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We compare reconstructions based on the radiative transport and diffusion equations in optical tomography
for media of small sizes. While it is well known that the diffusion approximation is less accurate to describe
light propagation in such media, it has not yet been shown how this inaccuracy affects the images obtained
with model-based iterative image reconstructions schemes. Using synthetic nondifferential data we calcu-
late the error in the reconstructed images of optical properties as functions of source modulation frequency,
noise level in measurement, and diffusion extrapolation length. We observe that the differences between
diffusion and transport reconstructions are large when high modulation frequencies and noise-free data are
used in the reconstructions. When the noise in data reaches a certain level, approximately 12% in our
simulations, the differences between diffusion- and transport-based reconstructions become almost indis-
tinguishable. Given that state-of-the-art optical imaging systems operate at much lower noise levels, the
benefits of transport-based reconstructions of small imaging domains can be realized with most of the
currently available systems. However, transport-based reconstructions are considerably slower than
diffusion-based reconstructions. © 2007 Optical Society of America

OCIS codes: 170.0170, 170.3010, 170.3660, 170.3880, 170.6960, 170.7050.

1. Introduction

Diffuse optical tomography (DOT) is an emerging bio-
medical imaging technique where visible and near-
infrared light is used to probe the absorption and
scattering properties of biological tissues [1–13]. Ap-
plications of this technique include, for example,
brain [4,14,15], breast [6,16–19], and joint imaging
[20–24]. So far, most of the imaging algorithms in
DOT are model based, in the sense that a model for
near-infrared light propagation in tissues must be
provided. It is generally believed that the propaga-
tion of near-infrared light in tissues is best modeled
by the radiative transport equation (RTE), which is
formulated in phase space, i.e., the space of positions
and directions and thus computationally very expen-
sive. To lower computational cost, it is preferable in
many applications to replace the transport equation

by its diffusion approximation, which models the spa-
tial density of photons.

The application of the diffusion equation in opti-
cal tomography, however, has its limitations. Es-
sentially, the derivation of the diffusion equation
from the RTE is only valid when the underlying
tissues are highly scattering and weakly absorbing.
The diffusion approximation is not accurate enough
to model light propagation in regions with small or
vanishing scattering coefficients, such as the cere-
brospinal fluid layers in the human head. In this
case, one either has to generalize the classical dif-
fusion equation [25], couple diffusion with trans-
port equations [26–28], or solve the RTE directly
[29–33]. Another situation where diffusion approx-
imation is not accurate enought, and somewhat re-
lated to the previous one, is in modeling light
propagation in media of small volumes. Examples
are imaging of rheumatoid arthritis in finger joints
[20–24] or imaging of small animals [34–36]. In
these cases, because of the small optical distance
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between sources and detectors, the diffusion ap-
proximation is not accurate enough to approximate
the “transport” behavior of photons.

The objective of this paper is precisely to compare
reconstructions that rely on the diffusion equation
with those based on the RTE in circumstances where a
diffusion equation does not approximate the transport
equation very well. Focusing on the problem of small
domains, we show that considerable differences be-
tween reconstructions with transport and diffusion
models exist. In general the diffusion-based recon-
structions have a larger error in the values of ab-
solute optical properties. However, diffusion-based
reconstructions are considerably faster and often at
least locate the heterogeneity correctly.

The remainder of the paper is structured as fol-
lows. In Section 2 we briefly recall basic facts about
the RTE and its diffusion approximation. We then
present in Section 3 the numerical methods used to
discretize the radiative transport and the diffusion
equations and to perform the reconstructions. In Sec-
tion 4, we present a quantitative comparison between
transport-based and diffusion-based reconstructions.
Conclusions are offered in Section 5.

2. Transport Equation and Its Diffusion Approximation

We introduce the two forward models for light propa-
gation in tissues that are used in model-based optical
tomographic reconstructions, namely, transport and
diffusion models. To simplify the presentation, all the
equations will be written in the frequency domain. The
latter refers to the modulation frequency of the source
term, typically on the order of 100–1000 MHz, and
should not be confused with the frequency of the pho-
tons, which for near-infrared light lies between 300
and 500 THz and corresponds to wavelength of
600–1000 nm. The term “steady state,” used later in
the paper, refers to the case where the source modu-
lation frequency (denoted by �) equals zero.

