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Abstract

Full waveform inversion (FWI) aims at reconstructing unknown physical coeffi-
cients in wave equations using the wave field data generated from multiple incoming
sources. In this work, we propose an offline-online computational strategy for coupling
classical least-squares based computational inversion with modern deep learning based
approaches for FWI to achieve advantages that can not be achieved with only one of
the components. In a nutshell, we develop an offline learning strategy to construct a
robust approximation to the inverse operator and utilize it to design a new objective
function for the online inversion with new datasets. We demonstrate through numer-
ical simulations that our coupling strategy improves the computational efficiency of
FWI with reliable offline training on moderate computational resources (in terms of
both the size of the training dataset and the computational cost needed).
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1 Introduction

Full waveform inversion (FWI) refers to the process of extracting information on physical
parameters of wave equations from data related to the solutions to the wave equations |3,

L0, 12,15, 18, 21, 37, 41, 43, 44,45, 52 58, 59, 60]. In seismic imaging, this is manifested
as the problem of reconstructing the speed distribution of seismic waves in the interior of
the Earth from measured wave field data on the Earth surface. The sources of the measured
waves could come either from nature, such as earthquakes, or from geophysical exploration
activities by humankind, such as air guns and seismic vibrators. We refer interested readers
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to [13, 25, 42, 61] and references therein for overviews on the recent development in the
field of FWI for geophysical applications. While the term FWI was mainly coined in the
seismic imaging community, FWI also has a wide range of applications in other imaging
applications, such as in medical ultrasound imaging [5, 8, 27, 30, 34, 38, 40, 62]. From the
practical point of view, the main difference between geophysical and medical FWI is that
the quality of the dataset collected in medical applications, both in terms of the variety of
source-detector configurations can be arranged and in terms of the frequency contents of the
incident sources, is much richer than that of the geophysical FWI dataset.

For the sake of concreteness, let us consider the simplest model of acoustic wave prop-
agation in a heterogeneous medium 2 with wave speed field m(x) > 0. The wave field u
solves )

%%—Au = 0, in (0,400) x Q
m2(x) 0%t (1)

g—z = h(t,x), on (0,+00) x I
with an appropriate initial condition. Here, n is the unit outward normal vector of the
domain boundary at x € 9). The data that we measure is time traces of the solution to
the wave equation (1) at a set of detector locations, say I' C RY, for a period of time, say

T, that is,

g = u(t,X)|o1)xr - (2)

The objective of FWI in this setting is to recover the unknown wave speed field m in the
wave equation (1) from the measured data u(t,x)|rjxr collected in a multi-source multi-
detector configuration. This is a challenging inverse problem that has rich mathematical and
computational content. The main computational strategy, due to the lack of explicit/semi-
explicit reconstruction methods, in solving the FWI inverse problem as well as many other
model-based inverse problems, is the classical L? least-squares formulations where we search
for the inverse solution by minimizing the L? mismatch between model predictions and
observed data. To formulate this more precisely, we assume that we collect data from N
acoustic sources {hs}Y*,, and we denote by f(m; h,) the forward model that takes m to the
corresponding wave field data g5 (1 < s < Ny). Then the inverse problem of reconstructing
m from measured data g° aims at solving the following operator equation:

f(m) = g° (3)
where
f(m; hy) 9
fm) = | flmih) | and g = | g
/ (m;. hy,) gévs

The superscript 0 denotes the fact that the datum g is polluted by measurement noise.
The classical L? least-squares method performs the reconstruction by searching for m that



minimizes the mismatch functional (with the possibility of adding a regularization term):

1
(m) = §Hf(m) - g6||[2L2((o,T]xr)]Ns : (4)

This is a challenging numerical optimization problem that has been extensively studied in
the past three decades. Many novel methods have been developed to address two of the main
challenges: (i) the high computational cost needed to reconstruct high-resolution images of
m, and (ii) the abundance of local minimizers (due to the non-convexity of the least-squares
functional) that trap iterative reconstruction algorithms; see for instance [13, 25, 51] for a
detailed explanation of those challenges among others.

