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Received: 4 May 2012 / Published online: 21 June 2012
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Abstract The network of patents connected by citations is an evolving graph, which

provides a representation of the innovation process. A patent citing another implies that the

cited patent reflects a piece of previously existing knowledge that the citing patent builds

upon. A methodology presented here (1) identifies actual clusters of patents: i.e., tech-

nological branches, and (2) gives predictions about the temporal changes of the structure of

the clusters. A predictor, called the citation vector, is defined for characterizing techno-

logical development to show how a patent cited by other patents belongs to various

industrial fields. The clustering technique adopted is able to detect the new emerging

recombinations, and predicts emerging new technology clusters. The predictive ability of

our new method is illustrated on the example of USPTO subcategory 11, Agriculture,

Food, Textiles. A cluster of patents is determined based on citation data up to 1991, which
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shows significant overlap of the class 442 formed at the beginning of 1997. These new

tools of predictive analytics could support policy decision making processes in science and

technology, and help formulate recommendations for action.

Keywords Patent citation � Network � Co-citation clustering � Technological evolution

Introduction

In this paper we present a conceptual framework and a computational algorithm for studying

the process of technological evolution and making predictions about it by mining the patent

citation network. Patent data long has been recognized as a rich and potentially fruitful

source of information about innovation and technological change. Besides describing and

claiming inventions, patents cite previous patents (and other references) that are relevant to

determining whether the invention is sufficiently novel and nonobvious to be patented.

Citations are contributed by patentees, patent attorneys, and patent office examiners. Pat-

ents, as nodes, and citations between them, as edges, form a growing directed network,

which aggregates information about technological relationships and progress provided by

those players. Our methodology seeks to detect incipient technological trends reflected in

the citation network and thus to predict their emergence. The proposed method should also

be useful for analyzing the historical evolution of patented technology.

Innovation is frequently deemed key to economic growth and sustainability (Saviotti

et al. 2003, 2005; Saviotti 2005). Often, economically significant technologies are the

result of considerable investment in basic research and technology development. Basic

research is funded by the government and, to a lesser extent, by large firms such as those

found in the medical and pharmaceutical industries. Development is carried out by a range

of players, including start-up companies spending large fractions of their revenues on

innovation. Not surprisingly research and development (R&D) costs have risen rapidly in

the past few decades. For example, ‘‘worldwide R&D expenditures in 2007 totaled an

estimated $1,107 billion’’.1

Because innovation is unpredictable, R&D investment is often risky. The practical

implications for particular firms are evident: ‘‘The continuous emergence of new tech-

nologies and the steady growth of most technologies suggest that relying on the status quo

is deadly for any firm...’’ (Sood and Tellis 2005). As Day and Schoemaker argue (Day and

Schoemaker 2005): ‘‘...The biggest dangers to a company are the ones you do not see

coming. Understanding these threats—and anticipating opportunities—requires strong

peripheral vision’’. In the long term, understanding the emergence of new technological

fields could help to orient public policy, direct investment, and reduce risk, resulting in

improved economic efficiency. Detecting the emergence of new technological branches is

an intrinsically difficult problem, however.

Recent improvements in computing power and in the digitization of patent data make

possible the type of large-scale data mining methodology we develop in this paper. Our

approach belongs to the field of predictive analytics, which is a branch of data mining con-

cerned with the prediction of future trends. The central element of predictive analytics is the

predictor, a mathematical object that can be defined for an individual, organization or other

entity and employed to predict its future behavior. Here we define a ‘citation vector’ for each

patent to play the role of a predictor. Each coordinate of the citation vector is proportional to the

1 http://www.nsf.gov/statistics/seind10/c4/c4s5.htm
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relative frequency that the patent has been cited by other patents in a particular technological

category at a specific time. Changes in this citation vector over time reflect the changing role

that a particular patented technology is playing as a contributor to later technological devel-

opment. We hypothesize that patents with similar citation vectors will belong to the same

technological field. To track the development and emergence of technological clusters, we

employ clustering algorithms based on a measure of similarity defined using the citation

vectors. We identify the community structure of non-assortative patents—those which receive

citations from outside their own technological areas. The formation of new clusters should

correspond to the emergence of new technological directions.

A predictive methodology should be able to ‘‘predict’’ evolution from the ‘‘more dis-

tant’’ past to the ‘‘more recent’’ past. A process, called backtesting checks if this criteria is

met, which if true, holds the promise of predictions from the present to the near future. To

illustrate the potential of our approach and demonstrate that the emergence of new tech-

nological fields can be predicted from patent citation data, we backtested by using our

method to ‘‘predict’’ an emerging technological area that was later recognized as a new

technological class by the US Patent and Trademark Office (USPTO).

