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Abstract

Inverse boundary value problems for the radiative transport equation play impor-
tant roles in optics-based medical imaging techniques such as diffuse optical tomog-
raphy (DOT) and fluorescence optical tomography(FOT). Despite the rapid progress
in the mathematical theory and numerical computation of these inverse problems in
recent years, developing robust and efficient reconstruction algorithms remains as a
challenging task and an active research topic. We propose here a robust reconstruc-
tion method that is based on subspace minimization techniques. The method splits
the unknown transport solution (or a functional of it) into low-frequency and high-
frequency components, and uses singular value decomposition to analytically recover
part of low-frequency information. Minimization is then applied to recover part of the
high-frequency components of the unknowns. We present some numerical simulations
with synthetic data to demonstrate the performance of the proposed algorithm.

Key words. Inverse transport problems, radiative transport equation, subspace optimization
method, singular value decomposition, optical imaging, diffuse optical tomography, fluorescence
optical tomography, inverse problems.

1 Introduction

The mathematical and computational study of inverse coefficient problems to the radiative
transport equations have attracted extensive attentions in recent years; see for instance
the reviews [8, 62, 63, 64, 68] and references therein. The main objective of these inverse
problems is to reconstruct physical parameters in the radiative transport equation from
partial information on the solution to the equation. These inverse problems have important
applications in many areas of science and engineering, such as ocean, atmospheric and
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interstellar optics [14, 11, 24, 32, 59, 65, 74, 84], radiation therapy planning [3, 16, 38, 43,
60, 73, 80, 82], diffuse optical tomography and quantitative photoacoustic tomography [1,
3, 4, 5, 12, 20, 29, 35, 39, 40, 50, 51, 52, 55, 61, 70, 71, 72, 76, 77, 78, 79, 85], molecular
imaging [12, 36, 37, 49, 54, 75] and many more [15, 6, 7, 13, 15, 21, 22, 23, 26, 27, 30, 44,
46, 45, 47, 52, 56, 67, 74, 81, 83, 84, 86].

We consider here the application of inverse transport problems in biomedical optical
imaging techniques such as diffuse optical tomography (DOT) [1, 3, 4, 5, 12, 20, 29, 35, 39,
40, 52, 70, 71, 72] and fluorescence optical tomography (FOT) [12, 36, 37, 54] where radiative
transport equations are often employed as the model for light propagation in biological
tissues. To setup the problem, let us denote by Ω ⊂ Rd (d ≥ 2) the tissue of interest, with
sufficiently regular surface ∂Ω. We denote by Sd−1 the unit sphere in Rd, and v ∈ Sd−1 the
unit vector on the sphere. We denote by X ≡ Ω × Sd−1 the phase space and define the
boundary sets of the phase space, Γ±, as

Γ± = {(x,v) ∈ ∂Ω× Sd−1 s.t. ± v · n(x) > 0}

with n(x) the unit outer normal vector at x ∈ ∂Ω. The radiative transport equation for the
phase-space density distribution of the photons in the tissue can be written as

v · ∇u(x,v) + σa(x)u(x,v) = σs(x)Ku(x,v) in X
u(x,v) = f(x) on Γ−,

(1)

where u(x,v) is the density of photons at x ∈ Ω traveling in direction v, and f is the
light source. The positive functions σa(x) and σs(x) are the absorption coefficient and
the scattering coefficients respectively. The total absorption coefficient is given by σ(x) ≡
σa(x) + σs(x). The scattering operator K is given by

Ku(x,v) =

∫
Sd−1

k(v,v′)u(x,v′)dv′ − u(x,v) (2)

where the scattering kernel k(v,v′) describes the probability that photons traveling in di-
rection v′ getting scattered into direction v. Note that to conserve the total mass, we have
normalized the surface measure dv on Sd−1 and the scattering kernel k(v,v′) such that∫

Sd−1

dv = 1, and

∫
Sd−1

k(v,v′)dv′ = 1, ∀v ∈ Sd−1. (3)

In biomedical optics, the scattering kernel is often taken as the Henyey-Greenstein phase
function [42]:

k(v,v′) ≡ kg(v · v′) = Π
1− g2

(1 + g2 − 2gv · v′)d/2
, (4)

which is a one-parameter function that depends only on the angle between the two direc-
tions v and v′ for a given anisotropy factor g ∈ [−1, 1]. The normalization constant Π is
determined by the normalization condition (3).

The function f(x) models the illumination source used in imaging experiments. In prac-
tical application of biomedical imaging, for instance in DOT and FOT, it is often technically
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difficult to construct angularly-resolved illumination sources. This is the main reason for us
to employ an isotropic source function (referring to the fact that f(x) does not depend on the
angular variable v) in the the transport model (1). The measured data in biomedical optical
imaging is usually a functional of the solution to the transport equation. Once again, due
to the fact that it is difficult to measure angularly-resolved quantities, angularly-averaged
quantities are usually measured. Here we consider applications (for instance DOT and FOT)
where the measurement is the photon current on the surface of the tissue. The current is
defined as

j(x) ≡Mu(x) =

∫
{v∈Sd−1: v·n(x)>0}

v · n(x)u(x,v)|Γ+dv, x ∈ ∂Ω. (5)

The objective of the biomedical imaging problems here is to reconstruct the optical absorp-
tion and scattering coefficients of biological tissues, σa and σs from data encoded in the
albedo operator:

Λσa,σs : f(x) 7→ j(x) (6)

There are two major issues with diffuse optical imaging. The first issue is its low resolu-
tion due to the multiple scattering of light in tissues. Mathematically, this is manifested as
the instability of the inverse transport problem [8, 9]. By instability we mean that the noise
in the data are significantly amplified in the inversion process, assuming that the problem ad-
mits a unique solution to start with. To stabilize the inverse problem, one can incorporate
additional a priori information into the computational inversion algorithms. Commonly-
used a priori information including, for instance, the smoothness or non-smoothness of the
unknown [36, 37, 41] and the shape of the regions of interests [5, 29]. The second issue with
diffuse optical tomography is that there is no analytical inversion formulas for the image re-
construction problem, even in very academic geometrical configuration [72]. Computational
reconstruction algorithms based on the radiative transport model are in general extremely
slow. Fast reconstruction algorithms are actively sought by researchers in the field.

