). For example,
the ProShares Ultra Long Gold (UGL) seeks to return 2x the daily return of the London
gold spot price minus a small expense fee. One can also take a bearish position by buying
shares of an LETF with a negative leverage ratio. The ProShares Ultra Short Gold (GLL)
is an inverse LETF that tracks -2x the daily return of the London gold fixing price. LETFs
are a highly accessible and liquid instrument, thereby making them attractive instruments
for traders who wish to gain leveraged exposure to a commodity without borrowing money
or using derivatives.

For a long LETF, with a leverage ratio β > 0, the fund must add to a winning position
in a bull market to maintain a constant leverage ratio. On the other hand, during a bear
market, the fund must sell its losing positions to maintain the same leverage ratio. Similar
arguments can be made for short (or inverse) LETFs (β < 0). As a consequence, LETFs can
potentially outperform β times its reference during periods of market trending. However,
should the LETF exhibit high volatility but no significant movement in price over a period
of time, the constant daily re-balancing would cause the fund to decline in value. Therefore,
LETFs can be viewed as long momentum but short volatility, and the value erosion due to
realized variance of the reference is called volatility decay (see [2, 3, 4]). This raises the
important question of how well do LETFs perform over a long horizon.

Since their introduction to the market, LETFs a number of criticisms from both practi-
tioners and regulators.2 Some are concerned that the returns of LETFs exhibit some discrep-
ancies from the goals stated in their prospectuses. In fact, some issuers provide warnings
that LETFs are unsuitable for long-term buy-and-hold investors.

Many existing studies focus on equity-based ETFs and their leveraged counterparts.
For example, Avellaneda and Zhang [2] study the price behavior and discuss the volatility
decay of equity LETFs in different sectors. They find minimal 1-day tracking errors among
the most liquid equity ETFs. They explain that an equity LETF can replicate the leveraged
returns of its reference through a dynamic portfolio consisting of the component equities.

In contrast, commodities are unique because the physical assets cannot be stored easily.
As such, ETF issuers are required to replicate through either warehousing3, which is very
costly, and thus uncommon except for precious metals such as silver and gold, or trading
futures with multiple counterparties (see [5]). Since the reference indices may represent
the spot prices of physical commodities, futures-based commodity ETFs may fail to track
their reference indices perfectly and their tracking performance is subject to the fluctuation
and term structure of futures prices. On top of that, most commodity LETFs use over-
the-counter (OTC) total return swaps with multiple counterparties to generate the required
leverage ratios. The lower liquidity of OTC contracts and counterparty risk can contribute
to additional tracking errors. As we show in this paper, tracking errors can seriously affect
the long-term fund performance of LETFs.

2 In 2009, the SEC and FINRA issued an alert on the risk of leveraged ETFs on http://www.sec.gov/

investor/pubs/leveragedetfs-alert.htm.
3 For more details on the issue of storage cost for commodity ETFs, we refer to the Morningstar Report:
“An Ugly Side to Some Commodity ETFs” by Bradley Kay, August 19, 2009.

http://www.sec.gov/investor/pubs/leveragedetfs-alert.htm
http://www.sec.gov/investor/pubs/leveragedetfs-alert.htm
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In a related work, Murphy [12] performs a t-test based on 1-day returns to determine if
any commodity LETF has a non-zero tracking error. He concludes that all LETFs have a
very good daily tracking performance. However, he does not conduct the analysis over a
longer horizon, or account for the volatility decay. There is also no discussion of trading
strategies there. On the other hand, Guedj et al. [5] discuss the difficulties faced by an ETF
provider in replicating a commodity index using futures. In particular, they point out that
the term structure of futures may lead to large deviations between the ETF price and the
spot price of a commodity.

Because commodity LETFs shy away from full physical replication, they therefore have
larger and more varying tracking errors compared to equities markets, which can easily
leverage the index outright. We find that ETFs which use full replication such as SLV have
the lowest tracking error, followed by futures ETFs, followed by swaps based ETFs.

In this paper, we analyze the tracking performance of commodity leveraged ETFs.
Through a series of regression analyses, we illustrate how the returns of commodity LETFs
deviate from the reference returns multiplied by the leverage ratio over different holding
periods. In particular, the average tracking error tends to turn more negative over a longer
horizon and for higher leveraged ETFs. With in mind that realized variance of the reference
can erode the LETF value, we examine the over/under-performance of LETFs with respect
to a benchmark that incorporates the effect of volatility decay. From empirical data, we
find that many commodity leveraged ETFs in our study underperform significantly against
the benchmark, and we quantify such a discrepancy by introducing the realized effective
fee. Finally, we consider a static trading strategy that involves shorting two LETFs with
leverage ratios of different signs, and study its performance and dependence on the real-
ized variance of the reference. We find that the resulting portfolio is always long realized
variance both theoretically and empirically, but is also exposed to the tracking errors asso-
ciated with the two LETFs. We also backtest the strategy through examining its empirical
returns over rolling periods.

The rest of the paper is organized as follows. In Section 2, we analyze the returns of com-
modity LETFs over different holding periods and illustrate horizon dependence of tracking
errors. In Section 3, we use a benchmark process that incorporates the realized variance of
the reference to study the over/under-performance of each LETF. In Section 4, we discuss
a static trading strategy and backtest using historical data. Section 5 concludes the paper
and points out a number of directions for future research.