In recent years, there are great interest in the FWI community to use deep learning
techniques, based on neural networks, to replace the classical least-squares based inversion
methods [ y ) ) ) ’ ) ) ’ ) ) ) ’ ) ) ) ) ) ) ] Assume
that we are given a set of sampled data

{gj = (.gjb"' yGjsy " 7ngs)T’mj}§V:1’ (5)

where {m;}L, are a set of N velocity profiles sampled from a given distribution and {g;}}",
are the corresponding wave field predictions generated from N, sources {h,}.=, with the
model g = f(m). Deep learning methods try to train a neural network, denote by £, !(g),
with 6 denoting the set of parameters (that is, the weight matrices and the bias Vectors) of
the neural networks, that represents the inverse operator f=!. A training process based on
the L? loss functional can be formulated as:

0= ar min £(0) with £(0 m; 2
g min £(0) NZH )=t @) e

where © represent the space of parameters of the network, and a regularization term can be
added to the loss function £(0) to help stabilize the training process. The number of samples
N needs to be large enough in order for £(6) to be a good approximation to the expectation
of the mismatch over the distribution: E,,[||m — £, (g(m))||2, () Many other types of loss
functions can be used, but we will not dive into this direction. Note that since we know
the forward operator f and are only interested in learning its inverse operator, the datasets
used in the training process are synthetic: for each data point (g;, m;), g; is constructed by
solving the wave equation (1) with the given speed field m; and evaluate (2).

Numerical experiments, such as those documented in [4, 32, 36, 54, 63, 65, 66, 67, 68],
showed that, with sufficiently large training datasets, it is possible to train highly accurate
inverse operators that can be used to directly map measured wave field data into the velocity
field. This, together with the recent success in learning inverse operators for other inverse
problems (see for instance [2, 7, 11, 24, 47, 53] for some examples) has led many to believe,
probably overly optimistically, that one can completely replace classical computational in-
version with offline deep learning.

Despite the tremendous success in deep learning for FWI, it is still computational chal-
lenging to train a once-for-all inverse machine f, ! First, with the aim of reconstructing



high-resolution images of the velocity field m(x), the size of the neural networks to be con-
structed as a discrete representation of f; ! is prohibitively large. Second, it is well known
that f : m — g is a smoothing operator (between appropriate spaces; see for instance [29]
and references therein for more precise mathematical characterization of the statement).
The inverse operator is therefore de-smoothing. Learning such operators requires the ability
to capture precisely high-frequency information in the training data, and this is very hard
to do in the training process as deep neural networks tend to capture low-frequency compo-
nents of the data much more efficiently than the high-frequency components [16, 50, 61]. On
top of the above, the inverse operator f, ! we learned from model-generated data very often
has limited generalization, making it challenging to apply the operator to new measured
datasets.

In this work, we propose an offline-online computational strategy for coupling classical
least-squares based computational inversion with deep learning based approaches for FWI
to achieve advantages that can not be achieved with only one of the components. Roughly
speaking, we utilize offline trained approximate inverse of the operator f to precondition on-
line least-squares based numerical reconstructions. Instead of pursuing high-quality training
of highly accurate inverse operator, we train neural networks that only capture the main
features in the velocity field. This relaxes dramatically the requirement on both the size
of the dataset and the computational resources needed in the training process, and the
trained model is more generalizable to other classes of velocity models. Meanwhile, the
offline trained approximate inverse is sufficient as a nonlinear preconditioner to improve the
speed of convergence of the classical least-squares based FWI numerical reconstruction in
the online stage of the inversion.

The rest of the paper is organized as follows. We first describe the proposed coupling
strategy in Section 2 in the abstract setting. We then present some preliminary understand-
ing on the training and reconstruction stage of the method in Section 3. In Section 4 we
discuss the details of the implementation of the strategy. Extensive numerical simulations
are presented in Section 5 to demonstrate the performance of the learning-inversion coupling.
Concluding remarks are offered in Section 6.

2 Coupling learning with FWI

Our main objective here is to couple the deep learning based image reconstruction approach
with the classical least-squares based image reconstruction method for FWI. More precisely,
we utilize the approximate inverse we learned with neural networks to construct a new
objective function for least-squares based FWI reconstruction from measured data.