Because the patent citation network reflects social activity, the potential scope and

limitations of prediction are different from those in the natural sciences. Unexpected

scientific discoveries, patent laws, habits of patent examiners, the pace of economic growth

and many other factors influence the development of technology and of the patent network

that we do not intend to explicitly model. Correspondingly, patent grants change the

innovative environment, which we also do not incorporate in our modeling strategy. Any

predictive method can peer only into the relatively short term future, ours is not an

exception. The methodology developed here harnesses assessments of technological

relationships made by a very large number of participants in the system and attempts to

capture the larger picture emerging from those grass root assessments. We hope to show

what is possible based on a purely structural analysis of the patent citation data in spite of

the above mentioned difficulties.

The patent citation network

The United States patent system is a very large compendium of information about tech-

nology, and its evolution goes back more than 200 years. It contains more than 8 million

patents. The system reflects technological developments worldwide. Currently about half

of US patents are granted to foreign inventors. Of course, the US patent system is not a

complete record of technological evolution: not all technological developments are eligible

for patenting and not all eligible advances are patented in the United States or anywhere

else, for that matter. Nonetheless, the United States patent system is a well-studied and

documented source of data about the evolution of technology. Thus, we have chosen it as

the primary basis of our investigation, keeping in mind that our method potentially could

be applied to other patent databases as well.

Complex networks have garnered much attention in the last decade. The application of

complex network analysis to innovation networks has provided a new perspective from which

to understand the innovation landscape (Pyka and Scharnhost 2009). In our study, the patent

citation network is comprised of patents (nodes) and the citations between them (links). A

patent citation reflects a technological relationship between the inventions claimed in the

citing and cited patents. Citations are contributed by patentees and their attorneys and by patent

examiners. They reflect references to be considered in determining whether the claimed
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invention meets the patentability requirements of novelty and nonobviousness. Both patentees

and patent examiners have incentives to cite materially related prior patents. Patent applicants

are legally required to list related patents of which they are aware. Patent examiners seek out

the most closely related prior patents so that they can evaluate whether a patent should be

granted. Consequently, citation of one patent by another represents a technological connection

between them, and the patent citation network reflects information about technological con-

nections known to patentees and patent examiners. Patents sometimes cite scientific journals

and other non-patent sources. We ignore those citations here. Taking them into account is not

necessary to our goal of identifying emerging technology clusters and is not possible using our

current methodology, though it may be possible in the future to improve the method by

devising a means to take them into account. In the literature review section we will give a more

detailed analysis of what one can infer from the patent network, here we cite only (Duguet and

MacGarvie 2005):’’...patent citations are indeed related to firms’ statements about their

acquisition and dispersion of new technology...’’.

As described below, our methodology utilizes a classification system based on the one

that USPTO uses in defining our citation vector. However, our methodology has the

promise to predict the emergence of new technological fields not yet captured by the

USPTO classification system. The USPTO system has about 450 classes, and over 120,000

subclasses. All patents and published patent applications are manually assigned to primary

and secondary classes and subclasses by patent examiners. The classification system is

used by patent examiners and by applicants and their attorneys and agents as a primary

resource for assisting them in searching for relevant prior art. Classes and sub-classes are

subject to ongoing modification, reflecting the USPTO’s assessment of technological

change. Not only are new classes added to the system, but patents can be reclassified when

a new class is defined. As we discuss later, that reclassification provides us with a natural

experiment, which offers an opportunity to test our methodology for detecting emerging

new fields (Jaffe and Trajtenberg, 2005). Within the framework of a project sponsored by

the National Bureau of Economic Research (NBER), a higher-level classification system

was developed, in which the 400? USPTO classes were aggregated into 36 subcategories2,

which were further lumped into six categories (computers and communications, drugs and

medical, electrical and electronics, chemical, mechanical and others). As any classification

system, this system reflects ad hoc decisions as to what constitutes a category or a sub-

category. However this classification system appears to show sufficient robustness to be of

use in our methodology (Jaffe and Trajtenberg 2005).