2 Analysis of Tracking Error

We first compare the returns of LETFs and their reference indices. For every ETF, we obtain
its closing prices and reference index values from Bloomberg for the period December
2008-May 2013. We then calculate the n-day returns from n = {1,2, . . . ,30} using disjoint
successive periods (e.g. the return over days 1-30 then returns over days 31-60 for 30-day
returns). Let Lt be the price of an LETF and St be the reference index value at time t. For a
given leverage ratio β , we compare the log-returns of the LETF to β times the log-returns
of the corresponding reference index. This leads us to define the n-day tracking error at
time t by

Y (n)
t = ln

Lt+n∆ t

Lt
−β ln

St+n∆ t

St
, (1)
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LETF Reference Underlying Issuer β Fee Inception
SLV SLVRLN Silver Bullion iShares 1 0.50% 04/21/2006
AGQ SLVRLN Silver Bullion ProShares 2 0.95% 12/01/2008
ZSL SLVRLN Silver Bullion ProShares -2 0.95% 12/01/2008
USLV SPGSSIG Silver Bullion VelocityShares 3 1.65% 10/13/2011
DSLV SPGSSIG Silver Bullion VelocityShares -3 1.65% 10/14/2011
GLD GOLDLNPM Gold Bullion iShares 1 0.40% 11/18/2004
UGL GOLDLNPM Gold Bullion ProShares 2 0.95% 12/01/2008
GLL GOLDLNPM Gold Bullion ProShares -2 0.95% 12/01/2008
UGLD SPGSGCP Gold Bullion VelocityShares 3 1.35% 10/13/2011
DGLD SPGSGCP Gold Bullion VelocityShares -3 1.35% 10/14/2011
IYE DJUSEN Oil & Gas iShares 1 0.48% 06/12/2000
DDG DJUSEN Oil & Gas ProShares -1 0.95% 06/10/2008
DIG DJUSEN Oil & Gas ProShares 2 0.95% 01/30/2007
DUG DJUSEN Oil & Gas ProShares -2 0.95% 01/30/2007
DBO DBOLIX WTI Crude Oil PowerShares 1 0.75% 01/05/2007
UCO DJUBSCL WTI Crude Oil ProShares 2 0.95% 11/24/2008
SCO DJUBSCL WTI Crude Oil ProShares -2 0.95% 11/24/2008
UWTI SPGSCLP WTI Crude Oil VelocityShares 3 1.35% 02/06/2012
DWTI SPGSCLP WTI Crude Oil VelocityShares -3 1.35% 02/06/2012
IYM DJUSBM Building Materials iShares 1 0.48% 06/12/2000
SBM DJUSBM Building Materials ProShares -1 0.95% 03/16/2010
UYM DJUSBM Building Materials ProShares 2 0.95% 01/30/2007
SMN DJUSBM Building Materials ProShares -2 0.95% 01/30/2007

Table 1: A summary of the 23 LETFs studied in this paper, arranged by commodity type and then leverage.
Notice that the non-leveraged (1x) ETFs have the smallest expense fees, and LETFs with higher absolute
leverage ratios, |β | ∈ {2,3}, tend to have higher expense fees. Finally, notice that higher β LETFs are much
more recent additions to the market.

where ∆ t represents one trading day. We explore the empirical distribution of the n-day
tracking error, and then analyze the effect of holding horizon on the magnitude of tracking
errors. We remark there are alternative ways to define tracking errors for ETFs. For exam-
ple, one can consider the difference in relative returns as opposed to log-returns, or the root
mean square of the daily differences (see [10]).

2.1 Regression of Empirical Returns

We conduct a regression between log-returns of the LETF and its reference index based on
the linear model:

ln
Lt

L0
= β̂ ln

St

S0
+ ĉ+ ε, (2)

where ε ∼ N(0,σ2) is independent of the reference index value St , ∀t ≥ 0. In other words,
we run an ordinary least square 1-variable regression between the log-returns for every
fixed horizon of n days. Then, we increase the holding period from 1 to 30 days, and
observe how the regression coefficients vary.

We display the regression results in Figures 1 through 4 for log-returns over periods of
1, 5, 10, and 20 days. To avoid dependence among returns, we use disjoint time intervals to
calculate returns. For example, we use S20

S0
, S40

S20
. . . and L20

L0
, L40

L20
. . . for 20-day log-returns as

the inputs for the regression.
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In Figure 1, the regression coefficient β̂ for DIG (β = 2, oil & gas) increases from
2 to 2.1 as the holding period lengthens from 1 to 20 days. Although the coefficient of
determination R2 is close to 99% for up to 20 days, it is highest for 1-day returns. In Figure
2 for DUG (β = −2, oil & gas), one again observes β̂ increasing, and R2 decreasing. For
DUG (β = −2, oil & gas), as n varies from 1 to 20, β̂ increases from −2 to −1.66. As
a result, this implies that DIG (β = 2, oil & gas) effectively gains leverage as the holding
time increases, while DUG (β =−2, oil & gas) loses leverage compared to the advertised
fund β .

On the other hand, UGL (β = 2, gold) and GLL (β = −2, gold) exhibit very different
return behaviors. In Figure 3 the R2 for UGL (β = 2, gold) is surprisingly worst for the
shortest holding period of 1 day, whereas it increases to 95% over a holding period of 20
days. In Figure 4 for GLL (β =−2, gold), the R2 increases from 35% to 96% when holding
the fund from 1 to 20 days. Furthermore, the estimators β̂ for UGL (β = 2, gold) and GLL
(β =−2, gold) both slowly approach their advertised β =±2. The variation of β̂ for DIG
(β = 2, oil & gas) and UGL (β = 2, gold) over different holding periods is summarized in
Figure 5.