A. Radiative Transport Equation

The propagation of near-infrared light in biological
tissues is most accurately modeled by the RTE
[1,37,38]. This equation describes the photon density
in the phase space X � � � S2, i.e., as a function of
both position x � � � �3 and propagation direction
� � S2. Here � is the spatial domain and S2 the unit
sphere in �3. When the intensity of the light source is
modulated with frequency �, i.e., is of the form
f�x, ��ei�t, where t is the time variable, the frequency
domain radiative transport equation takes the form
[1,33,39]:

�i�
�

� � · � � �t�x��u�x, �� 	 �s�x�

� �
S2

k�� · ���u�x, ���d�� � 0, in X,

u�x, �� � f�x, ��, on 
_, (1)

where i � �	1 and � is the speed of light in the
medium. The functions �t�x� and �s�x� are the total
absorption (extinction) coefficient and scattering co-
efficient, respectively. We denote by �a�x� � �t�x�
	 �s�x� the physical absorption coefficient. The solu-
tion u�x, �� is the radiant power per unit solid angle
per unit area perpendicular to the direction of prop-
agation at x in the direction �. The boundary sets 
�

are defined by


� � 	�x, �� � �� � S2 such that �� · v�x� 
 0
, (2)

with v�x� the outward unit normal to � at x � ��.
The scattering kernel for light propagation in tissues
is highly forward peaked and is chosen in this paper
as the Henyey–Greenstein phase function [40,41]:

k�� · ��� � C
1 	 g2

�1 � g2 	 2g cos ��3�2 � k���, (3)

where � is the angle between � and ��, i.e., � · ��
� cos � and where g � �0, 1� is the anisotropy factor,
which measures how forward peaked scattering is.
The larger the value of g, the more forward peaked
the scattering. The anisotropy factor is often used to
define the so-called effective scattering coefficient
through �s� � �1 	 g��s. The normalization factor C is
chosen such that �S2 k�� · ���d� � 1. For scattering
kernels other than Eq. (3), we refer interested read-
ers to the reference cited [42].

We remark finally that both f�x, �� and u�x, �� de-
pend also on the modulation frequency �. For sim-
plicity of notation, this dependency is not written
explicitly.

B. Diffusion Approximation

The RTE we described is a microscopic model for light
propagation in tissues. Numerical solutions of this
model are very expensive because both spatial and
angular discretizations have to be performed. It is
thus preferable in many applications to replace the
transport equation by the less expensive physical-
space diffusion equation. The diffusion equation de-
scribes light propagation at the macroscopic level,
where the unknown quantity is the angularly aver-
aged photon flux.

The approximation of the radiative transport
equation by the diffusion equation has been well-
documented [43,44]. There, it is shown that when
absorption is sufficiently low and scattering suffi-
ciently large, the transport process can be modeled
macroscopically with the following diffusion equa-
tion:

i�
�

U�x� 	 � · ��U � �a�x�U�x� � 0, in �,

U � 3�L3v�x� · ��U � ��f��x�, on ��. (4)

Here U(x) is the angularly averaged photon flux at x,
an approximation of the quantity �S2 u�x, ���d� in the
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transport equation; �a�x� is the absorption coefficient
that describes the rate of absorption at x. It corre-
sponds to �t�x� 	 �s�x� in transport equation. The
diffusion tensor ��x� is symmetric and positive de-
finite. It is given by ��x� � 1��3��a�x� � �s��x��� in
the Henyey–Greenstein case, where �s��x� � �1 	
g��s�x�.

The operator � is a linear form that maps any
incoming angular distribution f to a real number.
Explicit expressions can be found in simple cases
[43,45]. In this paper, we will always use isotropic
source terms f�x, �� � f�x� for which we obtain ��f�
� f. This choice of f is not necessary in practice. It is
picked here to simplify the comparison between
transport and diffusion reconstructions.