Literature review

Two strands of literature form the context for our research. First, there is a large literature

in which patent citations (and, relatedly, academic journal citations) are used to explore

2 11—Agriculture, Food, Textiles; 12—Coating; 13—Gas; 14—Organic Compounds; 15—Resins; 19—Mis-
cellaneous-Chemical; 21—Communications; 22—Computer Hardware&Software; 23—Computer Peripherials;
24—Information Storage; 31—Drugs; 32—Surgery&Med Inst; 33—Biotechnology; 39—Miscellaneous-
Drgs&Med; 41—Electrical Devices; 42—Electrical Lighting; 43—Measuring&Testing; 44—Nuclear&X-rays;
45—Power Systems; 46—Semiconductor Devices; 49—Miscellaneous-Electric; 51—Mat.Proc&Handling; 52—
Metal Working; 53—Motors&Engines?Parts; 54—Optics; 55—Transportation; 59—Miscellaneous-Mechani-
cal; 61—Agriculture, Husbandry, Food; 62—Amusement Devices; 63—Apparel&Textile; 64—Earth
Working&Wells; 65—Furniture, House, Fixtures; 66—Heating; 67—Pipes&Joints, 68—Receptacles, 69—
Miscellaneous-Others.
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various aspects of technological and scientific development. Second, there is a literature

involving attempts to produce predictive roadmaps of the direction of science and tech-

nology. Our project, along with a few others, stands at the intersection of these two

literatures, using patent citations as a predictive tool.

Patent citation analysis

Patent citation analysis has been used for a variety of different objectives. For example,

citation counts have long been used to evaluate research performance (Garfield 1983;

Moed 2005). Economic studies suggest that patent citation counts are correlated with

economic value (Harhoff et al. 1999; Sampat and Ziedonis 2002; Hagedoorn and Cloodt

2003; Lanjouw and Schankerman 2004; Jaffe and Trajtenberg 2005). More generally,

patent citation data has been used in conjunction with other empirical information, such as

information about the companies who own patents, interviews with scientists in the field,

and analysis of the citation structure of scientific papers, to explore the relationship

between innovation and the patent system (Narin 1994; Milman 1994; Meyer 2001;

Kostoff and Schaller 2001; Debackere et al. 2002; Murray 2002; Verbeek et al. 2002).

Patent citations have also been used to investigate knowledge flows and spillovers (Duguet

and MacGarvie 2005; Strumsky et al. 2005; Fleming et al. 2006; Sorenson et al. 2006),

though the validity of these studies is called into question by the fact that patent citations

are very frequently inserted as a result of a search for relevant prior art by a patentee’s

attorney or agent or a patent examiner (Sampat 2004; Criscuolo and Verspagen 2008;

Alcacer and Gittelman 2006). From previous work the basic idea is that new knowledge

comes from combinations of old knowledge. Local combinations are more effective than

distant combinations, which though rare, when they occur provide major new knowledge

(Sternitzke 2009). We ourselves have used the methodologies of modern network science

to study the dynamic growth of the patent citation network in an attempt to better

understand the patent system itself and the possible effects of changes in legal doctrine

(Strandburg et al. 2007, 2009).

Other scholars have used patents as proxies for invention in attempts to develop and test

theoretical models for the process of technological evolution. For example, Fleming and

Sorenson (Fleming 2001; Fleming and Sorenson 2001) develop a model of technological

evolution in which technology evolves primarily by a process of searching for new

combinations of existing technologies. In analogy to biological evolution, they imagine a

‘‘fitness landscape’’ and a process of ‘‘recombinant search’’ by which technological evo-

lution occurs. They use citations as a measure of fitness, and conclude that a successful

innovation balances between re-using familiar components—an approach which is likely to

succeed—and combining elements that have rarely been used together—an approach that

often fails, but produces more radical improvements. In a later paper Fleming (2004) uses

patent citation data to explore the value of using science to guide technological innovation

by tracking the number of patent citations to non-patent sources, and measures the diffi-

culty of an invention by looking at how subclasses related to the patent were previously

combined. His main conclusion is that science provides the greatest advantage to those

inventions with the greatest coupling between the components (non-modularity). Podolny

and Stuart also use patent citations to study the innovative process (Podolny and Stuart

1995). They define local measures of competitive intensity and competitive crowding in a

technological niche based on indirect patent citation ties and use these measures to study

the ways in which a technological niche can become crowded and then exhausted as

innovative activity proceeds.
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Most relevant to our work here is that patent citations, as well as academic journal

citations, have been used to study the ‘‘structure’’ of knowledge as reflected in different

fields and sub-fields. All of these methods rely on some way to measure the similarity or

relatedness of patents or journal articles. Co-citation analysis, one approach to this prob-

lem, goes back to the now classic works of Small (1973; Garfield 1993): ‘‘...A new form of

document coupling called co-citation is defined as the frequency with which two docu-

ments are cited together. The co-citation frequency of two scientific papers can be

determined by comparing lists of citing documents in the Science Citation Index and

counting identical entries. Networks of co-cited papers can be generated for specific sci-

entific specialties [...] Clusters of co-cited papers provide a new way to study the specialty

structure of science...’’. The assumption of co-citation analysis is that documents that are

frequently cited together cover closely related subject matter. Co-citation analysis has been

used recently (Chen et al. 2010), as well as more than a decade ago (Mogee and Kolar