2.1 Robust offline learning of main features

In the offline learning stage, we use deep learning to train an approximate inverse of the
operator f. As we outlined in the previous section, our main argument is that the learning
process can only be performed reliably on a small amount of dominant features of the velocity
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field. First, resolving all details of the velocity field requires over-sized neural networks that
demand an exceedingly large amount of training data, not to mention that such networks
are computationally formidable to train reliably. Second, large neural networks or large sizes
display serious frequency bias in picking up frequency contents in the training datasets [(4],
making it inefficient in fitting high-frequency components of the velocity field. Despite all
the challenges in resolving high-frequency features, it has been shown in different scenarios
that learning low-frequency components of the velocity profile can be done in a robust
manner [35, 18, 56]. This means that if we take the Fourier representation, the lower Fourier
modes of the inverse operator can be learned stably. This good low-frequency approximate
inverse is our main interest in the learning stage (even though an accurate inverse itself
would be better if one can realistically have it).

Let 991 be the feature map we selected, and m the corresponding feature vector, that is,
M:m(x) e M— me M,

where M C L*(Q) is the class of velocity field that we are interested in and M the space of
the feature vectors. Motivated by the analysis of weighted optimization in [19, 20], we train
a network, which we still denote as f, ' g m, using the synthetic dataset (5), through
the optimization problem

N 1 X 2
0= argergm L(0) with L£(0) := oN ; Hu ® <mj —f, 1(gj)> HM (6)
where the weight vector p is selected to weight the loss heavily on the features we are
interested in while damping the features that are hard to learn stably. The ® is used to
denote the componentwise product between the vectors involved. The selection of the feature
vectors as well as the weighting vector g will be discussed in Section 5 in more detail. For
the purpose of illustrating the main idea, let us point out that one example is to think of (6)
as the equivalence of

N
~ 1 2
0 = arg min — /(/ x —y)(m;(y) — £, (g; d)dx
g min 5w ; (e =y)(my(y) £, (8)(v)) dy
in the Fourier domain, i.e. when the features we use are Fourier modes, with p the Fourier
transform of the kernel p(x). If we take pu to be a smoothing kernel, such as a Gaussian
kernel, p will decay fast with the increase of the frequency. In such a case, the learning
problem (6) focuses on the lower Fourier modes of the velocity field m.

Weighted optimization schemes of the form (6) with weight g to emphasize dominant
features in the learning problems have been extensively studied in the learning and inverse
problems community; see [20] and references therein. When the feature we selected are
Fourier basis, it has been shown that correct selecting of the weight p in the training
scheme can lead to more robust learning results for a class of models f, " following certain
distributions, sometimes at the expense of learning accuracy, with better generalization
capabilities [20]. This is the main motivation for us to adopt this strategy for our purpose
in this research.



2.2 New objective function for online inversion

In the online reconstructions stage, we utilize the approximate inverse we trained to construct
a new objective function for FWI image reconstruction from given noisy data g°®. More
precisely, instead of solving the model (3), we aim at solving the modified model

£ (F(m) = £74(2”) (7)

where R
fﬁ_1 ::fm_lofg_l: gr—m

is the learned approximate to f~! (while fg_ ': g mis the learned representation in 9).

The least-squares formulation for the reconstruction problem now takes the form

m = arg min ®(m) , (8)
meM
with .
~ ~ ol _ _
o(m) = I8 (£m)) ~ T @)y + 210 7 © m) )

The last term in the objective functional is a Tikhonov regularization functional that imposes
a smoothness constraint on the target velocity field. This smoothness constraint is selected
such that it is consistent with the training process. The natural initial guess for any iterative
solution scheme for this minimization problem is mg := fé_ H(g).

Let us emphasize that there is a significant difference between the L? objective function
®(m) we introduced in (9), ignoring the regularization term, and the standard L? objective
function W(m) defined in (4). Our objective function ®(m) measures the mismatch between
the approximations of predicted velocity field and the true velocity field corresponding to
the measured data, while the standard objective function W¥(m) measures the mismatch
between predicted wave field data with measured wave field data. In other words, our
objective function works on the parameter space (also called the model space in the FWI
literature, that is, the space of the velocity field) while the standard objective function is
defined on the signal space (that is the space of wave field signals at the detectors). With
reasonably-trained ?g_ ! the functional ®(m) has advantageous landscape for optimization
purpose as we will demonstrate in the numerical simulations in Section 5.