The instability of the inverse transport problems implies that when there is no available
a priori information, only low-frequency components of the unknowns can be reconstructed
stably. One should thus not spend too much efforts trying to reconstruct high-frequency
components of the unknowns. Based on this observation and the idea of subspace mini-
mization [25, 66, 87], we propose here a fast computational reconstruction method for the
aforementioned inverse transport problems. Our method relies on the fact that we can ex-
plicitly factorize out some unstable components of the albedo operator Λσa,σs defined in (6).
The unstable components of the albedo operator then impose a natural limit on the highest-
frequency components of the unknown that can be reconstructed stably from the data.
The factorization of Λσa,σs is not unique in general. For our purpose, we follow the ideas
in [25, 66, 87] to reformulate the transport problem into the form

j = Au, (7)

u = Bu− f, (8)

where A is an operator that does not depend on the unknowns, and B is an operator that only
depends on the unknowns. The intermediate quantity u can be either the transport solution
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u, or a functional of it, or a functional of both u and the unknown coefficient, depending on
the setup of the inverse problem. We will focus on the derivation of this formulation in the
next two sections.

Once the forward problem is put into this form, we can split the inverse problem into
two steps. In the first step, we “invert” the first equation to find u while in the second step,
we “invert” from u the unknown coefficients. By construction, A can not be inverted or
not stably inverted. This means that there are many small or even zero singular values of
A. Noise in the data can easily ruin the reconstruction of u on these components of the
small singular values. We thus split the eigenspace of A into two subspaces, one spanned
by eigenvectors corresponding to large singular values µ (say µ ≥ µc) that we call signal
subspace, and the other spanned by eigenvectors corresponding to small singular values
(µ < µc) that we call noise subspace, following terminologies in [25, 66, 87]. The unknown
coefficient functions and the intermediate quantity u can be then be written as summations of
two components that correspond to their projections into the two subspaces. This explicit
splitting allows us to focus on the components of the unknowns corresponding to signal
subspace while pay less attention to, and sometimes completely throw away, the components
corresponding to noise subspace. The price we have to pay is that we have to be able to
construct the singular value decomposition (SVD) of the operator A in a computationally
inexpensive way so that the whole algorithm is computationally feasible. Indeed, as we will
see later, due to the fact that A is independent of the unknowns, the SVD of A can be
pre-computed and do not need to be updated in the nonlinear minimization process. This
is the main reason why the reconstruction algorithm can be efficient.

The rest of the paper is organized as follows. In Section 2, we reformulate, on continuous
level, the radiative transport equation into the form of system (7) and (8) for both the re-
construction of the absorption coefficient and the reconstruction of the scattering coefficient.
We then present in Section 3 the discretization of the continuous formulations. The details
of our subspace-based minimization algorithm is then presented in Section 4 with some nu-
merical experiments to demonstrate its performance in Section 5. Concluding remarks are
then offered in Section 6.

2 Continuous Formulation

It is well-known in inverse transport theory that with the types of data encoded in the
albedo operator Λσa,σs defined in (6), only one of the two optical coefficients can be uniquely
reconstructed [8, 9] when no further information are available. We will thus work on the
reconstruction of one coefficient assuming that the other is known.

2.1 Recovering absorption coefficient

Let us first consider the case of reconstructing the absorption coefficient σa assuming that the
scattering coefficient σs is known. We first introduce the adjoint boundary Green function
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Ga
b(x,v; y) as the solution of the following adjoint free transport equation:

−v · ∇Ga
b(x,v; y) = 0, in X

Ga
b(x,v; y) = δ(x− y), on Γ+.

(9)

Thus Ga
b(x,v; y) is the solution of the adjoint transport problem with an isotropic point

source on the outgoing boundary Γ+. Later on in this paper, y ∈ ∂Ω is considered as the
location of the detector used to measure the current data j(x).

We now multiply (1) by Ga
b(x,v; y), subtract it by the multiplication of (9) and u(x,v),

and then integrate over phase space X, we have∫
X

(
Ga
bv · ∇u+ uv · ∇Ga

b

)
dxdv =

∫
X

Ga
b

(
σsKu− σau

)
dxdv. (10)

The left hand side can be simplified using integration-by-part. We find, after splitting the
boundary integral into an integral on Γ− and another integral on Γ+, that∫

X

(
Ga
bv · ∇u+ uv · ∇Ga

b

)
dxdv =Mu(y) +

∫
Γ−

v · nGa
b(x,v; y)f(x,v)dS(x)dv, (11)

where dS(x) is the surface measure on ∂Ω.

We combine (10) and (11) to obtain

j(y) ≡Mu(y) =

∫
X

Ga
b

(
σsKu− σau

)
dxdv −

∫
Γ−

v · nGa
bfdS(x)dv. (12)

Let us now introduce the adjoint volume Green function Ga
v(x,v; x̂, v̂) as the solution of

the following adjoint free transport equation:

−v · ∇Ga
v(x,v; x̂, v̂) = δ(x− x̂)δ(v − v̂), in X

Ga
v(x,v; x̂, v̂) = 0, on Γ+.