1998b, 1998a, 1999) to study the structure of knowledge in various specific fields, such as

nanotechnology (Huang et al. 2003, 2004; Meyer 2001; Kostoff et al. 2006), semicon-

ductors (Almeida and Kogut 1997), biotechnology (McMillanm et al. 2000), and tissue

engineering (Murray 2002) providing valuable insight into the development of these

technological fields. The main goal of this line of research is to understand in detail the

development of a specific industrial sector. Wallace et al. (2009) recently adopted a

method (Blondel et al. 2008) for using co-citation networks to detect clusters that relies on

the topology of the citation-weighted network. Lai and Wu (Lai and Wu 2005) have argued

that co-citation might be used to develop a patent classification system to assist patent

managers in understanding the basic patents for a specific industry, the relationships among

categories of technologies, and the evolution of a technology category—arguing very much

along the lines that we do here.

Researchers are also exploring the use of concepts taken from modern network science

and social network studies to illuminate the structure of technology using the patent

citation network. For example, Weng et al. (Weng et al., 2010), employ the concept of

structural equivalence, a fundamental notion in the classical theory of social networks.

They define two patents as ‘‘structurally equivalent’’ in the technological network when

they cite the same preceding patents. They use structural equivalence to map out the

relationships between 48 insurance business method patents and classify patents as

belonging to the technological core or periphery. They compare their results to a classi-

fication made by expert inspection of the patents. Our predictor, the ‘citation vector’

described in the following section can be conceived as a tool to get at a weighted version of

structural equivalence.

Other researchers have measured the distance between patents as defined by the shortest

path along the patent citation network. For example, Lee at al. (2010) recently analyzed a

small subset of the patent citation network to study the case of electrical conducting

polymer nanocomposites. Chang et al. (2009) use a measure of ‘‘strength’’ based on the

frequency of both direct and indirect citation links to define a small set of ‘‘basic’’ patents

in the business method arena and then use clustering methods to determine the structure of

relationships among those basic patents. For the most part, these studies have been limited

to small numbers of patents and many have focused primarily on visualization.

Researchers have also used citations between patents and the scientific literature to

investigate the relationship between scientific research and patented technology. For

example, a comparative study (Shibata et al. 2010) of the structures of the scientific pub-

lication and patent citation networks in the field of solar cell technology found a time lag

between scientific discovery and its technological application. Other researchers have also
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considered the role of science in technological innovation by investigating citations between

patents and articles in the scientific literature (Mogee and Kolar 1998b; McMillanm et al.

2000; Meyer 2001; Tijssen 2001; Fleming 2004). One main difference between scientific

and patent citations is that they are less likely to have identical references. To account for

this difference, it was suggested that the patentee and the patent examiner reference more

objectively prior art that is relevant, whereas authors of journal articles have motivation to

reference papers that are irrelevant to the subject of the study (Meyer 2000).

Finally, there are various non-citation-based methods of determining the similarity

between patents (or between academic articles). Researchers have used text mining (Huang

et al. 2003; Kostoff et al. 2006), keyword analysis (Huang et al. 2004), and co-classifi-

cation analysis based on USPTO classifications (Leydesdorff 2008) in this way. These

approaches are usually more time consuming, their implementation may be specific to a

technological field and involve ad hoc decisions in the classification process and thus they

are less systematic than ours. Generally, while we do not believe that patent citation is the
magic bullet to identify the most promising emerging technologies, we see that the more

traditional methods of patent trajectory analysis and the new methods are converging

(Fontana et al. 2009).

Predicting the direction of science and technology

There is a large literature concerning various approaches to producing ‘‘roadmaps’’ of science

and technology as tools for policy and management based on numerous approaches ranging

from citation analysis to expert opinion (see, e.g., Kostoff and Geisler (2007); Kajikawa et al.

(2008), and references therein). Some of this work seeks to provide direction to specific

industrial research and development processes. Recently, for example, OuYang and Weng

(2011) suggested the use of patent citation information, in addition to other information such

as expert analysis, during the process of new product design. Citation-based methods, spe-

cifically co-citation clustering techniques, have been employed for tracking and predicting

growth areas in science using the scientific literature (Small 2006). Because the patent system

is such a rich source of information about the evolution of technology, it has long been hoped

that insights into the mechanisms of technological changes can be used to make predictions on

emerging fields of technologies (Breitzman 2007).