A very important aspect in the derivation of diffu-
sion equations is to account correctly for photon leak-
age at the domain boundary [26,43,46]. This requires
a detailed boundary layer analysis for the transport
equation [43], which shows that leakage should be
modeled by the Robin-type boundary conditions for
diffusion, where L3 is the extrapolation length; see
Eq. (4). Explicit expressions for the extrapolation
length are known only in simple cases, for instance
when scattering is isotropic (g � 0), where L3 

0.7104 [26,43,45].

The small parameter � is called the transport mean
free path. It is defined as � � 3� � 1���a � �s��. The
transport mean free path measures the average dis-
tance is takes for photons to be substantially de-
flected from their original direction by scattering. In
the limit where the transport mean free path � goes to
zero, the error between the diffusion solution U(x)
and the transport flux �S2 u�x, ��d� is of order �2 in
regions sufficiently far from the boundary [43].

In the time-dependent case, let us note that the
diffusion approximation may not be valid for short
times [43]. This implies that even in situations of
highly scattering and low absorption, the diffusion
approximation may not be accurate for high modula-
tion frequencies �. There is also numerical evidence
for this statement [47].

3. Reconstruction Methods

Optical tomography aims at reconstructing �a�x� and
�s�x� in the transport and diffusion equations from
boundary measurements. Our goal here is to quantify
the errors in the reconstructions obtained by using
the diffusion equation in situations where it is not an
accurate approximation to the RTE. To do this, we
assume that the data are generated by the physically
accurate transport model. We then consider two re-
constructions.

1. Transport reconstruction. In this reconstruc-
tion, the radiative transport equation is used as the
model for light propagation. The predicted current
measurements at the domain boundary are then cal-
culated using:

JT�x� � �
S�2

� · v�x�u�x, ��d�, (5)

where S�
2 � 	�: � � S2 and � · v�x� 
 0
.

2. Diffusion reconstruction. Here the diffusion
equation is used as the light propagation model. The
predicted boundary current measurements corre-
sponding to Eq. (5) are computed according to

JD�x� � 	v�x� · ��U. (6)

In this paper, we focus on the reconstruction of the
absorption coefficient �a only and assume �s to be
known. The reconstruction of �a is quite useful in
many practical applications, such as, e.g., the moni-
toring of the oxygenation of tissues [19].

A. Reconstruction Algorithms

As usual, we solve the reconstruction problem by
minimizing the mismatch between model predictions
and measured data for several source-detector pairs:

min
�a�x����amin,�amax�

�� :� ���a� �
�

2�
�

��a · ��adx, (7)

where the last term is a Tikhonov regularization
functional with regularization parameter �, and
where the mismatch functional is defined as

���a�x�� �
1
2 �

q�1

Nq

�Jq�x� 	 zq�x��L2����
2 . (8)

Here �a
min and �a

max are physical lower and upper
bounds imposed on �a. Nq is the number of sources
used, and zq�x� denotes the current measurements
corresponding to source q. As stated before, we as-
sume that the current data zq�x� are generated by the
transport equation.

We use the limited memory Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm that we have
previously developed [33] to solve the minimization
problem in Eq. (7). To use it for the diffusion case, we
use the diffusion equation as the forward model and
correspondingly modify the gradient calculations for
the objective function. We adopt a very similar ad-
joint state method for the gradient calculation. We
refer to our previous work [33] for details of the BFGS
algorithm for the transport reconstructions and the
L-curve method used to choose the regularization pa-
rameter �.

B. Discretization of Forward Models

To calculate model predictions for the minimization
algorithm, we numerically solve the RTE in Eq. (1) by
discretizing it using the discrete ordinate method for
the angular variable and a finite volume method for
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the spatial variable [33,39]. We refer to our earlier
work [33,39] for some numerical tests on the finite
volume discretization of the transport equation and
related reconstruction results.