2.3 The benefits of the coupling approach

The offline-online coupling scheme we proposed allowed us to focus on training a robust
approximate inverse instead of the exact inverse. This makes the learning process more
stable and also requires less computational resources (in terms of the amount of data, the
size of the network, and the computational cost for optimization) than training an accurate
inverse. Moreover, the sacrifice in accuracy brings better generalizability for the learned
approximate inverse. On the computational side, the trained approximate inverse serves as
a “preconditioner” for the inversion process. It can not only provide a good initial guess for
the reconstruction but also simplify the landscape of the optimization problem.
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We finish this section with the following remark. In the ideal case when all the operators
involved are invertible as they should be, the solution to (7) is identical to the solution
to (3), assuming that g indeed lives in the range of f. Therefore, our formulation does not
change the true solution to the original inverse problem. However, as we will see, the new
formulation utilizes the result of learning to facilitate the FWI reconstruction in terms of
saving computational cost as well as making the optimization landscape more desirable.

3 Formal understanding of the coupling

We now attempt to gain a more systematic understanding of the coupling strategy. As
we have argued in the previous sections, it is computationally challenging to train neural
networks that are accurate approximations of the inverse operator and are very generalizable
at the same time. However, there is certainly some dominant information in the inverse
operator that we could extract with learning and this is the approximate inverse that we
are interested in constructing.

3.1 Elements of network training

Due to the fact that the training data we have are generated from exactly the same operator
we are trying to represent with the neural network, the learning process we have is much
more under control than those purely data-driven learning problems in applications. Here
we highlight a few critical issues in the learning process without getting into the details of
the implementation of the learning algorithm.

Sampling training data. To learn the inverse operator, we need to pay attention to both
its input space and its output space. While our focus will be to learn the low-frequency
component of the inverse operator, we want the training data to include as much high-
frequency information as possible to gain generalization capability in the input space. Let
Kot be the frequency range for the network output that we are interested in recovering
and Kj, the frequency range of the velocity fields that generated the wavefield data. We
construct the training dataset as

{m;(x), g := £(m;(x) +m;(x) L
where m;(x) are selected such that F(m;)(k) = 0 Vk € K., and F(m;)(k) # 0 Vk €
Kin\Kout (F(m) denoting the Fourier transform of m). In other words, we train the network
with input wavefield data having richer frequency content of the velocity field than the output
velocity field. This constructing enrich the frequency content of the input data but does not
increase the computational cost of the training process.

The well-known result on the differentiability of the data g with respect to m, quoted in
the proposition below, indicates that the input space of the inverse operator, i.e. the range of
the forward operator, is quantitatively smoother than the output space (the velocity space)



that we are working with. Therefore, a well-trained network approximation should have
good interpolation ability in applications when the space of velocity field we are interested
in working with is sufficiently smooth.

Proposition 3.1 ( [0, 17, 29]). Let Q be a smooth domain and h(t,x) be the restriction of
a C' function on 9Q. Assume further that m € C*(Q) N [m,m] for some 0 < m <7m < +00.
Then the map: f(m) : m — g is Fréchet differentiable at any m € C*(2) N [m,m).

The result is standard. We refer interested reader to [0, 17, 29] and references therein
for more precise formulations of it in different scenarios. This result also ensures that if we
can train a stable network, then the learning quality is guaranteed; see Lemma 3.3 below.

Network training error. Our main objective of this work is to focus the learning process
on the low-frequency content of the output of the inverse operator. We do this with the
weighted optimization scheme (6) by selecting weight g that penalizes heavily the low-
frequency component of the mismatch of true data and the network prediction. The impact
of such weighting schemes on the learning results have been analyzed extensively; see [19, 20)]
and reference therein. We illustrate this in an extremely simplified setting. Let F :=
(f71)(mg) be the linearization of f~! at mg for a one-dimensional medium. Assume that
the learning loss function £(#) in (6) is minimized to the order of €2 in the training process.
Then on the leading order, the trained F satisfies

p® (m - FG) ~ Oc),

where m = [my, - - - , my] is the matrix whose columns are vectors of the Fourier coefficients

of the training velocity samples {mj};\’:l, G = [g1, - ,gn] is a matrix whose columns

are vectors of the input data, and O(¢) is a diagonal matrix of size order €. The trained
linearized inverse operator, when applied to a new input data g’ gives the result

Fg’ ~ (m—p ' ®0(c))G*(GGY) 'g’.