The extensive work of Kajikawa and his coworkers, which focuses on mining larger

scale trends from citation data, is most closely related to the work we report here. These

studies use citations to cluster scientific articles in order to detect emerging research areas.

These researchers have deployed various clustering techniques based on co-citation and on

direct citation networks (Shibata et al. 2008), to explore research evolution in the sus-

tainable energy industry (fuel cell, solar cell) (Kajikawa et al. 2008), the area of biomass

and bio-fuels (Kajikawa and Takeda 2008), and, most recently, in the field of regenerative

medicine (Shibata et al. 2011).

Research methodology

Evolving clusters

The basic orientation of our research is similar to that of Kaijikawa and co-coworkers. We

search for emerging and evolving technology clusters based on a citation network. Our

method differs from previous work in several respects, however. All citation-based
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clustering methods leverage the grass roots, field-specific expertise embedded in the

citation network. Here, because we are clustering patents we are able to make use of the

additional embedded expertise reflected in the assignment of patents to USPTO classifi-

cations by patent examiners. In our clustering approach, we use evolving patterns of

citations to a particular patent by other patents in various technology categories to measure

patent similarity. Our method can be used to analyze large subsets of the patent citation

network in a systematic fashion and to observe the dynamics of cluster formation and

disappearance over time. In the long run we hope to be able to describe these dynamics

systematically in terms of birth, death, growth, shrinking, splitting and merging of clusters,

analogous to the cluster dynamical elementary events described by Palla et al. (2007).

Figure 1 illustrates these events.

Although our method is based on USPTO’s and NBER’s classification of patents, we

believe, that any classification system, which covers the whole technological space and

describes it in sufficient detail could serve as the basis for our investigation.

Construction of a predictor for technological development

To capture the time evolution of technological fields, we have constructed a quantity, the

‘citation vector’, which we use to define measures of similarity between patents.

Specifically, we define the citation vector for a given patent at any given time in the

following way:

1. For each patent, we calculate the sum of the citations received by that patent from

patents in each of the 36 technological subcategories defined by Hall et al. (2001); as

noted above, these subcategories are aggregations of USPTO patent classifications.

This gives us 36 sums for each patent, which we treat as entries in a 36-component

vector. In the process of calculating the sums we weight incoming citations with

respect to the overall number of citations made by the sender patent, thus, we give

more weight to senders which referred to fewer others. The coordinate corresponding

to each patent’s own subcategory is set to zero so that the citation vectors focus on the

combination of different technological fields.

Fig. 1 Possible elementary events of cluster evolution. Based on Palla et al. (2007)
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2. We then normalize the 36-component vector obtained for each patent in the previous

step using an Euclidean norm to obtain our citation vector. Patents that have not

received any citations are assigned a vector with all zero entries. The citation vector’s

components may be interpreted as describing the relative influence that a patent has

had on different technological areas at a specific time. The impact of a patent on future

technologies changes over time, and thus the citation vector evolves to reflect the

changing ways in which a patented invention is reflected in different technological

fields.

We next seek to group patents into clusters based on their roles in the space of tech-

nologies. To do this, we define the similarity between two patents as the Euclidean distance

of their citation vectors and apply clustering algorithms based on this similarity measure.

We thus hypothesize that patents cited in the same proportion by patents in other tech-

nological areas have similar technological roles. This hypothesis resonates with the

hypothesis formulated by the pioneer of co-citation analysis, Henry Small (1973), that co-

cited patents are technologically similar.

Our focus is on those inventions that were influential in technologies other than their

own. In other words, we are concentrating on patents that received non-assortative citations

(Newman 2002). Because the high number of patents receiving only intra-subcategory

citations tends to mask the recombinant process, citations within the same subcategory are

eliminated from the citation vector.

Our algorithm for predicting technological development consists of the following steps:

1. Select a time point t1 between 1975 and 2007 and drop all patents that were issued

after t1.

2. Keep some subset of subcategories: c1; c2; . . .; cn—to work with a reasonably sized

problem.

3. Compute the citation vector. Drop patents with assortative citation only.

4. Compute the similarity matrix of patents by using the Euclidean distance product

between the corresponding citation vectors.

5. Apply a hierarchical clustering algorithm to reveal the functional clusters of patents.

6. Repeat the above steps for several time points t1\t2\. . .\tn:
7. Compare the dendrogram obtained by the clustering algorithm for different time points

to identify structural changes (such as emergence and/or disappearance of groups).

The discussion thus far leaves us with two key questions: (1) What algorithms should be

chosen to cluster the patents? (2) How should we link the clustering results from con-

secutive time steps? The following subsections address these questions.