We observe that LETFs that track an illiquid reference, such as the gold bullion index
GOLDLNPM, tend to have more tracking errors than those tracking a liquid index, such as
the oil & gas index DJUSEN. The oil & gas commodity LETFs involve exchange-traded
futures which are liquid proxy to the spot price. The gold and silver bullion LETFs consist
of OTC total return swaps. The difficulty and higher costs replication using swaps, as well
as infrequent (typically daily) update of the swaps’ mark-to-market values can weaken the
fund’s tracking ability. For example, the 1-day regressions of UGL and GLL (β = ±2,
gold) yield R2 values less than 40%, while DIG and DUG (β = ±2, oil & gas ) have 1-
day R2 values of over 90%. On the other hand, full physical replication yields the greatest
R2, with examples of the unleveraged gold and silver ETFs, GLD and SLV, respectively.
Hence, the replication strategy can significantly affect a fund’s tracking errors. A more
precise understanding of the effectiveness of swaps, futures, and other replication strategies
requires the full holdings history from the ETF provider, which is not publicly available at
all times.4

In addition, the LETFs we studied have an increasingly negative constant coefficient ĉ as
the holding time increases. For example, over a holding period of 20-days, DUG (β =−2,
oil & gas) has a 3% decay on returns compared to β times its reference index. We would
expect this phenomenon, however, since the LETF would need to buy high and sell low,
while the reference investor would simply hold his securities. Therefore, the longer the
LETF is held, the more likely the fund will underperform against β times the reference
index. As we will see in Section 3, the constant coefficient ĉ depends on two factors, the
expense fee charged by the issuer as well as the realized variance of the reference index.

Hence, with this simple linear model for LETF prices, we have observed that although
LETFs safely replicate β times the reference over short holding periods, they begin to ex-
hibit negative tracking error and deviations in their leverage ratios β as the holding time
increases. Furthermore, we see that LETFs which attempt to track illiquid spot prices per-
form much more poorly than expected. We conclude that more factors must be considered
when modeling LETF returns.

4 For a detailed snapshot of the holdings for a proshares ETF, please see http://www.proshares.com/

funds/{XYZ}_daily_holdings.html where {XY Z} is the ETF ticker.

http://www.proshares.com/funds/{XYZ}_daily_holdings.html
http://www.proshares.com/funds/{XYZ}_daily_holdings.html
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Fig. 1: From top left to bottom right: regression of DJUSEN-DIG (β = 2, oil & gas) 1, 5, 10, 20-day
log-returns. We consider disjoint periods from December 2008 to May 2013.
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Fig. 2: From top left to bottom right: regression of DJUSEN-DUG (β = −2, oil & gas) 1, 5, 10, 20-day
log-returns. We consider disjoint periods from December 2008 to May 2013.
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Fig. 3: From top left to bottom right: regression of GOLDLNPM-UGL (β = 2, gold) 1, 5, 10, 20-day
log-returns. We consider disjoint periods from December 2008 to May 2013.
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Fig. 4: From top left to bottom right: regression of GOLDLNPM-GLL (β = −2, gold) 1, 5, 10, 20-day
log-returns. We consider disjoint periods from December 2008 to May 2013.



8 Kevin Guo and Tim Leung

0 5 10 15 20 25 30
days

1.95

2.00

2.05

2.10

2.15

2.20

β̂

DJUSEN vs DIG

0 5 10 15 20 25 30
days

1.0

1.2

1.4

1.6

1.8

2.0

2.2

β̂

GOLDLNPM vs UGL

Fig. 5: The estimated β̂ from the regressions for DJUSEN-DIG (β = 2, oil & gas), and GOLDLNPM-UGL
(β = 2, gold).

2.2 Distribution of Tracking Errors

As defined in (1), the tracking error is the difference between the LETF’s log-return and
the corresponding multiple of its reference index’s log-return. In this section, we examine
the distribution of the tracking error. This provides a picture of the LETF’s efficiency in its
stated goal of replicating the leveraged return of a reference index.

LETF Underlying β µ σ

SLV Silver Bullion 1 0.0000 0.0302
AGQ Silver Bullion 2 -0.0009 0.0539
ZSL Silver Bullion -2 -0.0022 0.0543
USLV Silver Bullion 3 -0.0014 0.0231
DSLV Silver Bullion -3 -0.0027 0.0237
GLD Gold Bullion 1 0.0000 0.0128
UGL Gold Bullion 2 -0.0003 0.0221
GLL Gold Bullion -2 -0.0005 0.0221
UGLD Gold Bullion 3 -0.0006 0.0134
DGLD Gold Bullion -3 -0.0010 0.0139
IYE Oil & Gas 1 0.0000 0.0049
DDG Oil & Gas -1 -0.0008 0.0118
DIG Oil & Gas 2 -0.0005 0.0044
DUG Oil & Gas -2 -0.0018 0.0087
DBO WTI Crude Oil 1 0.0000 0.0070
UCO WTI Crude Oil 2 -0.0006 0.0135
SCO WTI Crude Oil -2 -0.0016 0.0132
UWTI WTI Crude Oil 3 -0.0008 0.0147
DWTI WTI Crude Oil -3 -0.0017 0.0178
IYM Building Materials 1 0.0000 0.0020
SBM Building Materials -1 -0.0004 0.0065
UYM Building Materials 2 -0.0005 0.0062
SMN Building Materials -2 -0.0022 0.0149

Table 2: Mean µ and standard deviation σ of the 1-day tracking error by commodity.
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Fig. 6: Histograms and QQ plots of 1-day tracking errors for DIG, DUG (β =±2, oil & gas); UGL, GLL
(β =±2, gold) from top to bottom.