The nature of p clearly indicates that the relative error in the learned output is larger in
the high-frequency Fourier modes.

3.2 Inversion with accurate training

As we discussed in the previous section, when the network is trained so that /f;;l =f~! the
objective function ®(m), defined in (9), in the reconstruction stage is a convex functional of
m. When the learning is not perfect but sufficiently accurate, the functional ®(m) still has
an advantageous landscape. This is given in the following result.

Lemma 3.2. Let/f%_l 1 g € [L*([0,T) x D)]Ns = m € L*(Q) be an approximation to £~1 with

Fréchet derivative at g given as d?gl[g]. Assume that
sup Hfgl (f(m)) — m| 2 <€ (10)
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and
A:=1+sup ||df§_1[g]||£([L2([0,T]xr)]Ns;LZ(Q)) < +00 (11)
g

for some € > 0 and g° = f(m) + & for some § with 10|l (z2(jo,7x s sufficiently small. Then
we have that

IE (£m)) = B (@)l z2(0) — I — mollzaey| < 26+ Alblaqoperye - (12)

Proof. We denote by r(m) = /f}_l (f(m)) — m. We then have, by Taylor’s theorem, that

£ (g%) = £ (f(mo) + 8) = mo + r(mo) + df; '[£(mo)] (8) + o(d),

. llo(&)l 12
where lim é—Lm)
d—0 I H[LQ([O,T]XF)]Ns

= 0. We therefore have

£ (E(m)) —£1(%) = m — mo + r(m) — r(mo) — df; ' [£(mo)] (8) + o(8) .

We can now use the triangle inequality to conclude that

I (£m)) = B (&%)l z2(0) — I = moll 2|
< |lr(m) — r(mo) — dE " [£(m0)] (8) + 0(8)| 2
< lr(m)ll 2 + lIm(mo)l 220y + [1dE5 [£(m0)] () | 22(0) + [|0(8) [ 220
< 2 + A||8]|z2(jo, 7<)

where the last step comes from the assumptions in (10) and (11). The proof is complete. [

This result says that the new objective function ®(m) in (9) behaves similarly to the

~

quadratic functional ||m —/f}_ Y(g) ||%2(Q) provided that the trained £ ! is accurate enough. It

is clear that we can replace the strong assumption on the accuracy of /f\g_ L sup ||?§_1 (f (m)) —

m||r2@) < €, with the weaker assumption ||/f\§_1 (f(m)) — m|lr2) < €llm|/r2@), in which case
the 2¢ term in the bound (12) will be replaced by €(||m||r2) + ||mol|r2()). The conclusion
still holds.

Due to the smoothing property of the forward operator as given in Proposition 3.1,
the stability of the trained inverse operator, measured by the boundedness of its Fréchet
derivative, is enough to ensure the accuracy of the neural network reconstruction. There-
fore, if we could train network approximations with such stability property, they have good
generalization capabilities in the output space.

Lemma 3.3. Let m,mg € C*(Q) N [m,m] for some 0 < m < m < 4oo. Then, when
|[m — mol| L2y is sufficiently small, there exists a constant ¢ such that

£ (£(m)) — £57 (£(m0)) || 22(0) < cllm — mollz2e) (13)



Proof. By Proposition 3.1, the map m + g := f(m) is Fréchet differentiable with the
derivative at m in direction m denoted as df[m](m). By Taylor’s theorem, we have

£ (f(m)) = /fé?l (£(mo) + df[mo](m — mg) + o(m — my))
= £ (£(mo)) + dE="[£(mo)] (df [mo] (m — m)) + B(m — my),

Ho(mfmo)H[Lg([O’T] xD)Ns 1 ||5(m*m0)HL2(Q)

= (0. We therefore have

where lim
m—mo llm=moll[L2(q)

m—mo  Im=moll[L2(q))
£ (£(m)) — £ (£(mo)) = dE; ' [f (mo)] (df [mo) (m — ma)) + 6(m — mo)
The bound in (13) then follows from the assumption (11). O

When the class of velocity models is sufficiently nice, for instance, when each m(x) can be
represented with a small number of Fourier coefficients in a narrow frequency band, one can
hope that accurate training is achievable. When this is the case, Lemma 3.2 and Lemma 3.3
ensure that the learned model can be utilized to facilitate the FWI reconstruction with the
new dataset.