Identification of patent clusters

Several clustering and graph partitioning algorithms are reasonable candidates for our

project. An important pragmatic constraint in choosing clustering algorithms is their

computation-time complexity. Given the fact that we are working on a huge database, we

face an unavoidable trade-off between accuracy and computation time. Because we do not

know a priori the appropriate number of clusters, hierarchical methods are preferred, as

they do not require that the number of clusters be specified in advance. Available clustering

methods include the k-means and Ward methods, which are point clustering algorithms

(Ward 1963). Graph clustering algorithms, such as those that use edge-betweenness

(Girvan and Newman 2002; Newman and Girvan 2004) random walks (Pons and Latapy
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2006) and the MCL method (van Dongen 2000) are also possible choices. The otherwise

celebrated clique-percolation method (Palla et al. 2007) employs a very restrictive concept

of a k-clique, making it difficult to mine clusters from the patent citation network. Spectral

methods (Newman 2006) are not satisfactory because they are extremely computation-time

intensive in cases like this one, in which one would have to calculate the eigenvalues of a

relatively dense matrix. In the application presented here we adopted the Ward method.

Detecting structural changes in the patent cluster system

The structure of dendrograms resulting from hierarchical clustering methods, such as the

Ward method, reflects structural relationships between patent clusters. In this hierarchy,

each branching point is binary and defined only by its height on the dendrogram, corre-

sponding to the distance between the two branches. Thus, all types of temporal changes in

the cluster structure can be divided into four elementary events: (1) increase or (2) decrease

in the height of an existing branching point, and (3) insertion of a new or (4) fusion of two

existing branching points. To find these substantial, structural changes, we identify the

corresponding branching points in the dendrograms representing consecutive time samples

of the network and follow their evolution through the time period documented in the

database.

To test whether our clusters are meaningful, we can compare the emergence of new

clusters to the introduction of new classes by the USPTO. Potential new classes can be

identified in the clustering results by comparing the dendrogram structure with the USPTO

classification. While some of the branching points of the dendrogram are reflected in the

current classification structure, we may find significant branches which are not identified

by the classification system used at that time point and test our approach by seeing whether

clusters that emerge at a particular time are later identified as new classes by the USPTO.

Results and model validation

We have chosen the NBER subcategory 11, agriculture, food, textiles as an example, to

demonstrate our method. The rationals of our choice are:

1. Subcategory 11 (SC 11) has moderate size (compared to other subcategories), which

was appropriate to the first test of our algorithm.

2. SC 11 is heterogeneous enough to show non-trivial structure.

3. A new USPTO class, the class 442 was established recently within the subcategory 11,

which we can use to test our approach.

Note, that restriction of the field of investigation does not restrict the possibility of

cross-technological interactions, because the citation vector remains 36 dimensional,

including all the possible interactions between the actually investigated and all the other

technological fields.

Patent clusters: existence and detectability

We begin by demonstrating the existence of local patent clusters based on the citation

vector. Such clusters can be seen even with the naked eye by perusing a visualization of the

36 dimensional citation vector space projected onto two dimensions, or can be extracted by

a clustering algorithm. See Fig. 2.
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Changes in the structure of clusters reflects technological evolution

Temporal changes in the cluster structure of the patent system can be detected in the

changes of dendrograms. We present the dendrogram structure of the subcategory 11 at

two different times (Fig. 3). Comparing the hierarchical structure in 1994 and 2000, we can

observe both quantitative changes, when only the height of the branching point (branch

separation distance) changed, and qualitative changes, when a new branching point has

appeared.

In general, the hierarchical clustering is very sensitive and even the structure of large

branches could be changed by changing only a few elements in the basic set. In spite of this

general sensitivity, the main branches in the presented dendrograms were remarkably

stable through the significant temporal changes during the development—they were easily

identifiable from 1991 to 2000, during which time a significant increase took place in the

underlying set, as can be seen from Table 1. The main branches and their large scale

structure were also stable against minor modifications of the algorithm, such as the

weighting method of the given citations during the citation vector calculation. These

observations show, that the large branches are well identified real structures. However, this

reliability does not necessarily hold for smaller cluster patterns, which are often the focus

of interest. Thus, if a small cluster is identified as a candidate for becoming a new field by

our algorithm, it should be considered as a suggestion and should be evaluated by experts

to verify the result.

Really existing structures. Although, this does not necessarily hold for smaller cluster

patterns, often in the focus of interest. Thus if a small cluster identified as a candidate

becoming a new field by our algorithm, it should be considered as a suggestion and should

be revised by experts to verify the result.