For the 23 LETFs in Table 2, we compute the mean µ and standard deviation σ for
the tracking errors using available price data during the period Dec 2008 to May 2013.
For all these funds, the mean 1-day tracking error has µ ≈ 0, ranging from 0% to -0.27%.
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Therefore, all these LETFs on average successfully replicate the stated multiple β of the
daily reference return, with a slight negative bias. In fact, many LETFs even continued to
replicate returns over periods as long as 10 days. However, as the holding time increases,
the average tracking error grows more negative, so that the LETF in fact underperforms its
intended goal over longer holding periods (see Figure 6).

Interestingly, the tracking errors for the silver and gold LETFs (AGQ, ZSL (β = ±2,
silver); UGL, GLL (β = ±2, gold)) in Table 2 have σ several magnitudes higher than
µ . For example, AGQ (β = 2, silver) has a tracking error σ of 5% compared to a µ of
0.01%. In other words, these four LETFs, while they might track their references well on
average, may also exhibit positive and negative deviations over 1-day holding periods as
well. These observations are consistent with the regressions in Figures 3 and 4, where UGL
and GLL (β = ±2, gold) show significant 1-day tracking errors. On the other hand, the
non-leveraged gold and silver bullion ETFs, GLD and SLV, have almost no tracking error
σ ≈ 0, because they hold the underlying bullion according to their prospectuses. Since
many investors use these ETFs to gain leveraged exposure to commodities, they should be
aware of the large variance of the associated tracking errors.

In Figure 6, we show the histogram for the tracking error for each ETF along with a
quantile-quantile plot to illustrate the distribution. For DIG and DUG (β =±2, oil & gas),
the quantile-quantile plot shows that the tracking error distribution is not quite normal, and
has a large negative tail, so that the commodity LETF tracking error is negatively biased
even for the shortest possible holding period of one day. On the other hand, for UGL, GLL
(β = ±2, gold) the distribution appears to be normal with R2 close to 98%. However, as
noted in Table 2, the tracking errors for UGL and GLL (β = ±2, gold) also have a very
large variance.

Next, we examine the horizon effect of tracking errors. Figure 7 indicates that higher
leveraged ETFs tend to have more negative average tracking errors, which appear to be
decreasing linearly over longer holding periods. In addition, negative leveraged LETFs
have a more negative average tracking error than their positive counterparts. For example,
in Figure 7, GLL (β =−2, gold) has a lower slope than UGL (β = 2, gold) even though they
have the same absolute value of leverage ratio |β |. Furthermore, with few exceptions,the
average tracking error is most negative when β =−3 followed by β = 3,−2,2,−1,1. Thus,
there is a higher holding horizon punishment for buying short than long LETFs.

Our analysis of the tracking error distribution reveals several characteristics of the track-
ing error defined in (1). Over a very short holding period, most LETFs perform close to their
objectives stated in their prospectuses. Nevertheless, the realized tracking error varies over
time, and can be positive or negative. For gold and silver LETFs, the tracking error is more
volatile. Moreover, the magnitude of the mean tracking error depends heavily on the β of
the LETF, with bear LETFs suffering a higher penalty than bull LETFs.

3 Incorporating Realized Variance into Tracking Error Measurement

As is well known in the industry (see [2, 3]), the price dynamics of an LETF depends
on the realized variance of the reference index. This leads us to incorporate the realized
variance in measuring the performance of an LETF. We run a regression analysis based
on empirical LETF and reference prices that incorporates the realized variance as an inde-
pendent variable. We then derive a realized effective fee associated with each LETF and
analyze the realized price behavior relative to a theoretical benchmark to better quantify
the over/under-performance.
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Fig. 7: A plot of no. of days vs the mean tracking error arranged by commodities tracked. From top left
to bottom right: US Oil & Gas, Gold, Crude Oil,and Silver. As the holding period increases, the average
tracking error becomes more negative as well.

3.1 Model for the LETF Price

Let St be the price of the reference index, and Lt be the price of the LETF at time t. Also
denote f as the expense rate, r as the interest rate and β as the leverage ratio. Assume the
reference asset follows the SDE

dSt

St
= µtdt +σtdWt , t ≥ 0, (3)

with stochastic drift (µt)t≥0 and volatility (σt)t≥0. For our analysis herein, we assume a
general diffusion framework, but do not need to specify a parametric model. Many well-
known models, including the CEV, Heston, and exponential Ornstein-Uhlenbeck models,
fit within the above framework.

A long β -LETF L can be constructed through a dynamic portfolio. Specifically, the
portfolio at time t consists of the cash amount $βLt invested in the reference index St ,
while $(β −1)Lt is borrowed at the positive risk free rate r. As a result, the LETF satisfies
the SDE

dLt = Ltβ
dSt

St
−Lt((β −1)r+ f )dt. (4)

Solving the SDE, the log-return of the LETF is given by



12 Kevin Guo and Tim Leung

ln
Lt

L0
= β ln

St

S0
+

β −β 2

2
Vt +((1−β )r− f )t, (5)

where

Vt =
∫ t

0
σ

2
s ds (6)

is the realized variance of S accumulated up to time t. Therefore, under this general dif-
fusion model, the log-return of the LETF is proportional to the log-return of the reference
index by a factor of β , but also proportional to the variance by a factor of β−β 2

2 . The latter
factor is negative if β /∈ (0,1), which is true for every LETF traded on the market. Also,
the expense fee f reduces the return of the LETF.