The diffusion Eq. (4) is discretized by using a sim-
ilar finite volume method. Finite volume methods
[48] ensure the conservation of mass (or momentum,
energy) in a discrete sense, which is important in
transport and diffusion calculations. They also have
the advantage of easily handling complicated geom-
etries by arbitrary triangulations, which we need in
tomographic applications.

We denote by � a mesh of �3 consisting of polyhe-
dral bounded convex subsets of �3. � covers our com-
putational domain �. Let � � � be a control cell, that
is, an element of the mesh �, �� its boundary, and V�

its volume. We assume that the unknown quantity,
for example U(x), is constant in � and denote the
value of U(x) on � by U�.

Integrating the diffusion Eq. (4) over cell � and
using the divergence theorem, we obtain the follow-
ing equations:

	�
��

n� · ��Ud��x� � ��a
� 	

i�
� �V�U� � 0, (9)

where n��x� denotes the outward normal to �� at
point x � ��, d��x� denotes the surface measure on
��, and �a

� is the value of �a on cell �.
Now we have to approximate the flux through the

boundary of �, i.e., the first integral term in Eq. (9).
Let 	�i
i�1

I be the set of neighboring cells of �. We
denote by S�,i the common edge of cell � and �i, i.e.,
S�,i � �� � ��i. We then have

	�
��

n��x� · ��Ud��x� � 	�
i
�

S�,i

n��x� · ��Ud��x�.

(10)

The flux �S�,i n��x� · ��Ud��x� can be approximated
by various numerical schemes. In this paper, we take
a first-order scheme:

F�,i :� 	�
S�,i

n��x� · ��Ud��x�

�
�nn � �i

nn

2 �S�,i��U� 	 U�i���, (11)

where |S�,i| is the measure of S�,i, � is the distance
between the center of � and �i. The notation �nn

denote the nn component of the diffusion tensor in
the (�, n) coordinate system on surface S�,i. In isotro-
pic scattering case, it is just �.

When S�,i � ��, we have

F�,i :� 	�
S�,i

n��x� · ��Ud��x� �
�S�,i�
nLn

�U� 	 f�. (12)

We then obtain a full discretization of the diffusion
equation:

�
i

F�,i � ��a
� 	

i�
� �V�U� � 0. (13)

Let N denote the total number of control cells. After
collecting the discretized diffusion Eq. (13) on all
control cells, we arrive at the following system of
complex-valued algebraic equations,

AU � G, (14)

where A � �N�N. The boundary source ��f��x�, which
comes into the discretized system via the flux approx-
imation Eq. (11), is denoted by G.

4. Numerical Results

We provide in this section several numerical experi-
ments where we compare the reconstructions with
diffusion and transport equations as the models for
photon propagation.

A. Setup for the Reconstructions

For our numerical experiments we consider the
three-dimensional cylindrical domain, � :� 	�x, z�:
�x� � 1; 0 � z � 2
, with boundary �� :�
	�x, z�: �x� � 1; 0 � z � 2
 � 	�x, z�: �x� � 1; z �
0
 � 	�x, z�: �x� � 1; z � 2
. Here, for simplicity, we
have used the notation x � �x, y�. We embed a small
cylindrical inclusion,

�c � 	�x, z�: �x 	 �0.5, 0�� � 0.2, 0.2 � z � 1.8
,

into the domain. We show in Fig. 1 the XZ cross
section of the domain at y � 0 and the XZ cross
section at z � 1.

Four point sources are placed on the surface of
the cylinder at �	1, 0, 1�, �1, 0, 1�, �0, 1, 1�, and
�0, 	1, 1�, respectively. All sources are isotropic such
that we can use the same description in diffusion as
in transport reconstructions. We place seven layers of

Fig. 1. XZ �at y � 0� and XY �at z � 1� cross sections of the
computational domain.

6672 APPLIED OPTICS � Vol. 46, No. 27 � 20 September 2007



detectors with z coordinate given by zi � i � 0.25, 1
� i � 7. On each layer, 32 detectors are uniformly
distributed on the domain boundary. We partition the
domain into 19,452 tetrahedral elements. A level
symmetric discrete ordinate set [49] has been used to
discretize the angular variable in the transport equa-
tion. A total number of 120 directions (corresponding
to the discretization S10) is used.