Fig. 2 Cluster structure of patents in the citation space. Two-dimensional representation of patent similarity
structure in the subcategory 11 by using the Fruchterman-Reingold algorithm. Local densities corresponding
to technological areas can be recognized by the naked eye or identified by clustering methods. The colors
encode the US patent classes: red corresponds to class 8; green 19; blue 71; magenta 127; yellow 442; cyan
504
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The emergence of new classes: an illustration

The most important preliminary validation of our methodology is our ability to ‘‘predict’’

the emergence of a new technology class that was eventually identified by the USPTO. As

we mentioned earlier, the USPTO classification scheme not only provides the basis for the

NBER subcategories that define our citation vector, it also provides a number of natural

experiments to test the predictive power of our clustering method. When the USPTO

identifies a new technological category it defines a new class and then may reclassify

earlier patents that are now recognized to have been part of that incipient new techno-

logical category. (Recall that there are many more USPTO classes than NBER subcate-

gories—within a given subcategory there are patents from a number of USPTO classes.) If

our clustering method is sensitive to the emergence of new technological fields, we might

hope that it will identify new technological branches before the USPTO recognizes their

existence and defines new classes.

Figures 4 and 5 illustrate the emergence of class 442, which was not defined by the

USPTO until 1997. Figure 4 shows how patents that will eventually be reclassified into

class 442 can be seen to be splitting off from other patents in subcategory 11 as early as

Fig. 3 Temporal changes in the cluster structure of the patent system. Dendrograms representing the results
of the hierarchical Ward clustering of patents in subcategory 11, based on their citation vector similarity on
Jan. 1, 1994 (18833 patents in graph a) and Dec. 31, 1999 (25624 in graph b). The x axis denotes a list of
patents in subcategory 11, while the distances between them, as defined by the citation vector similarity, are
drawn on the y axis. (Patents separated by 0 distance form thin lines on the x axis.) The 7 colors of the
dendrogram correspond to the 7 most widely separated clusters. While the overall structure is similar in
1994 and 1999, interesting structural changes emerged in this period. The cluster marked with the red color
and asterisk approximately corresponds to the new class 442, which was established in 1997, but was clearly
identifiable by our clustering algorithm as early as 1991

Table 1 Number of patents in the examined networks and subnetworks in different moments

01.01.91 01.01.94 01.01.97 12.31.99

Patents in the whole database 4,980,927 5,274,846 5,590,420 6,009,554

Patents in the subcategory 11 18,833 21,052 23,191 25,624

Patents belong to class 442 from 1997 2,815 3,245 3,752 4,370

Patents with non-zero citation vector in 11 7,671 9,382 11,245 13,217

citations connected to patents in SC 11 70,920 92,177 120,380 161,711
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1991. The visually recognizable cluster of patents in Fig. 4 that will later be reclassified

into class 442 can be identified by the Ward method with cutoff at 7 clusters in 1991, as is

shown in Fig. 5. The histogram in Fig. 5 shows the frequency of patents with a given

cluster number and USPTO class. Patents that will eventually be reclassified into class 442

are already concentrated in cluster 7. The Pearson-correlation between the class 442 and

the corresponding clusters in our analysis resulted in high values: 0.9106 in 1991; 0.9005

in 1994; 0.8546 in 1997 and 0.9177 in the end of 1999. This example thus demonstrates

that the citation vector can play the role of a predictor: emerging patent classes can be

identified.

Fig. 4 An example of the splitting process in the citation space, underlying the formation of a new class. In
the 2D projection of the 36 dimensional citation space, position of the circles denote the position of the
patents in subcategory 11 in the citation space in three different stages of the separation process (1 Jan 1994,
1 Jan 1997, 31 Dec 1999). Red circles show those patents which were reclassified into the newly formed
class 442, during the year 1997. The rest of the patents which preserved their classification after 1997 are
denoted by blue circles. Precursors of the separation appear well before the official establishment of the new
class

Fig. 5 Separation of the patents by clustering in the citation space, based on the 1 Jan 1991 data.
a Distribution of the patents issued before 1991 in the subcategory 11, within the 6 official classes in 1997
on the class axis (also marked with different colors) and within the 7 clusters in the citation space. The
clustering algorithm collected the majority of those patents which were later reclassified into the newly
formed class 442 (orange line) into the cluster 7 (marked with an asterisk). Vice-verse, the cluster 7 contains
almost exclusively those patents which were later reclassified. Thus, we were able to identify the precursors
of the emerging new class by clustering in the citation space. b: The dendrogram belonging to the
hierarchical clustering of the patents in the subcategory 11 in year 1991 shows that the branch which belongs
to the cluster 7 is the most widely separated branch of the tree. The coloring here refers to the result of the
clustering, unlike graph a where coloring marks the USPTO classes
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Discussion