Our regression analysis will focus on testing the functional form (5). We observe from
(5) that the functional form of Lt in terms of St and Vt holds for any parametric model within
the diffusion framework in (3). Considering the daily LETF returns, we set ∆ t = 1

252 as
one trading day. Let RS

t be the daily return of the reference index at time t. At any time t,
the n-day log-returns of an LETF follows

ln
Lt+n∆ t

Lt
= β ln

St+n∆ t

St
+

β −β 2

2
V (n)

t +((1−β )r− f )n∆ t, (7)

V (n)
t =

n−1

∑
i=0

(RS
t+i∆ t − R̄t

S
)2, R̄t

S
=

1
n

n−1

∑
i=0

RS
t+i∆ t . (8)

This serves as a benchmark process for our subsequent analysis.

3.2 Regression of Empirical Returns

The log-return equation (7) suggests a regression with two predictors: the log-returns and
the realized variance of the reference over n-days. This results in the linear model

ln
Lt

L0
= β̂ ln

St

S0
+ θ̂Vt + ĉ+ ε, (9)

where ĉ is a constant intercept to be determined, and ε ∼N(0,σ2) is independent of (St)t≥0.
In Table 3, we summarize the estimated θ̂ from our regression with holding periods of

30 days. Again, we use price data from disjoint periods to calculate returns. The realized
variance is calculated using the inter-period returns (30 days). The choice of 30-day periods
gives us sufficient points to compute the realized variance while providing enough disjoint
periods during the period Dec 2008-May 2013 to perform a regression. A longer price
history would certainly have helped in balancing this tradeoff, but all these commodity
LETFs were introduced only in the past five years.

Our empirical analysis confirms several aspects of our theoretical model in (5) and pro-
vides explanations in cases where there is discrepancy. The theoretical value of θ according
to (5) is given by β−β 2

2 . Table 3 shows that the estimator θ̂ is typically in the neighborhood
of θ , its theoretical value. For example, SCO (β = −2, crude oil) has θ̂ = 2.93 versus a
theoretical θ of 3. In addition, the unleveraged ETFs (β = 1) all have θ̂ close to 0, suggest-
ing that realized variance does not play an important role in its price process, as predictted.
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However, some LETFs have θ̂ diverging significantly from θ . For example, the θ̂ for UGL
(β = 2, gold) differs from its theoretical value by a factor of 114% even with a regression
R2 of 99%.

LETF Underlying β θ̂ θ r2 r2
x|y r2

y|x

SLV Silver Bullion 1 0.11 0 0.9799 0.9503 0.0078
AGQ Silver Bullion 2 -1.31 -1 0.9885 0.9751 0.3892
ZSL Silver Bullion -2 -3.27 -3 0.9995 0.9988 0.7514
USLV Silver Bullion 3 -2.24 -3 0.9995 0.9988 0.7514
DSLV Silver Bullion -3 -6.94 -6 0.9994 0.9989 0.9654
GLD Gold Bullion 1 -0.14 0 0.9898 0.9791 0.0064
UGL Gold Bullion 2 -2.44 -1 0.9934 0.9867 0.2900
GLL Gold Bullion -2 -0.96 -3 0.9914 0.9828 0.0417
UGLD Gold Bullion 3 -2.38 -3 0.9982 0.9955 0.6355
DGLD Gold Bullion -3 -6.26 -6 0.9846 0.9685 0.0809
IYE Oil & Gas 1 -0.06 0 0.9988 0.9965 0.1905
DDG Oil & Gas -1 -0.99 -1 0.8866 0.7662 0.2342
DIG Oil & Gas 2 -1.11 -1 0.9996 0.9989 0.9498
DUG Oil & Gas -2 -3.31 -3 0.9884 0.9769 0.8873
DBO WTI Crude Oil 1 -0.02 0 0.9992 0.9981 0.0035
UCO WTI Crude Oil 2 -1.15 -1 0.9987 0.9972 0.7747
SCO WTI Crude Oil -2 -2.93 -3 0.9987 0.9975 0.9619
UWTI WTI Crude Oil 3 -2.14 -3 0.9974 0.9939 0.6218
DWTI WTI Crude Oil -3 -7.25 -6 0.9974 0.9939 0.6218
IYM Building Materials 1 0.03 0 0.9996 0.9987 0.0495
SBM Building Materials -1 -0.98 -1 0.9970 0.9920 0.5446
UYM Building Materials 2 -1.10 -1 0.9997 0.9993 0.9380
SMN Building Materials -2 -3.59 -3 0.9613 0.9221 0.5301

Table 3: θ̂ vs. θ , estimated from 30-day multi-variable regression of returns, with a partial correlation
table. r2

y|x stands for the marginal predictive power of adding the realized variance (y) into the model,

holding constant the predictive power of the reference index returns (x). Similar definition for r2
x|y. Data

from Dec 2008-May 2013.

We attribute the deviation of θ̂ from θ in our regression to the collinearity effect of the
two predictors (ln St

S0
and Vt ). Of course ln St

S0
and Vt cannot be independent observations,

since Vt depends on the price path process of St , the reference index. In general, the refer-
ence returns and the realized variance are negatively correlated. When the realized variance
is high, it is likely the reference has suddenly dropped in value. When the realized variance
is low, it usually implies a period of steady positive growth for the reference. Thus, the
multi-collinearity effect is responsible for shifting predictive power among the different
predictor variables. In order to measure the magnitude of the collinearity effect and the
contribution of each correlated predictor variable, we compute the coefficients of partial
determination for our regression model.