All synthetic data are generated with a discretiza-
tion about twice as fine (in spatial variables) as the
discretization used in the inversions to limit the so-
called inverse crimes [50].

In Subsections 4.B–4.E, we consider reconstruc-
tions based on noisy data. Noise is added to the syn-
thetic data in the following manner. Let zk � � be the
kth exact data. We decompose it as zk � rke

i�k, with rk

a nonnegative real number. Then rk and �k are cor-
rupted by noise as rk

� � �1 � � � randkr�rk and �k
�

� �1 � � � randk���k. Here, randkr and randk� for all
measurements 1 � k � K are independent identically
distributed random variable on �	1, 1� with uniform
distribution (thus with variance 2�3). The noisy kth
data is then defined by zk

� � rk
�ei�k�. Note that the

same value of � is chosen here to model noise on the
phase and on the amplitude. This allows for a simpler
presentation of the effects of noise on the reconstruc-
tions. Note also that noise is chosen multiplicative
both on the phase and the intensity. Whereas multi-
plicative noise on the intensity is rather classical, our
choice of multiplicative noise on the phase may be
justified as follows. What is measured in practice is
the phase shift with respect to the modulation of the
source term. In the absence of scattering, photons
thus accumulate a phase equal to �l�c, where l is the
traveled distance from the source. In practical optical
tomography with modulated sources, � is at most 1
GHz so that ��c � 3. Since distances at on the order
of a few centimeters, phase shifts �l�c � 0.1 in the

absence of scattering are a fraction of 	. The multi-
plicative noise on the phase thus implies that errors
on the phase shift are larger on measurements away
from the source, where phase shift is significant, than
in the vicinity of the source, where it is close to 0.

The quality of the reconstructions is measured as
follows. Denote by Me and Mr the exact and recon-
structed absorption coefficients, respectively. We
then define the relative l2 error between Me and Mr by

�l2 �
�Mr 	 Me�l2

�Me�l2
. (15)

B. Diffusive Media of Small Size

We compare reconstructions with diffusion and
transport models in media of small size. Because the
media are relatively small, the optical separation be-
tween the sources and the detectors is also relatively
small. Photons undergo only a small number of scat-
tering events between a source and a detector. It is
well known that the diffusion approximation to the
transport equation becomes less accurate in describ-
ing photon propagation when such small tissue vol-
umes are considered. What we want to study in the
section is how these inaccuracies affect the tomo-
graphic reconstructions in such media.

We consider the following setup. The background
optical properties in the big cylinder is given by �a

� 0.1 cm	1, while �a � 0.2 cm	1 for the inclusion,
which is twice as high as the absorption coefficient of
the background. We set the scattering coefficient �s

� 100 cm	1 for the whole domain. The anisotropic
factor for the scattering kernel is g � 0.9 so that
�s� � 10 cm	1. The modulation frequency is set to
� � 0.0 (steady state).

We show in Fig. 2 cross sections of the recon-
structed absorption coefficient based on transport

Fig. 2. Cross sections of the reconstructed absorption coefficients in domain of small size. Top row: XZ cross section at y � 0 for transport
reconstruction (left), diffusion reconstruction (middle), and their difference (right). Bottom row: corresponding XY cross sections at z
� 1. Reconstructions are done with noise-free data.
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and diffusion equations with noise-free transport
data. To stress the difference in the reconstruction,
we also plot the difference of the reconstruction in
Fig. 2.

We first observe that structures in the z direction
are not well reconstructed in either case. This is be-
cause light sources are all located on the z � 1 plane.
Few photons propagate sufficiently far along the z
direction. We have verified that adding sources on
other planes along the z axis makes the reconstruc-
tions better, as expected.