(13)

If we multiply (1) by Ga
v(x,v; x̂, v̂), subtract it by the multiplication of (13) and u(x,v),

and then integrate over phase space X, we have

u(x̂, v̂) =

∫
X

Ga
v

(
σsKu− σau

)
dxdv −

∫
Γ−

v · nGa
vfdS(x)dv, (x̂, v̂) ∈ X. (14)

It turns out that we can rearrange equations (12) and (14) into the form of the system (7)
and (8) after introducing an intermediate variable. To do that, let us denote by f̃ a smooth
extension of f (which does exist; see for instance [2] for justifications), and ñ a smooth
extension of the vector n in the neighborhood of ∂Ω. We define

u(x,v) = σs(x)Ku(x,v)− σa(x)u(x,v)− v · ñf̃(x,v)|Γ− . (15)

Then we can rewrite (12) as:

j(x) = Gabu(x) ≡
∫
X

Ga
b(y,v; x)u(y,v)dydv, (16)
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and (14) as

u(x,v) = Gavu(x,v) ≡
∫
X

Ga
v(x̂, v̂; x,v)u(x̂, v̂)dx̂dv̂. (17)

Using (17), we can rewrite (15) as:

u(x,v) =
(
σsKGav − σaGav

)
u(x,v)− v · ñf̃(x,v)|Γ− . (18)

Equations (16) and (18) then form a system of exactly the same form as system (7) and (8).
This is the foundation of the algorithm that we will develop later. Note that the intermediate
variable u that we introduced here is a functional of both the unknown coefficient σa to be
reconstructed and the solution u of the radiative transport equation with this coefficient.

2.2 Recovering scattering coefficient

We now assume that the absorption coefficient σa(x) is known and we intend to reconstruct
the scattering coefficient σs(x). In this case, the adjoint boundary Green function Gs

b(x,v,y)
that we need solves the following transport equation

−v · ∇Gs
b(x,v; y) + σa(x)Gs

b(x,v; y) = 0, in X
Gs
b(x,v; y) = δ(x− y), on Γ+

(19)

Following the same procedure as before, we multiply (1) by Gs
b(x,v; y), subtract it by the

multiplication of (19) and u(x,v), and then integrate over phase space X, we have∫
X

(
Gs
bv · ∇u+ uv · ∇Gs

b

)
dxdv =

∫
X

σsG
s
bKudxdv. (20)

An integration-by-part on the left hand side then leads to

j(y) =

∫
X

σsG
s
b(x,v; y)Kudxdv −

∫
Γ−

v · nGs
bfdS(x)dv, (21)

We now define
u(x,v) = σs(x)Ku(x,v)− v · ñf̃(x,v)|Γ− , (22)

which then enabless us to rewrite (21) as

j(x) = Gsbu(x) ≡
∫
X

Gs
b(y,v; x)u(y,v)dydv. (23)

To derive the equation for u, we introduce the volume adjoint Green functionGs
v(x,v; x̂, v̂)

as the solution to the adjoint transport equation:

−v · ∇Gs
v(x,v; x̂, v̂) + σa(x)Gs

v(x,v; x̂, v̂) = δ(x− x̂)δ(v − v̂), in X
Gs
v(x,v; x̂, v̂) = 0, on Γ+

(24)
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with (x̂, v̂) ∈ X. This Green function allows us to derive the following result, following
exactly the same procedure as before:

u(x̂, v̂) =

∫
X

σsG
s
vKudxdv −

∫
Γ−

v · nfGs
vdS(x)dv =

∫
X

Gs
vu(x)dxdv ≡ Gsvu(x̂). (25)

Plugging (25) into (22), we can obtain the state equation:

u(x,v) = σs(x)KGsvu(x,v)− v · ñf̃(x,v)|Γ− . (26)

Equations (23) and (26) then form a system of exactly the same form as the system
of (7) and (8). As in the previous case, the intermediate variable u that we introduced here
is a functional of both the unknown coefficient σs to be reconstructed and the solution u of
the radiative transport equation with this coefficient.

Let us mention that the idea of splitting of streaming (including the absorption) with the
rest of the operator has been explored by Bal and Monard in [10] where they constructed
an accurate solver for the streaming operator based on numerical rotations.

2.3 Generalizations

The formulation we presented above can be easily generalized to the case when the measured
data take another form. One typical type of data assumed in the literature is given as, see
for instance [12, 27],

j(x,v) = M̃u(x) ≡ u(x,v)δ(x− x′)δ(v − v′), (x′,v′) ∈ Γ+. (27)

In this case, we follow exactly the same procedures as before to get the formulation (16)
and (18), and (23) and (26). The only change needed would be to replace the δ(x − y)
terms in the equations for the boundary adjoint Green functions Ga

b and Gs
b, i.e (9) and (19),

with δ(x− x′)δ(v − v′). The same idea apply to the cases where the illumination source is
angularly resolved, assuming it can be constructed.

We remark, however, that when data encoded in measurements of the form (27) or in
illumination of the form f(x,v) are available for, the inverse problem can be less ill-posed or
even well-posed; see for instance [8, 12, 26, 27, 55, 75, 76, 77, 85] and references therein. In
practice, however, one can access only a very limited number of directions. Inverse problems
in these settings can still be very ill-posed and the method we propose in Section 4 are still
useful there.

3 Matrix Representation

We now construct the discrete version of the system (7) and (8). To do that, we need to
discretize the radiative transport equation. Due to the fact that the unknown u is posed in
phase space, we need to discretize in both spatial and angular variables. There are many
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existing methods to perform such a discretization, see for instance [28, 31, 35, 47, 48, 53, 58]
and references therein. We restrict ourselves to a first-order finite-volume discrete-ordinate
discretization that we proposed in our earlier work [69, 70].

We assume that the spatial domain of interest, Ω, is discretized into a total number of NΩ

finite volume cells that centered at x1,x2, . . . ,xNΩ
respectively. The angular domain, Sd−1

is discretized into NS directions v1,v2, . . . ,vNS . The discrete ordinates method approximate
the integral on the sphere Sd−1 with the following quadrature rule∫

Sd−1

u(x,v)dv ≈
NS∑
`′=1

η`′u(x,v`′), (28)

where η`′ is the quadrature weight associated with direction v`′ . Following the same spirit,
the scattering term Ku(x,v) is approximated by:

Ku(x,v`) ≈
NS∑
`′=1

η`′k``′u(x,v`′)− u(x,v`), (29)

where k``′ = k(v`,v`′). The normalization conditions, which are necessary to ensure the
conservation of photons, take the following forms in discrete case:

NS∑
`′=1

η`′ = 1, and

NS∑
`′=1

η`′k``′ = 1, 1 ≤ ` ≤ NS.