The factor r2
y|x which measures the marginal predictive power of adding the realized

variance into the model. As r2
y|x increases, θ̂ becomes closer to θ , suggesting a larger de-

pendence of LETF returns on realized variance during holding periods of high volatility.
For example, for the 3 LETFs DIG (β = 2, oil & gas), SCO (β =−2, crude oil), and UYM
(β = 2, building materials) all have r2

y|x over 90%. Their estimated θ̂ is similarly very close
to the theoretical θ , never differing by more than 10%. However, for non-leveraged ETFs,
the realized variance has minimal added predictive power in the model. For those ETFs, we
observe θ̂ ≈ 0. For example, SLV (β = 1, silver), GLD (β = 1, gold), and DBO (β = 1,
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crude oil) all have r2
y|x ≈ 0, and they subsequently have θ̂ ≈ 0. In addition, r2

x|y, which is
the marginal predictive power of adding the log-returns of the reference into our regres-
sion model, is always very high, indicating that the log-returns of the reference affect the
LETF prices the most, but that the realized variance is still important for predictive power,
especially when leverage and the holding period is high.

3.3 Realized Effective Fee

In Figure 8, we show three empirical price paths: the LETF log-returns, the benchmark
process defined in (5), and β times the reference index log-returns. As we can see, the
value erosion due to realized variance (volatility decay) starts to play a significant role in
determining LETF prices as the holding time increases. The path associated with β times
the reference log-returns dominates the LETF log-returns after about 1 month of holding.
After about 1 year, the benchmark which incorporates volatility decay more closely models
the empirical LETF log-returns. For example, after 6 months of holding, SCO (β = −2,
crude oil) diverges from β times the reference, illustrating the effects of volatility decay.

However, there are also some strong deviations from the predictions given by the bench-
mark, which compound as the holding time increases. This causes the LETF to underper-
form even after the volatility decay is accounted for. For example, DUG’s (β = −2, oil &
gas) empirical returns begin to trail its benchmark significantly around 2009. Therefore, the
volatility decay cannot explain all the LETF underperformance.

We are therefore motivated to quantify the over/under-performance of the LETFs after
observing deviations from the benchmark in Figure 8. We introduce the concept of realized
effective fee (REF) as the effective deduction rate charged by the LETF provider over the
frictionless dynamic portfolio from which the LETF is constructed in Section 3.1. For a
holding interval [0, t], the corresponding REF is defined by

f̂t = (1−β )r−
ln Lt

L0
−β ln St

S0
− β−β 2

2 Vt

t
. (10)

Since for each LETF, Lt , St , Vt , β , and r are all known, we can calculate the REF f̂t for any
LETF over a given holding period [0, t] using historical prices. We remark that the REF,
which is indexed by time t, depends on the selected holding horizon.

In many cases, the REF is seen to be much larger than the fund’s advertised fee, in-
dicating significant underperformance. Out of the 23 commodity LETFs, 2 have negative
implied costs, so that the fund overperforms by the end of the five year period Dec 2008 to
May 2009. If the REF exceeds the advertised fee, then the investor effectively pays an extra
price for the opportunity to invest in the LETF. As a general trend, the bear LETFs tend to
charge higher REFs than bull LETFs with the same magnitude of leverage |β |. For exam-
ple, USLV (β = 2, silver) has a REF of 93 bps, while DSLV (β = −2, silver) has an REF
of 504 bps over the period Dec 2008-May 2013. The two highest REFs correspond to DUG
(β =−2, oil & gas) and SMN (β =−2, building materials), whose REFs are 1134 bps and
1625 bps respectively. Figure 8 illustrates that DUG (β =−2, oil & gas) drastically under-
performs the benchmark, thereby realizing a high REF. Notice that in both cases, however,
DUG and SMN’s bull counterparts DIG (β = 2, oil & gas) and UYM (β = 2, building ma-
terials) respectively)display a negative REF, indicating overperformance during the same
period. It is possible that as the reference trends upwards for a long period of time, the bear
LETF will underperform, while the bull LETF will overperform.
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Fig. 8: Cumulative empirical log-returns of the LETF (solid dark) vs benchmark (solid light) and β times
reference (dashed light), from Dec 2008-May 2013. From top left to bottom right: UCO, SCO ( crude oil);
UGL, GLL (gold); DIG, DUG (building materials). UCO, UGL, and DIG have β = 2 while SCO, GLL,
and DUG have β =−2.

4 A Static LETF Portfolio

Taking advantage of the volatility decay, a well-known trading strategy used by practi-
tioners involves shorting a ±β pair of LETFs with the same reference, as discussed in
[2, 7, 9, 11]. Since the LETFs have opposite daily returns on the same reference index,
the portfolio has very little exposure to the reference as long as the holding period is suffi-
ciently short. With this strategy, the volatility decay can help generate profit, which is the
intuition of many practitioners. However, the portfolio is exposed to risk during periods of
low volatility and high trending, as well as tracking errors. In this section, we describe an
extension of this trading strategy by allowing the positive and negative leverage ratios to
differ. We determine the portfolio weights to approximately eliminate the dependence on
the reference. We show that the resulting portfolio is long volatility. For a number of LETF
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LETF Underlying β Prospectus Fee (bps) Realized Effective Fee (bps)
SLV Silver Bullion 1 50 96
AGQ Silver Bullion 2 95 524
ZSL Silver Bullion -2 95 567
USLV Silver Bullion 3 165 93
DSLV Silver Bullion -3 165 504
GLD Gold Bullion 1 40 48
UGL Gold Bullion 2 95 343
GLL Gold Bullion -2 95 406
UGLD Gold Bullion 3 135 139
DGLD Gold Bullion -3 135 521
IYE Oil & Gas 1 48 50
DDG Oil & Gas -1 95 953
DIG Oil & Gas 2 95 -142
DUG Oil & Gas 2 95 1134
DBO WTI Crude Oil 1 75 56
UCO WTI Crude Oil 2 95 84
SCO WTI Crude Oil -2 95 321
UWTI WTI Crude Oil 3 135 3
DWTI WTI Crude Oil -3 135 549
IYM Building Materials 1 48 11
SBM Building Materials -1 95 456
UYM Building Materials 2 95 -204
SMN Building Materials -2 95 1625

Table 4: Comparison of the official fee for the LETF charged on the fund prospectus and the REF calculated
using 5 years of price data (December 2008-May 2013) for the LETF and reference (see (10)). We set
r = 69.1 bps, the annualized LIBOR rate.

pairs, we find from empirical data that on average the strategy is profitable with enormous
tail risk.