Our second observation is that the location of the
inhomogeneity is found by both transport and diffu-
sion reconstructions. However, the transport-based
reconstruction provides a more accurate value of the
actual optical properties of the inclusion. The diffu-
sion reconstruction overestimates the volumes of the
absorption coefficient in some places and underesti-
mates the coefficients in the inclusion. This can be
best seen on the right figures in Fig. 2 where we plot
the difference between transport- and diffusion-
based reconstructions.

Our numerical examples show that the difference
between the transport and diffusion reconstructions
becomes less prominent as noise contained in the
measured data increases. This can be seen on the left
in Fig. 3, where we plot the quantitative error in the
reconstructions as a function of noise level. As noise
level reaches a certain value, above 12% in this case,
the difference between transport and diffusion recon-
structions becomes almost indistinguishable.

We have performed a second group of simulations,
where we increase the background scattering coeffi-
cient to �s � 150 cm	1 so that �s� � 15 cm	1. The
reconstruction quality from noisy data is shown in
Fig. 3. We see that although the medium is now 50%
more diffusive, reconstructions based on the diffusion
approximation do not significantly improve, because
the domain still remains relatively thin optically. For

typical values of the absorption and scattering pa-
rameters in tissues, the diffusion approximation is
not very accurate in small domains such as fingers or
small animals.

The last point we stress here is that transport-
based reconstructions are computationally much
more costly than diffusion-based reconstructions.
Typically, we observe that diffusion reconstructions
are about 60 times faster than transport reconstruc-
tions. Although the computational speed really de-
pends on how one discretize the problem, we have
observed in most cases an acceleration factor of at
least 40 in diffusion reconstructions.

C. Effects of Modulation Frequency

As we have remarked before, in the frequency do-
main, the diffusion approximation works only for not-
too-high modulation frequency [47]. Essentially, one
has to scale the modulation frequency � to ��� as one
scale the absorption coefficient to derive the correct
diffusion approximation in the limit of small mean
free paths. This is similar to the scaling of the time
variable in a time-dependent case [43]. In practice,
however, relatively high modulation frequencies
need to be used to obtain a significant phase shift that
can be measured.

We consider here the same reconstructions as those
of the last section though with measured data ob-
tained at different modulation frequencies. We show
in Fig. 4 reconstructions with modulation frequency
of � � 0.8 GHz. Again we observe that the shape on
the z direction is not well reconstructed in both
cases. The location of the inhomogeneity is found by
both the transport and the diffusion reconstructions.

As in Subsection 4.B, the transport-based recon-
struction provides more accurate values of the
actual optical properties of the inclusion. The dif-
ferences of the two have been plotted on the right
figures in Fig. 4.

As expected, the difference between diffusion-
and transport-based results increases with the
modulation frequency, as can be seen by comparing
results in Figs. 4 and 2. This can also be seen from
Fig. 5, where we plot the quality of reconstructions
against the modulation frequency. Four modulation
frequencies has been considered. They are 0.2, 0.4,
0.6, and 0.8 GHz. The quality of transport recon-
structions slightly increases as the modulation fre-
quency increases, but the quality of the diffusion
reconstructions decreases as the modulation fre-
quency increases.

As noise in the data increases, the difference be-
tween diffusion-based and transport-based recon-
structions becomes smaller. We show in the right plot
of Fig. 5 the quality of reconstructions with 12% mul-
tiplicative noise. Although there is still a difference
between the two reconstructions (especially in the
high frequency cases), the difference is much smaller
than in the case of noise-free data.

Computationally, increasing the modulation fre-
quency results in an increase of the computational
time used to solve the inverse problem. This is due to

Fig. 3. Relative errors in transport and diffusion reconstructions
using data with different noise levels (in percentage). Left: recon-
structions with scattering coefficient �s � 100 cm	1; Right: recon-
structions with scattering coefficient �s � 150 cm	1.
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the fact that modulation frequency appears on the
off-diagonal elements of the matrices derived from
the discretization of the equations. Increasing the
frequency increases the condition number of the ma-
trices. However, even in the high frequency situation,
we still observe that transport-based reconstructions
are about 50 times slower than diffusion-based recon-
structions.