In a first-order cell-centered finite-volume discretization, we approximate the spatial
integration by: ∫

Ω

u(x,v)dx ≈
NΩ∑
m=1

ζmu(xm,v) (30)

where ζm represents the volume of the m-th finite volume whose center is xm.

In the presentation below, we assume that we have Nd detectors in the setup, with the
location of the d-th detector denoted by zd, 1 ≤ d ≤ Nd. The data we measured are collected
in the data vector J ∈ NNd×1:

J =
(
j1, j2, · · · , jNd−1, jNd

)t
.

where jd = j(zd).

3.1 Recovering absorption coefficient

With the discretization method introduced above, we get the discretized form field equa-
tion (16) as:

j(zd) =

NS∑
`=1

NΩ∑
m=1

η`ζmG
a
b(xm,v`; zd)u(xm,v`). (31)
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We then collect this datum for all detectors to have the following system

J = Ga
b(H⊗ S)U, (32)

where ⊗ represents the direct product of two matrices. The vector U ∈ RNSNΩ×1 contains
the discrete values of u(x,v) and is arranged as:

U = (U1 U2 . . . UNS)
t, with U` = (u(x1,v`) u(x2,v`) . . . u(xNΩ

,v`)),

where the superscript t is used to denote the transpose operation. The matrix Ga
b ∈

RNd×NSNΩ , coming from the Green function, takes the form

Ga
b =


G11 G12 . . . G1NS

G21
. . .

...
...

. . .
...

GNd1 . . . . . . GNdNS

 , whereGd` = (Ga
b(x1,v`; zd) . . . G

a
b(xNΩ

,v`; zd)). (33)

This means that the elements of the matrix Ga
b are

(Ga
b)d,(`−1)NΩ+m = Ga

b(xm; zd,v`), d = 1, . . . , Nd, ` = 1, . . . , NS, m = 1, . . . , NΩ.

The diagonal matrices S ∈ RNΩ×NΩ and H ∈ RNS×NS are defined respectively as

H =

 η1

. . .

ηNS

 , S =

 ζ1

. . .

ζNΩ

 . (34)

Similarly, the discretized version of the state equation given by (18) is:

u(xm,v`) =σs(xm)

NS∑
`′=1

η`′k``′
NΩ∑
m′=1

NS∑
`′′=1

η`′′ζm′G
a
v(xm′ ,v`′′ ; xm,v`′)u(xm′ ,v`′′)

− σ(xm)

NΩ∑
m′=1

NS∑
`′′=1

η`′′ζm′G
a
v(xm′ ,v`′′ ; xm,v`)u(xm′ ,v`′′)− v` · ñf̃(xm,v`)|Γ− ,

(35)

where m = 1, . . . , NΩ, ` = 1, . . . , NS. We can write it in vector form as

U = (K⊗Σs)G
a
v(H⊗ S)U − (INS ⊗Σ)Ga

v(H⊗ S)U − F
= (K⊗Σs − INS ⊗Σ)Ga

v(H⊗ S)U − F,
(36)

where K ∈ RNS×NS is a matrix contains the discretized scattering kernel, with elements
(K)``′ = k``′ and INS ∈ RNS×NS denotes the identity matrix. The diagonal matrix Σ ∈
RNΩ×NΩ contains the values of the total absorption coefficient σ = σa + σs at the center of

9



the volume elements of the spatial mesh, Σ = Σa + Σs, Σa ∈ RNΩ×NΩ) and Σs ∈ RNΩ×NΩ)
given as:

Σa =

 σa(x1)
. . .

σa(xNΩ
)

 , Σs =

 σs(x1)
. . .

σs(xNΩ
)

 .

The matrix Ga
v ∈ RNΩNS×NΩNS is organized such that its elements are given as

(Ga
v)(`−1)NΩ+m,(`′−1)NΩ+m′ = Ga

v(xm′ ,v`′ ; ym,v`), 1 ≤ m,m′ ≤ NΩ, 1 ≤ `, `′ ≤ NS.

We can now write down the two algebraic equations (32) and (36) in the form of (7)
and (8) with matrices:

A = Ga
b(H⊗ S), (37)

B = (K⊗Σs − INS ⊗Σ)Ga
v(H⊗ S). (38)

Note here the matrix B depends on both Σ and Σs. Thus this formulation can also be used
to recover the unknown scattering coefficient if the absorption coefficient is known.

3.2 Recovering scattering coefficient

Using the same discretization as in the previous section, we can transform the field equa-
tion (23) into the discretized form:

j(zd) =

NS∑
`=1

NΩ∑
m=1

η`ζmG
s
b(xm,v`; zd)u(xm,v`). (39)

We then collect this datum for all detectors to arrive at the following algebraic system:

J = Gs
b(H⊗ S)U, (40)

where Gs
b has the same format as Ga

b defined in (33), while H and S are given in (34).

The discretized version of the state equation (26) can now be written as, m = 1, . . . , NΩ,
` = 1, . . . , NS:

u(xm,v`) = σs(xm)

NS∑
`′=1

η`′k``′
NΩ∑
i′=1

NS∑
`′′=1

η`′′G
s
v(xi′ ,v`′′ ; xm,v`′)u(xi′ ,v`′′)ζi′

− v` · ñf̃(xm,v`)|Γ− . (41)

In matrix form, this is:
U = (K⊗Σs)G

s
v(H⊗ S)U − F, (42)

where K, Σs are defined as before. The matrix Gs
v has exactly the same structure as the

matrix Ga
v.
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The two algebraic systems (40) and (42) are in the form of (7) and (8) if we define

A = Gs
b(H⊗ S), (43)

B = (K⊗Σs)G
s
v(H⊗ S). (44)

Note that the matrix B in this case depends only on the scattering coefficient (Σs, i.e., the
discretized form of σs) that we are interested in reconstructing. It does not depend on the
absorption coefficient. This is different from the matrix B we introduced in (38).