We now construct a weighted portfolio which is short the LETF with leverage ratio
β+ > 0 and short another LETF with leverage ratio β− < 0. We emphasize that both LETFs
having the same reference, but that β+ and |β−| may differ. We hold fraction ω ∈ (0,1) of
the portfolio in the β+-LETF and (1−ω) of the portfolio in the β−-LETF. At time T , the
normalized return from this strategy is

RT = 1−ω
L+

T

L+
0
− (1−ω)

L−T
L−0

. (11)

Applying (5), RT admits the expression

RT = 1−ω

(
ST

S0

)β+

exp(Γ +
T )− (1−ω)

(
ST

S0

)β−

exp(Γ−T ), (12)

where

Γ
±

T =
β±−β 2

±
2

VT +((1−β±)r− f±)T, (13)

Here, β± and f± are the respective leverage ratios and fees of the two LETFs in the portfolio
defined in (11). Over a short holding period such that LT

L0
≈ 1 , one can pick an appropriate

weight ω∗ to approximately remove the dependence of RT on ST .

Proposition 1. Select the portfolio weight ω∗ = −β−
β+−β−

. For LT
L0
≈ 1, the return from this

strategy is given by
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RT =
−β−β+

2
VT −

β−
β+−β−

( f+− f−)T +( f−− r)T. (14)

Proof. For LT
L0
≈ 1, we can substitute for LT

L0
with ln LT

L0
+ 1 in (11). Then, we set ω = ω∗

and apply (5) to conclude (14).

The return (14) corresponding to portfolio weight ω∗ reflects a linear dependence on
the realized variance. In particular, the coefficient −β−β+

2 is strictly positive, so the strategy
is effectively long volatility (VT ). Also, as it does not depend on ST , the ω∗ portfolio is
∆ -neutral as long as the reference does not move significantly. In Table 5, we summarize
the coefficient of VT and the weighted portfolio (ω∗,1−ω∗) for different combinations of
leverage ratios. Note that as long as β+ =−β−, we end up with the portfolio weight ω∗= 1

2 .
Also, the coefficient −β−β+

2 exceeds or equals to 1 except for the pair (β+,β−) = (1,−1),
and it is largest for the pair (β+,β−) = (3,−3).

(β+,β−) ω∗ −β−β+
2

(1,−1) 1/2 1/2
(1,−2) 2/3 1
(1,−3) 3/4 3/2
(2,−1) 1/3 1
(2,−2) 1/2 2
(2,−3) 3/5 3
(3,−1) 1/4 3/2
(3,−2) 2/5 3
(3,−3) 1/2 9/2

Table 5: Table of (β+,β−) pairs vs ω∗ the weight of the β+ portfolio, and −β−β+
2 the dependence of the

strategy on Vt (see Prop. 1).

We now backtest the ω∗ strategy from Prop. 1 as follows. For each LETF pair, we short
$0.5 of the β+-LETF and $0.5 of the β−LETF with β+ =−β−= 2 and hold the position for
some time T . The normalized return RT depends on the relative weights on the long/short-
LETFs but not the absolute cash amounts. More generally, one can also test the strategy
with different β± and ω∗.

Dividing the price data from Dec 2008-May 2013 into n-day rolling (overlapping) peri-
ods, we calculate the returns from the strategy over each period. For every n-day return, we
compare against the realized variance over the same period. This is illustrated in Figure 9.
As a theoretical benchmark, we also plot RT in (14) as a linear function. Each point (dot)
on the plots represents a 5-day return, but over rolling periods the returns are not indepen-
dent. In other words, the lines in Figure 9 are not generated by regression but taken from
(14). We choose (14) as a benchmark because it is expected to hold pathwise as long as
LT
L0
≈ 1 with negligible tracking error.
We can observe from Figure 9 that the returns exhibit positive dependence on the re-

alized variance (VT ). In particular, for the energy pairs (DIG-DUG (β = ±2, oil & gas)
and UCO-SCO (β = ±2, crude oil)), the returns tend to be very positive when the real-
ized variance is high. This is because the strategy captures the volatility decay as profit.
Nevertheless, there is also a visible amount of noise in the returns deviating from the lin-
ear dependence on VT , especially for the gold and silver pairs (UGL-GLL (β = ±2, gold)
and AGQ-ZSL (β =±2, silver), respectively). This can be partly attributed to tracking er-
rors from both LETFs in the portfolio. Also, the ω∗-strategy loses its ∆ -neutrality if the
reference moves significantly.
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While this portfolio is expected to be ∆ -neutral (with respect to the reference index)
for small reference movements, in reality the strategy is also short-Γ . One way to see this
is through Figure 10 that plots the returns against the reference index returns. Common
to all four LETF pairs, when the reference return is either very positive or negative, the
return of the ω∗-strategy tends to be negative. As a theoretical benchmark, we also plot the
normalized return equation (12) which applies even for large reference movements.
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Fig. 9: Plot of trading returns vs realized variance for a double short strategy over 5-day rolling holding
periods, with β± = ±2 for each LETF pair. We compare with the empirical returns (circle) from the ω∗

strategy with the predicted return (solid line) in Prop. 1. Trading pairs are DIG-DUG (oil & gas), UGL-GLL
(gold), UCO-SCO ( crude oil), AGQ-ZSL (silver).