3.3 Computational simplifications

The reconstruction stage of the coupling can be greatly simplified when the training of the
neural network approximation is sufficiently accurate.

First, the coupling method will degenerate to a deep learning based method when we
have confidence in our ability in training an accurate deep neural network representation of
the inverse operator in FWI. Indeed, when fg_ = f-1 that is, fg_ s exactly the inverse, the

reconstruction step (8) simplifies to

1 ~
= axgmin o m — (&) [a0) + 51 Vml7a00).
assuming, only for the sake of simplifying the notation, that the weighting operator pu(x—y)
is taken as an integral operator such that p='(k) = k. This gives a fast inversion for the new
data and immediately leads to the optimal selection of the regularization parameter when
the regularization term is not too complicated. In this case, we simply did a post-process
on the deep learning reconstruction given by the operator fg_ 1. The solutions to this are
explicitly given as R
m = (Z+7A)"'t (g,

where 7 is the identity and A is the Laplacian operator. Therefore, m is simply a smoothed
version of the result produced by the trained neural network, /f%_ Y(g%). The exact form of
the smoothing effect depends on the selection of pu.

Second, when we can not train an accurate f ~1 but can train a good approximation to
the inverse, that is, when the operator Z — fg_ Lo f is not zero but small in an appropriate
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operator norm, the FWI problem (7) can be solved by using Neumann series. More precisely,
we can rewrite (7) as

m—K(m)=£"(g"), K=I-f"'of

whose solution can be expressed in a Neumann series as
m=(T-K) (£ () => K('(g). (14)
5=0

The better the approximation flistof ~1. the faster the series converges. For the training
we had, see more discussion in Section 5, a few terms of the Neumann series often provide
sufficient accuracy for the reconstruction.

Let us emphasize that by the informal analysis in Section 3.1, the error in the learning
implies roughly that |F(m — K(m)) (k)| ~ ¢(k)|m/| r2() with ((k) large for large |k|. Due
to the fact that the operator norm of Z — K is bounded below by maxy ((k), this means
that the convergence speed of the Neumann series is controlled by the worst training error
in the (high-frequency) Fourier modes.

3.4 Utilizing learning outside of training domain

It is important to point out that the weight p in the weighted training scheme (6) should be
selected to emphasize the low-frequency components of the output and penalize the high-
frequency components. It should not completely remove the high-frequency components. If
it does, then the high-frequency components of the velocity field in the reconstruction stage
can not be recovered with the optimization problem (8). This is an obvious yet important
observation that we summarize as a lemma to emphasize it.

Lemma 3.4. Let ?éfl be such that for any m, f[jf\éfl(f(m))](k) = 0 V|k| > ko, and m be
reconstructed from (8) with a gradient-based iterative scheme or the Neumann series method

in (14). Then F[m|(k) = 0 V|k| > ko.

Proof. Under the assumption on /f;fl, it is straightforward to check that F(mg)(k) = 0
(mg := %1(g5)) VIk| > ko, and F(K7mg)(k) = 0 V|k| > ko, for any j > 1. Therefore
F(m)(k) = 0 V|k| > ko. Let my be the (-th iteration of a gradient based iterative scheme,

then F(r(my))(k) =0 (r(m) := fé’l <f(m)> —/t;;l(gé)) V|k| > k. This leads to the fact that

.F(d@[md(ém)) (k) = 0 for any dm. Therefore, F(myi1)(k) = 0 V|k| > ky. The rest of the
proof follows from an induction. O

For any velocity field that can be written as m;, + dm with m; the prediction of the

trained neural network and dm outside of the range of the neural network but either has
small amplitude (compared to that of m) or has large amplitude by small support compared
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to the size of the domain (in which case dm is very localized), we can recover m with an ad-
ditional linearized reconstruction step. We linearize the inverse problem around the network
prediction fg_ 1(g‘s). The reconstruction can be performed with a classical migration scheme,
or equivalently by minimizing the following quadratic approximation to the functional (9):

Wo(m) = o [[fm) + dtlm) (m — my) — & F IVl (15)

2
[L2((0,T]xT)]Ns

PSS )
where my, :=157(g°).