We remark finally that even though the discretized formulation in this section is based
on a first-order finite-volume discrete-ordinate method for the radiative transport equation,
the reconstruction method we introduce in next section is not limited to this discretization.

4 Subspace-based Optimization Algorithms

Let us recall that to solve the inverse problem of reconstructing the optical parameters, the
data we are given are encoded in the map Λσa,σs . This means that for each illumination
source f , we have the corresponding current data Λσa,σsf . In practice, we have a finite
number, say Nq, of sources to use. The total data available to us are thus:{

fq, { Muq(zd) }Nd
d=1

}Nq

q=1
, (45)

where �q denote the quantity � associated with source q (1 ≤ q ≤ Nq). The construction
in the previous sections can thus be conducted for data collected from each illumination
source. We have the following system of equations:

Jq = AUq, (46)

Uq = BUq − Fq. (47)

It is critical to realize that both matrix A and matrix B are independent of the illuminations
(i.e. independent of the index q). Otherwise the computation will be very expensive as we
will need to compute the SVD of A.

4.1 Singular value decomposition

Let us first briefly recall the singular value decomposition of a non-symmetric matrix A ∈
RNd×NΩNS . We denote by {µd}Nd

d=1 the singular values, arranged in nonincreasing order
µ1 ≥ µ2 ≥ · · · ≥ µd ≥ . . . ≥ µNd

, where it is assumed that there are a total number
of L large singular values. We denote by {ψd ∈ RNd×1}Nd

d=1 the left singular vectors and
{φi ∈ RNΩNS×1}NΩNS

i=1 the right singular vectors. These vectors satisfy

Aφd = µdψd, Atψd = µdφd, 1 ≤ d ≤ Nd. (48)

Here again the superscript t is used to denote the transpose operation. We assume that the
singular vectors are all normalized to have Euclidean norm 1 so that {ψd}Nd

d=1 and {φi}NΩNS
i=1
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are orthonormal bases for RNd×1 and RNΩNS×1 respectively. The singular value decomposition
of A can then be represented as:

A = ΨΛΦt. (49)

The matrix Ψ = [ψ1, . . . , ψNd
] consists of the left singular vectors and the matrix Φ =

[φ1, . . . , φNΩNS ] consists of the right singular vectors. The diagonal of the rectangular diag-
onal matrix Λ ∈ RNd×NΩNS contain the singular values.

4.2 Signal and noise subspaces

Due to the instability of inverse transport problems, the matrix A defined in (46) has many
small (and zero when A is not invertible) singular values. High-frequency noise in the data
Jq can easily ruin the reconstruction of Uq (1 ≤ q ≤ Nq) through these small singular values.
The resolution in the reconstruction of the coefficients is thus limited by the smallest singular
value, which we denote by µc, that is not significantly ruined by noise. We assume that there
are L large (i.e. ≥ µc) singular values, i.e. µ1 ≥ µ2 ≥ · · · ≥ µL = µc � µL+1 ≥ . . . ≥ µNd

.

We decompose the matrix Φ into Φ = [Φs,Φn] where Φs and Φn are matrices that
contain the first L and the last NΩNS − L columns of Φ respectively. Then Φs and Φn

decompose the column space of Φ into two subspaces: the signal subspace and the noise
subspace, following the terminologies in [25, 66, 87]. The signal subspace V = span{φi}Li=1 is
spanned by the column vectors of Φs, and the noise subspace W = span{φi}NΩNS

i=L+1 is spanned
by the columns of Φn. By construction, W is the orthogonal complement of V and vice
versa.

Now for any known vector Uq as a solution to the system (46) and (47), we can decompose
it into a summation of its projection to the signal subspace, U s

q , and its projection to the
noise subspace, Un

q :
Uq = U s

q + Un
q = Φsβsq + Φnβnq , (50)

where βsq = (βq,1, βq,2, · · · , βq,L)t and βnq = (βq,L+1, βq,L+2, · · · , βq,NΩNS)
t are the correspond-

ing coefficient vectors for the projections, with βq,i = U t
qφi (1 ≤ i ≤ NΩNS).

4.3 A two-step subspace minimization algorithm

To solve the inverse transport problems to find the optical coefficients, we first need to
propagate information contained in the current data Jq (1 ≤ q ≤ Nq) to the intermediate
quantity, Uq, by “solving” the equation (46). Due to the the existence of small singular
values (< µc) for the discrete operator A, the high-frequency components of Uq, i.e., the
components in the noise subspace, can not be stably reconstructed in the inversion process
without additional a priori information. We should thus focus on the reconstruction of the
stable components, the components in the signal subspace.

The first algorithm we propose here completely neglects the high-frequency contents of
the unknown Uq. In other words, we assume that:

Uq = U s
q = Φsβsq . (51)
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This assumption allows us to construct the following two-step reconstruction process. In
the first step, we reconstruct, U s

q (and thus Uq), from (46). This is done by solving the
minimization problem:

{β̃sq}
Nq

q=1 = arg min
{βs

q∈RL}Nq
q=1

OA({βsq}
Nq

q=1) ≡
Nq∑
q=1

‖(AΦsβsq − Jq‖2
l2

‖Jq‖2
l2

. (52)

The solution of the minimization problem is given analytically as:

β̃sq = (
ψt

1Jq
µ1

, · · · , ψ
t
LJq
µL

)t, which leads to, Ũ s
q ≡ Φsβ̃sq =

L∑
i=1

ψt
iJq
µi

φi. (53)

In the second step, we reconstruct the unknown optical coefficient through (47) using the

reconstructed Uq = Ũ s
q in (53). This is done by solving the following minimization problem:

Σ̃x = arg min
Σx∈RNΩ

OB(Σx) ≡
Nq∑
q=1

‖(B− INΩNS)Ũ
s
q − Fq‖2

l2

‖Ũ s
q ‖2

l2

, (54)

where the weighting factor for source q, ‖Ũ s
q ‖2

l2 = ‖β̃sq‖2
l2 . The unknown variable in the

optimization, Σx = Σa when the absorption coefficient is to be reconstructed, in which case
B is given in (38), Σx = Σs when the scattering coefficient is to be reconstructed, in which
case B is given in (44). In both cases, B is linearly related to Σx, so the minimization
problem (54) is a quadratic problem. This minimization problem is solved with a quasi-
Newton method that we will describe briefly in Section 4.5.