D. Impact of the Extrapolation Length

The choice of the extrapolation length in the diffusion
equation has a significant influence on the solution of
the diffusion equation, especially near the boundary
[26,43]. We study in this section the effect of the

extrapolation length on the quality of the reconstruc-
tions.

All simulations in this section are done with iso-
tropic scattering. In other words, we have set the
anisotropic factor to g � 0. The scattering coefficient
is set to be �s � 10 cm	1. We show in Fig. 6 the
reconstructions using the transport equation and dif-
fusion equation with extrapolation length L3 � 0. The
data here are noise free.

We see from Fig. 6 that there is a significant
amount of overshooting in the diffusion reconstruc-
tions. The quality of the diffusion-based reconstruc-
tion also decreases when very large extrapolation
lengths are used. In Fig. 7 we compare the quality of
reconstructions by diffusion equations with various
extrapolation lengths. Although the least difference
between diffusion and transport reconstructions may
not happen exactly at the place of right extrapolation
length, it does happen when a value close to the right
value is chosen. We thus conclude that that extrap-
olation length does have a significant impact on the
quality of reconstructions.

As usual, noise in the data plays a significant
role. The difference between transport-based and
diffusion-based is already very small when the
noise level reaches 12%. One would expect that as
noise increases, the difference would become indistin-
guishable again. Computationally, we observe that
transport-based reconstructions are still �50 times
slower than diffusion-based reconstructions again.

E. Diffusive Media with Void Regions

The last case we want to discuss is the situation when
nonscattering void regions are present in the domain.
It has been shown in various situations that when
void region presents in scattering media, diffusion

Fig. 4. Cross sections of reconstructed absorption coefficients with source of high modulation frequency. Top row: XZ cross section at y � 0
for transport reconstruction (left), diffusion reconstruction (middle), and their difference (right). Bottom row: corresponding XY cross
sections at z � 1. The modulation frequency for the sources is � � 0.8 GHz.

Fig. 5. Relative errors in reconstructions as functions of modula-
tion frequencies (in gigahertz). Left; reconstructions with noise-
free data; right: reconstructions with 12% noise in the data.

20 September 2007 � Vol. 46, No. 27 � APPLIED OPTICS 6675



equations fail to approximate transport accurately
[25,26,37]. Special attention has to be paid when us-
ing diffusion equations in this situation.

We again consider here the reconstruction of the
absorption coefficient in the cylinder and assume that
�s�x� is known. We embed a void cylindrical inclusion
centered at �	0.5, 0� in the media. It is of the same
size as the absorbing inclusion; see Fig. 8 for the
geometrical setting. Void means that the scattering
and absorption coefficients vanish in that region. As
in Subsection 4.D we set the scattering coefficient
�s � 10 cm	1, and anisotropy factor g � 0 in the rest
of the domain. In the diffusion equation, we replace
the diffusion coefficient in the void region by its sur-

rounding diffusion coefficient. In the absence of a
better guess, this is better than evaluating the diffu-
sion coefficient � � 1��3�t� as being infinite, though
better choices yet may be available [25,51].

We show in Fig. 9 results from reconstructions with
noise-free data. The transport reconstruction looks
quite similar to the one in Fig. 2. The diffusion re-
construction however, looks very different. The diffu-
sion model generates spurious absorption at the
location of the void to compensate for the wrong
transport of photons in that area. Whereas voids have
little effect on the absorption reconstruction with the
transport model (provided that we know where the
void is), they further degrade diffusion reconstruc-
tions unless the void region is modeled appropriately
[25,28,51–53].

The transport and diffusion reconstructions in the
presence of a void have been performed with different
noise levels in the measured data. The quality of the
reconstructions is plotted against the noise level in
Fig. 10. As noise increases, the difference between
transport and diffusion equations decreases. One can

Fig. 6. Cross sections of reconstructed absorption coefficients with zero extrapolation length. Top row: XZ cross section at y � 0 for
transport reconstruction (left), diffusion reconstruction (middle), and their difference (right). Bottom row: corresponding XY cross sections
at z � 1. Reconstructions are done with noise-free data.