4 Computational implementation

We now provide some details on the implementation of the coupling framework we outlined
in the previous section. For computational simplicity, we focus on the implementation in
two spatial dimensions even though the methodology itself is independent of the dimension
of the problem.

4.1 Computational setup

* | 1 ®& 3 | & | | & | | e 0 ® ® 8 8 e 8 & e e o e e o

0 L 0 L

Figure 1: The two-dimensional computational domain Q = (0, L) x (—H,0) for wave prop-
agation. Periodic boundary conditions are imposed on the left and right boundaries. In
geophysical applications, sources and detectors are placed on the top boundary (left) while
in medical ultrasound applications, sources (red dots) and detectors (blue triangles) can be
placed on both the top and the bottom boundaries (right).

For the purpose of being concrete, we first describe briefly the geometrical setting under
which we implement the learning and reconstruction algorithms. Let x = (z,z). The
computational domain of interests is Q = (0, L) x (—H,0). We impose periodic boundary
conditions on the left and right boundaries of the domain. Probing sources and detectors
are placed on the top and bottom boundaries I't = (0, L) x {0} and I', = (0, L) x {—H},
depending on the exact applications we have in mind. In geophysical applications, source
and detectors are both placed on the top boundary while in medical ultrasound type of
applications, source and detectors could be placed on the opposite sides; see Figure 1 for
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an illustration. Under this setup, the wave equation (1) with a source h(t,z) on the top
boundary and a reflective bottom boundary takes the form

1 0%u .
o BT Au = 0, in (0,7] x Q,
u(0, 7, 2) = a—";(o,g;,z) = 0, (z,2) € (0,L) x (—H,0),
u(t,0,2) = wu(t,L,2), (t,2)€(0,T] x (—H,0), (16)
%(t,x, —-H) = 0, (t,x) € (0,T] x (0, L),
%(t,x,@) = h(t,z), (t,z) € (0,T] x (0, L).

Similar equations can be written down for other types of source-detector configurations.

4.2 The neural network for learning

With the above computational setup, we can generate the training dataset (5) by solving the
wave equation (16) with given source functions. We will describe in detail how the training
dataset is generated, including the spatial-temporal discretization of the wave equation (16).

Recovered
Signal
Dy(Ey(g))

Input Encoder (Ejp)
Signal g

Latent
Variable

Predicted
velocity
field m

Figure 2: Network flow for learning the approximate inverse operator. Training objective is
to select 6 such that g = Dy(Fy(g)) and m = Py(Ey(g)) for every datum pair (g, m).

We construct an autoencoder network scheme to represent the inverse operator. The
learning architecture contains three major substructures: an encoder network Fjy, a decoder
network Dy, and an additional predictor network Fy; see Figure 2 for an illustration of the
network flow. More information on the construction of the encoder, the decoder and the
predictor is documented in Appendix C. The encoder-decoder substructure is trained to
regenerate the input data, while the predictor reads the latent variable to predict velocity
field m. In terms of the input-output data, the network training aims at finding the network
parameter 6 such that

gj = Do(Fp(g;)) and m; = Py(FEp(g;)), 1<j<N. (17)
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This is done by a minimization algorithm that minimizes a combined ¢*-¢? loss function
with the ¢! loss for the encoder-decoder substructure while ¢? for the encoder-predictor
substructure. More precisely, we train the network by solving

0 = argmin £(0),
1)
with
(18)

L(0) = ZHgg Do(Ep(8;)) Hzl+—Z||u® — Py(Eo(g)))) -

While the ¢! loss for the encoder-decoder substructure is standard in the learning literature,
the second part of the loss function is simply what we introduced in (6). Once the training
is performed, the approximated inverse is taken as

1= Pyo E;.