4.4 A modified two-step subspace minimization algorithm

We can modify slightly the above two-step reconstruction algorithm to take into account
part of the noise component of the unknown Uq. In principle, we can reconstruct the noise
component of Uq in the same way as we reconstruct its signal component. However, this
reconstruction is not stable due to the smallness of the singular values associated with the
noise component. We take here different approach. We assume that

Uq = Ũ s
q +

Nd−L∑
i=1

γni φL+i = Ũ s
q + Φ[n]γn, (55)

where Ũ s
q is given in (53), the coefficient vector γn = (γn1 , · · · , γnNd−L)t is to be reconstructed,

and Φ[n] is the matrix that contains the first Nd − L columns of Φn.

There are two characters in our assumption (55) that make it very different from the
previous studies in subspace-based reconstruction methods [25, 66, 87]. First, we do not
include the last NΩNS−Nd terms of the noise component in this assumption, since Aφk = 0,
∀k ≥ Nd+1. Second, the coefficient vector γn is independent of the source index q. In other
words, we look for a common “averaged” noise component for all Uq (1 ≤ q ≤ Nq).
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In the first step of the algorithm, we reconstruct the coefficient γn by solving the following
minimization problem:

γ̃n = arg min
γn∈RNd−L

OA′(γn) ≡
Nq∑
q=1

‖(AΦ[n]γn + AŨ s
q − Jq‖2

l2

‖Jq‖2
l2

. (56)

The solution to this problem can again be found analytically. It is

γ̃ni =
1

µL+i

Nq∑
q=1

ψt
L+iJ̃q
‖Jq‖2

l2
, which leads to, Ũn

q ≡ Φ[n]γ̃n =

Nd−L∑
i=1

( 1

µL+i

Nq∑
q=1

ψt
L+iJ̃q
‖Jq‖2

l2

)
φL+i,

(57)

where J̃q = Jq −AŨ s
q . As we can see clearly, the coefficient γ̃ni is recovered as an average

over different sources. This makes the inversion more stable.

In the second step, we reconstruct the unknown optical coefficient through (47) using

the reconstructed Ũq = Ũ s
q + Ũn

q in (53). This is done by solving the following minimization
problem: ˜̃

Σx = arg min
Σx∈RNΩ

OB′(Σx) ≡
Nq∑
q=1

‖(B− INΩNS)Ũq − Fq‖2
l2

‖Ũq‖2
l2

, (58)

where the weighting factor for source q, ‖Ũq‖2
l2 = ‖β̃sq‖2

l2 + ‖γ̃n‖2
l2 . As before, the unknown

variable in the optimization, Σx = Σa when the absorption coefficient is to be reconstructed,
in which case B is given in (38), Σx = Σs when the scattering coefficient is to be recon-
structed, in which case B is given in (44). The minimization problem (58) is also a quadratic
problem and is solved with a the same quasi-Newton method in Section 4.5.

4.5 A one-step subspace minimization algorithm

In the two-step algorithms we introduced in Sections 4.3 and 4.4, we used the first equation
in the reformulated transport equation, (46), to determine the intermediate variable Uq and
then use the second equation, (47), to determine the unknown optical coefficient Σx. In
conventional reconstruction algorithms, such as those in the references we cited, the two
equations are used simultaneously to determine the unknown coefficient Σx. We now modify
our two-step algorithms here to get a one-step reconstruction algorithm that is similar to
those that have been developed in the literature.

We take the same assumption as in (55). To obtain robust reconstruction algorithms,
however, we should still reconstruct the signal part of Uq, U

s
q , from the analytical expres-

sion in (53). To reconstruct the optical property Σx and the coefficient γn, we solve the
minimization problem:

(γ̂n, Σ̂x) = arg min
(γn,Σx)∈RNd−L×RNΩ

OAB(γn,Σx) (59)
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where the objective function is essentially the summation of OA in (56) and OB in (58):

OAB(γn,Σx) ≡
Nq∑
q=1

‖(AΦ[n]γn − J̃q‖2
l2

‖Jq‖2
l2

+

Nq∑
q=1

‖(B− INΩNS)Φ
[n]γn − F̃q‖2

l2

‖Ũ s
q ‖2

l2

(60)

with J̃q = Jq−AŨ s
q and F̃q = Fq−(B−I)Ũ s

q . This minimization problem is more complicated
to solve than its two-step correspondence in Section 4.4. In practice, we can solve the
two-step version and use the results as the initial guess for this one-step algorithm. The
improvement we observed in the simulations we performed is not substantial.