Patent citation data seems to be a goldmine of new insights into the development of

technologies, since it represents, even with noise, the innovation process. Scholars have

long sought to understand technological change using evolutionary analogies, describing it

as a process of recombination of already existing technologies (Schumpeter 1939; Usher

1954; Henderson and Clark 1990; Weitzman 1996; Hargadon and Sutton 1997). Inventions

are often described as combinations of prior technologies. ‘‘...For example, one might think

of the automobile as a combination of the bicycle, the horse carriage, and the internal

combustion engine’’ (Podolny and Stuart 1995; Podolny et al. 1996; Fleming 2001;

Fleming and Sorenson 2001). This feature of technological advance is well-recognized in

patent law and has been the subject of recent Supreme Court attention, see KSR Int’l Co. v.

Teleflex, Inc., 550 US 398 (2007). Our methodology exploits and tests this perspective by

using the role a particular patented technology plays in combining existing technological

fields to detect the emergence of new technology areas. In this respect our method

improves upon clustering methods based entirely on the existence of a citation between

two articles or patents by incorporating locally-generated information (the patent category)

relevant to the meaning of a given citation. Here we present a proof of concept for the

method. In future work we will scan the patent citation network more broadly to identify

clusters that may reflect the incipient development of new technological ‘‘hot spots.’’

We recognize that our method has a number of limitations. An important limitation is

the time lag between the birth of a new technology and its appearance in the patent

databases as reflected in the accumulation of citations. Csárdi et al. (2009) showed that the

probability that an existing patent will be cited by a new patent peaks about 15 months

after issuance. This time lag seems to show little variance across different fields. We may

therefore expect that a fair amount of information about the use of a patented technology

may have accumulated during that time. It is also the case, however, that the citation

probability exhibits a long tail, so that patents may continue to receive additional citations

(potentially from different technological areas) over very long times. Clearly the usefulness

of the methodology as a predictor will depend on its ability to identify emerging tech-

nology areas before they are otherwise recognized. In the specific example we explored

here we were able to identify a new class well before its official recognition by the USPTO.

In future work, we will seek to determine the time difference between the detection of the

first signs that a new cluster is emerging and the official formation of the new class for

other cases to determine whether there is a characteristic time lag and, if so, whether it

varies among technological categories.

The new method combines objective and subjective features. The citations themselves

(the links between citing and cited documents) are based on similar technology/application

concepts, and can be viewed as more or less objective quantities. The citation vector bases

are the manually assigned categories, and can be viewed as more subjective quantities.

Thus, in some sense, the approach is a marriage of two types of taxonomies, each having

many possible variations. We suppose that USPTO classification catches sufficient details

to reflect in advance some change in its structure. If the resolution is low, i.e., only the

larger categories are used we can identify only rare and really deep/fundamental changes.

Our methodology also oversimplifies the patent citation network in many ways. For

example, technological fields are not homogeneous with respect to number of patents,

average number of citations per patent, and so forth. Future work should explore the

implications of these differences, especially the consequences of them to the weighting we

applied when calculating the citation vector.
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Finally, because there is no way to determine a priori the appropriate number of clusters

for a given subset of the citation network, the method described provides only candidates

for the identification of a new technological branch. To put it another way, we offer a

decision support system: we are able to identify candidates for hot spots of technological

development that are worthy of attention.

In future work, we also hope to use the method to examine, from a more theoretical

perspective, the specific mechanisms of technological branching. New technological

branches can be generated either by a single (cluster dynamical) elementary event or by

combinations of such events. For example, a new cluster might arise from a combination of

merging and splitting. By examining historical examples, we hope to observe how the

elementary events interact to build the recombination process and identify the typical

‘‘microscopic mechanisms’’ underlying new class formation. This more ambitious research

direction is grounded in a hypothesis that social systems are causal systems–complex

systems with circular causality and feedback loops (Érdi 2007, 2010)—whose statistical

properties may allow us to uncover rules that govern their development [for similar

attempts see Leskovec and coworkers (2005), and Berlingerio et al. (2009)]. ‘‘...Analo-

gously to what happened in physics, we are finally in the position to move from the

analysis of the ‘‘social atoms’’ or ‘‘social molecules’’ (i.e., small social groups) to the

quantitative analysis of social aggregate states...’’ (Vespignani 2009). Our study of

the specific example of the patent citation network may thus help in the long run to

advance our understanding of how complex social systems evolve.
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