Fig. 7. Relative errors in reconstructions as functions of extrap-
olation length. Left: reconstructions with noise-free data; Right:
reconstructions with 12% noise in the data. Transport reconstruc-
tions are shown here just as a reference.

Fig. 8. XZ �y � 0� and XY �z � 1� cross sections of the computa-
tional domain with a void inclusion.
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expect that when the noise in the data reaches a
certain level, here about 12% of multiplicative noise,
the difference between the transport and diffusion
reconstructions may become indistinguishable. Sim-
ilar results for reconstructions with a background
scattering coefficient �s � 15 cm	1 are shown in the
right panel of Fig. 10.

From the point of view of computational cost, the
transport-based reconstructions become slightly
faster here because of the presence of the void re-
gion. But it is far from being comparable to diffusion
reconstructions. We still observe that transport-

based reconstructions are about 40 times slower
than diffusion-based reconstructions.

5. Conclusions and Remarks

We have conducted a comparative study of optical
tomographic reconstructions based on transport and
diffusion models in media of small (optical) volume.
Small volume is of particular interest in applications
such as imaging of joint diseases in human fingers
[20–24] and monitoring of brain activity and tumor
growth in small animals [34–36]. We have shown
that diffusion-based reconstructions of absolute opti-
cal properties were significantly less accurate in such
geometries. Although both the diffusion and trans-
port reconstructions are usually able to locate an in-
homogeneity buried in the media, transport-based
reconstructions provide more accurate values of the
absolute optical properties, in this paper the absorp-
tion, of inclusions.

We have quantified the role on the reconstruction
of such factors as the source modulation frequency,
the extrapolation length used in the diffusion model,
and the presence of void regions. Whereas increasing
the source modulation frequency improves transport
solutions, it usually degrades the diffusion solutions.
We have seen that poorly modeled void inclusions in
the diffusion model generated spurious absorbing in-
clusions at the void location. In each situation, we
have quantified the errors made by the transport and
diffusion reconstructions.

We have characterized the effects of noise in the
measured data. When multiplicative noise reaches a
certain level, about 12% in our simulations, the trans-
port and diffusion reconstructions becomes almost in-
distinguishable. However, given that a state-of-the-art
optical imaging system shows noise levels of typically

Fig. 10. Relative errors in transport and diffusion reconstructions
using data with different noise levels in the presence of a void. Left:
reconstructions with scattering coefficient �s � 10 cm	1; Right:
reconstructions with scattering coefficient �s � 15 cm	1. Anisot-
ropy factor g � 0 in both cases.

Fig. 9. Cross sections of reconstructed absorption coefficients in media with void regions. Top row: XZ cross section at y � 0 for transport
reconstruction (left), diffusion reconstruction (middle), and their difference (right). Bottom row: corresponding XY cross sections at z
� 1. A void region is embedded in the domain.
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less than 5% or even 1%, the benefits of transport-
based reconstructions can be realized with most of
the currently available systems [16,19,20,36,54]. Of
course, the difference between diffusion- and transport-
based reconstruction can be also be indistinguishable if
the contract of the absorption coefficient of the back-
ground and the inclusions is too small.

Computationally, however, the diffusion-based
reconstructions are favorable. In the examples con-
sidered here, we have consistently observed that
transport-based reconstructions were �50 times times
more expensive than diffusion-based reconstructions.

We conclude this paper by stressing that we do not
consider the case when time-dependent measure-
ments can be used. In that case, the numbers we
obtained here might need to be changed. We also
noticed that other techniques such as using spectral
difference measurements may also extend the appli-
cability of the diffusion approximation to some cases
considered here [55,56]. For example Pei et al.
showed that relative changes in optical properties,
which were obtained from relative measurement
data (e.g., before and after pressure cuffs on an arm,
or before and after certain brain stimulations, or dif-
ferences in spectral measurements), could be recon-
structed with high accuracy compared to absolute
values using a diffusion-based code [56]. Testing if
the same holds true for transport-based codes is be-
yond the scope of this paper, but should be addressed
in future studies.
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