We solve this minimization problem with a quasi-Newton scheme using the BFGS updat-
ing rule for the Hessian matrix whose initial value is set as an identity matrix. This Newton’s
scheme requires the gradient information of the objective function OAB with respect to the
unknown γn and Σx. These gradients can be easily computed as:

∂OAB
∂γni

=

Nq∑
q=1

[µL+iA
∗
qψL+i

‖Jq‖2
l2

+
B∗q(B− INΩNS)φL+i

‖Ũ s
q ‖2

l2

]
, 1 ≤ i ≤ Nd − L (61)

∂OAB
∂Σx,jj

=

Nq∑
q=1

1

‖Ũ s
q ‖2

l2

B∗q
∂B

∂Σx,jj

Φ[n]γn, 1 ≤ j ≤ NΩ (62)

where Aq = AΦ[n]γn− J̃q, Bq = (B− INΩNS)Φ
[n]γn− F̃q, and Σx,jj denotes the jth diagonal

element of Σx. The derivative ∂B
∂Σx,jj

is given by

∂B

∂Σa,jj

= (K− INS)⊗ EjjG
a
v(H⊗ S), and

∂B

∂Σs,jj

= (K⊗ Ejj)G
s
v(H⊗ S), (63)

respectively for the reconstruction of absorption and scattering coefficients. Here Ejj ∈
RNΩ×NΩ is a matrix whose jth diagonal element is 1 but every other element is 0.

4.6 Implementation issues

It is easy to see from the presentation in Sections 4.3, 4.4 and 4.5 that after the SVD of
the operator A is computed, the algorithms we proposed are very fast. There is no need to
solve forward and adjoint equations in the minimization process, which is very different from
traditional minimization-based reconstruction algorithms. The price we pay is of course the
calculation of the SVD of A, which is very expensive computationally. Fortunately, because
A does not depend on the unknowns to be reconstructed, its SVD can be precomputed off
line. Moreover, we do not need to store the whole matrix A but only the first Nd left and
right singular vectors.

In practical applications of optical imaging, it is often the case that the object to be
imaged, a piece of tissue or a small animal for instance, is placed inside a measurement
device of regular shape, a cylinder or a cube for instance [57]. On can thus use a fixed
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discretization scheme for A for a fixed measurement device. For instance, for the problem
of reconstructing absorption coefficient described in Section 2.1, A is fixed once the device
is fixed. Only one SVD needs to be done in the lifetime of the measurement device.

The algorithms in Sections 4.3, 4.4 and 4.5 are with increasing complexity. In practice, we
can use the two-step SOM method in Section 4.3 to construct a good approximation of the
inverse solution and use it as initial guess for the modified two-step algorithm in Section 4.4
whose final solution can be used as an initial guess for the one-step SOM algorithm in
Section 4.5. Our numerical simulations show that the simplest two-step algorithm Section 4.3
gives very good approximation to the final result.

The only tunable parameter in the algorithms is the the parameter L (determined by the
critical singular value µc). In principle, L should be selected so that µL ≈ µc is located at
the place where a large jump of the singular value occurs. When there is no obvious jump
of singular values of A, L should be selected mainly according to the noise level in the data.
Our principle is to look at the project of the data J on Ψ. The coefficient of the projection,
J∗ψj, decays fast with j until it reaches the modes where random noise dominates the true
signal in the data. The turning point is where L is located.

5 Numerical Experiments

We now present some numerical simulations to demonstrate the performance of the algo-
rithms we have developed. We focus on two-dimensional settings to simplify the compu-
tation but emphasize that the discretization carries straightforwardly to three-dimensional
case; see [70] for typical three-dimensional reconstructions from this discretization but with
a different minimization algorithm. We also non-dimensionalize the transport equation with
the typical length scale of the domain and the intensity of the illumination source, so that
all the numbers we show below are without unit.

The domain we consider is the square [0, 2]2. The “measurements” that we use in the
reconstructions are synthetic data that are generated by solving the radiative transport
equation for known optical coefficients. To reduce the degree of “inverse crimes”, we use
two different sets of finite volume meshes when generating the synthetic data and when
performing the numerical reconstructions. In general, the meshes for generating data are
twice as fine as the meshes used in the inversion. For the noisy data, we added multiplicative
random noise to the data by simply multiplying each datum by (1 + γ × 10−2 random)
with random a uniform random variable taking values in [−1, 1], γ being the noise level
in percentage. In each case below, we perform reconstructions using data contains noise at
three different levels: (i) noiseless data (γ = 0); (ii) data containing 3% random noise (γ = 3)
and (iii) data containing 10% random noise (γ = 10). Let us emphasize that the “noiseless”
data in (i) still contain noise that come from interpolating from the forward meshes to the
inversion meshes. We use Nq = 8 total illumination sources and for each source we measure
the boundary current data at 80 detectors uniformly distributed on ∂Ω.
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Figure 1: From left to right: True absorption coefficient and absorption coefficient recon-
structed with data of type (i), type (ii) and type (iii) respectively for Experiment I.

Experiment I. We show in Fig. 1 the reconstructions of an absorbing disk embedded
in a constant background. Shown in Fig. 1 are the true absorption coefficient and the
reconstructions with synthetic data of type (i), (ii) and (iii) respectively. The scattering
coefficient is set to be constant σs = 8. We use an isotropic scattering kernel in this case.
We did not observe much difference in the reconstructions when use the Henyey-Greenstein
phase function with g = 0.9 and σs = 80 (so that the effective scattering coefficient is still 8).
The relative L2 error in the reconstructions are 2.84%, 5.82%, and 9.23% for reconstructions
with the three data types respectively.

We show in the first plot of Fig. 8 the singular value of the matrix A in this case. In
all the reconstructions, we take the first L = 50 singular vectors to form the signal space
and the rest to form the noise space. This works fine for the case of noiseless data. The
algorithm converges in about 10 iterations in this case as can be seen from the convergence
history of the reconstruction algorithm shown in Fig. 2. When noise is large, however,
the algorithm still converges very fast at the beginning, but slow down significantly after
about 10 iterations. This happens when the algorithm struggles to find significant updates
of the unknowns. Since the objective function is not getting much lower, we can stop the
iteration at 10 to get an accurate approximation to the final result. This saves significant
computational time without losing much reconstruction quality.
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Figure 2: Evolution of the objective functions (normalized by its starting value and in
logarithmic scale) in BFGS Newton iteration for the three reconstructions in Experiment I.