In contrast to the energy pairs, the gold and silver pairs yield very noisy returns. This
is consistent with our earlier observations from our regressions in Figures 3 and 4. For
instance, both UGL and GLL (β = ±2, gold) show substantial tracking errors over short
periods such as 5 days, and their regressed leverage ratios differ from the stated ones. On
the other hand, the DIG and DUG (β =±2, oil & gas) regressions in Figures 1 and 2 reflect
much less tracking errors.

Furthermore, Figure 11 shows that as the holding time increases, the returns from the
ω∗ strategy increases as well. The performance is best for the energy pairs UCO-SCO
(β =±2, crude oil) and DIG-DUG (β =±2, oil & gas), but more subdued for the bullion
pairs UGL-GLL (β = ±2, gold) and AGQ-ZSL (β = ±2, silver). However, over longer
holding periods, the ω∗ portfolio may lose its ∆ -neutral status, thereby generating more
risk as well. Although average returns from the ω∗ strategy are positive, one is subject to
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enormous tail risk, which increases with the holding time of the static portfolio. In order to
ensure that we do not subject ourselves to excessive tail risk, we should not only be sure of
a high volatility environment, but we must also adjust the holding time to account for the
extra risk associated with time horizon of returns.

Figure 12 gives another perspective of the ω∗ strategy’s dependence on realized vari-
ance. It shows the time series of the 30-day rolling returns along with the realized variance
of the reference index from Dec 2008 to May 2013. We see that when the realized variance
increases sharply, the strategy returns also spike sharply. For example, when DJUSEN in-
dex realized variance spikes, the DIG-DUG (β = ±2, oil & gas) trading pair accumulates
a 30% return over a single 30-day holding period. However, when realized variance is sub-
dued over a period of time, the ω∗ returns may turn quite negative as well.
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Fig. 10: Plot of returns of reference index vs trading returns for a double short strategy over 5-day rolling,
holding periods. β± =±2 for each LETF pair. We compare the empirical returns from our trading strategy
(dark solid circle) with the predicted dependence on reference returns according to (12), using Γ

±
T = 0 (light

solid line). Trading pairs are DIG-DUG (oil & gas), UGL-GLL (gold), UCO-SCO (crude oil), AGQ-ZSL
(silver).

In summary, the double-short trading strategy studied herein is profitable on average, but
it is commodity specific and subject to enormous tail risk, as seen from empirical prices.
The strategy’s profitability depends strongly on a high volatility from the reference index.
Although longer holding times tend to enhance the average return, they also enormously
increase the horizon risk. According to these findings, this strategy appears to be appealing
only during times of high volatility in the reference index.
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Fig. 11: Average returns from a double short trading strategy by commodity pair over no. of days holding
period. β±=±2 for each LETF pair. Trading pairs are DIG-DUG (oil & gas), UGL-GLL (gold), UCO-SCO
(crude oil), AGQ-ZSL (silver).
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Fig. 12: Time series of returns for a double short strategy over 30-day rolling, holding periods, with β± =
±2 for each LETF pair. Notice how during the periods of greatest volatility the double short strategy has
the greatest return. Trading pairs are DIG-DUG (oil & gas), UGL-GLL (gold), UCO-SCO (crude oil),
AGQ-ZSL (silver).



Tracking Errors of Commodity LETFs 21

5 Concluding Remarks

The ETF market has continued to grow in quantity and diversity, especially in the past five
years. For both investors and regulators, it is very important to understand and quantify the
risks involved with various ETFs. In this paper, we have focused on commodity ETFs and
their leveraged counterparts. We find that the LETF returns tend to deviate significantly
from the corresponding multiple of the reference returns as the holding horizon lengthens.
To study the performance of an LETF, we have applied a new benchmark process that ac-
counts for the realized variance of the underlying. We find that many commodity LETFs
still diverge, typically negatively, from this benchmark over time. These empirical obser-
vations motivate us to illustrate the over/under-performance of an LETF via the concept
of realized expense fee. Based on the funds and the time periods we have studied, most
commodity LETFs effectively charge significantly higher expense fees than stated on their
prospectuses.

In view of LETFs’ common pattern of value erosion over time, one well-known trading
strategy in the industry involves statically shorting both long and short LETFs in order to
capture the volatility decay as profit. We systematically study an extension of this strategy
that is applicable to LETF pairs with different asymmetric leverage ratios. We analytically
derive the specific weights in the LETFs so that the resulting portfolio is approximately ∆ -
neutral, but short-Γ as well. This strategy can potentially be quite profitable but its return
can be negatively impacted by tracking errors generated by the LETFs and large movements
of the reference index. These two factors both depend on the holding horizon. This should
motivate future research on the horizon risk for LETF strategies. To this end, Leung and
Santoli [7] study the admissible holding horizon and leverage ratio given a risk constraint.
The recent papers [6, 13, 14] examine the dynamics of price spreads between ETF pairs,
for example, gold vs. silver.

Our analysis herein does not assume a parametric stochastic volatility model for the
underlying. It is of practical interest to investigate the price behavior of LETF under a
number of well-known stochastic volatility models, such as the Heston and SABR models.
On top of LETFs, there are also options written on these funds. This gives rise to the
question of consistent pricing of LETF options across leverage ratios (see [1, 8]). Finally,
models that capture the connection between LETFs and the broader financial market would
be very useful for not only traders and investors, but also regulators.
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