Experiment II. In the second set of numerical experiments, we consider the reconstruc-
tion of a long absorbing object. The scattering coefficient is again set to be 8. The singular
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Figure 3: From left to right: True absorption coefficient and absorption coefficient recon-
structed with data of type (i), type (ii) and type (iii) respectively for Experiment II.

values of the matrix A is shown in second plot of Fig. 8. Note that even though the do-
main and the scattering coefficient in this case are the same as those in Experiment I, the
finite volume mesh are different in the two cases. That is why we observe a slight difference
between the singular values of the two cases. The reconstruction results are presented in
Fig. 3. Shown, from left to right, are the true σa and reconstructions with data of type
(i), (ii) and (iii) respectively. The relative L2 error for reconstructions are 3.24%, 5.68%,
and 10.46% respectively. These are comparable to the reconstructions using more expensive
reconstruction methods, such as those in [70]. Convergence history of the reconstructions
are shown in Fig. 4. We observed again that when the noise level is high, the algorithm
converges very slow in later iterations. This is a clear indication that in these cases, we can
choose a smaller L value.
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Figure 4: Evolution of the objective functions (normalized with its starting value and in
logarithmic scale) in BFGS Newton iteration for the three reconstructions in Experiment II.

Figure 5: From left to right: True absorption coefficient and absorption coefficient recon-
structed with data of type (i), type (ii) and type (iii) respectively for Experiment III.
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Experiment III. We repeat the reconstruction process for a more complicated absorption
coefficient shown in the left plot of Fig. 5. The reconstruction results with data of type
(i), (ii) and (iii) respectively are presented in the right plots of Fig. 5. The quality of
the reconstructions are similar to those in the first two cases. The relative L2 error for
reconstructions in the top row are 3.20%, 6.68%, and 10.67% respectively. Convergence
history of the reconstructions are shown in Fig. 6.
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Figure 6: Evolution of the objective functions (normalized with its starting value and in
logarithmic scale) in BFGS Newton iteration for the three reconstructions in Experiment
III.

Figure 7: From left to right: True scattering coefficient and scattering coefficient recon-
structed with data of type (i), type (ii) and type (iii) respectively for Experiment IV.

Experiment IV. In the last numerical experiment we reconstruct the scattering coefficient
assuming that the absorption coefficient is known. The absorption coefficient is assumed to
be 0.2 in a disk of radius 0.3 centered at (1.3, 1.4) and 0.1 everywhere else. The decay rate
of for large singular values is much larger than from those in Experiments I∼ III as shown
in the right plot of Fig. 8. The true coefficient and the reconstructions with three different
data are shown in Fig. 7. The relative L2 error in the three reconstructions are 6.34%, 8.82,
13.77% respectively. The reconstructions are slightly worse than those on the absorption
coefficients in the previous experiments. This is not due to the algorithm itself but due to the
fact that the scattering coefficient is harder to reconstruct than the absorption coefficient,
as is well-known in the diffuse optical tomography community and reflected partially in the
fast decay rate of the singular values of A.

The computational costs of the reconstructions in this section are negligible after the sin-
gular value decompositions have been constructed, on the order of minutes on a reasonable
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Figure 8: The first 80 singular values (normalized by the leading eigenvalue in each case)
for the A matrices in Experiment I, II, III and IV respectively.

desktop, such as a DELL OPTIPLEX 780 with Intel Core 2 Quad Q9400 with 8 GB of mem-
ory. The construction of the SVD, however, is very expensive. For the simulations we have
here, each SVD cost on the order of 10 computational hours on the same desktop. In cases
when multiple reconstructions have to be done in the same configuration, which we believe
is what has to be done in practical applications, our method will out-perform traditional
methods since we only construct one SVD and use it for the rest of reconstructions.

6 Concluding remarks

To summarize, we proposed in this work a subspace-based minimization reconstruction
strategy for solving inverse coefficient problems for the radiative transport equation, for ap-
plications in optical imaging techniques such as diffuse optical tomography. In this strategy,
we factorize the map from the unknown coefficient to the observed data into the composi-
tion of a map from the coefficient to an intermediate variable (which is also unknown) with
a map from the intermediate variable to the data. We then perform a spectral decompo-
sition (SVD) of the second map which enable us to decompose the intermediate variable
into a low-frequency part, which can be stably reconstructed, and a high-frequency part,
which can not be stably reconstructed due to noise in the data. In the reconstruction, we
reconstruct the low-frequency component of the intermediate variable analytically and the
high-frequency component with an inexpensive minimization algorithm. We then recon-
struct the coefficient by inverting the map from the coefficient to the intermediate variable
using another inexpensive minimization algorithm. Numerical simulation results based on
synthetic data demonstrated that this reconstruction strategy can be efficient and robust
once the computationally expensive spectral decomposition have been computed off-line.

Even though we use the terminology “subspace-based minimization” following the work
of Chen and collaborators [25, 66, 87], there are several critical differences between our
strategy and these in [25, 66, 87] as we have emphasized in the presentation of Section 4. The
main difference is the reduction of unknowns in the reconstruction following the philosophy
in one of our previous work [41]. In fact, it would be very interesting to combine the current
algorithm, in which the intermediate variable is parameterized, with the algorithm in [41],
in which the unknown coefficient is parameterized. There are also strong connections, in
terms of algorithm philosophy, between our algorithm, the algorithms based on optimal
grid and networks [17, 18, 19] in which the measurement setup of the problem is used to
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determine an optimal parameterization of the unknowns for the reconstruction algorithm,
and the algorithms based on sparsity [33, 34]. Essentially, all the aforementioned strategies
share the same philosophy, that is, for these severely ill-conditioned inverse problems, only
low-frequency contents in the unknowns can be stably reconstructed when no extra a priori
information are available. It is thus more efficient to simply attempt to reconstruct these low-
frequency contents parameterized under a good basis. The difference between the algorithms
lies in their strategies to obtain that good basis.
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