Let us emphasize that the main motivation for us to adopt this autoencoder framework,
instead of directly training a network for f=!, is to take advantage of the commonly observed
capability of autoencoders to identify lower dimension features from high-dimensional input
data. That is, very often, one can train the autoencoder such that the latent variable Ey(g)
contains most of useful information in g but has much lower dimension than g. This lowers
the dimension of the predictor network and therefore makes it easier to train the overall
network. Moreover, the weighted optimization we used in the encoder-predictor substruc-
ture further stabilizes the learning process by focusing on matching the lower-frequency
components of the output.

4.3 Learning-assisted FWI inversion

To implement the preconditioned FWI reconstruction method, that is, the solution to the
least-squares optimization problem (8), we tested two different algorithms.

Quasi-Newton method with adjoint state. We implemented a quasi-Newton method
based on the BFGS gradient update rule [26] for the numerical reconstruction. This BFGS
optimization algorithm itself is standard, so we will not describe it in details here. The
algorithm requires the gradient of the objective function ®(m) defined in (9). We evaluate
the gradient with a standard adjoint state method. The procedure is documented in Al-
gorithm 1 of Appendix A. The main complication that the learning stage brings into the
adjoint state calculation is that we will need the transpose of the gradient of the neural
network with respect to its input. This imposes restrictive accuracy requirements on the
training of the neural network in the sense that we need the network to learn not only the
map from measurement to the velocity field but also the derivative of the operator.
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Neumann series method. The Neumann series method based on (14) is more training
friendly since it does not require the adjoint operator of the learned approximate inverse
fg_ 1. We implemented a J-term truncated Neumann series approximation

m=_ k(6 ") (19)

The computational procedure is summarized in Algorithm 2 of Appendix B.

5 Numerical experiments

We now present some numerical simulations to illustrate some of the main characters of the
proposed framework of coupling deep learning with model-based FWI reconstruction. We
fix the computational domain to be = [0,1] x [—1,0], that is, L = H = 1. In this proof-
of-concept study, we use acoustic source functions that can generate data at all frequencies.
We leave it as future work to consider the situation where low-frequency wavefield data are
impossible to measure, in applications such as seismic imaging.

5.1 Velocity feature models

In this work, we consider two different feature models for the output velocity field of the
neural network.

Generalized Fourier feature model. In the first model, we represent m(x) as linear
combinations of the Laplace-Neumann eigenfunctions on the computational domain 2. To
be precise, let (A, vx) (k = (ks, k.) € Ng x Ny) be the eigenpair of the eigenvalue problem:

—Ap = Ap, in n-Vo=0, on 0.

where n(x) is the unit outward normal vector of the domain boundary at x € 92. Then
M = (kom)® + (k.7)?, and

ok(x, z) = cos(k,mx) cos(k,mz) .

In our numerical simulations, we take

M

m(x) = Z m<k) Spk(xvz>7 (20)

kxykz =0

for some given M. The generation of the random coefficients m(k) will be described in detail
in the next section.
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Gaussian mixture model. The second feature model we take is the Gaussian mixture
model. More precisely, we represent m(x) as a superposition of Gaussian functions:

M ——(x—xlg)‘IE;l(x—xg)
m(x) = mg + E cre 2 : (21)
k=1

With a small number of highly localized Gaussians, successful reconstruction of such a model
could provide inside on source locating problems in seismic applications [I1]. This is the
main motivation for us to consider this model.

5.2 Learning dataset generation

To generate training data, we generate a set of velocity fields and then solve the wave
equation model (16) with source functions {h,}Y*, to get the corresponding wave field data
at the detectors.

Generating velocity fields. We first construct a set of N random velocity fields {m; }jvzl
using the representation (20) or (21). We do this by randomly choosing the coefficients
{m(k) }xenyxn, from the uniform distribution U[—0.5,0.5] when considering the model (20)
and the coefficients ¢ from U0, 5], x from U(—H,0) x U(0, L), (X)i; from U[0,0.2] + 0.1
and my = 10 when using the model (21). To mimic frequency content of realistic velocity
fields, we force the coefficient m(k) in the random Fourier model (20) to decay asymptotically
as

m(k) ~ m(k)[(k, + 1)(k, 4+ 1)]7%, for large |k|= /k2+ k2 (22)
with a > 0 given in the concrete examples later.
To make sure that the velocity fields we generated are physically meaningful, we rescale
them so that the velocity lives in a range [m,m] (0 < m < m < 400). The linear rescaling
is done through the operation

m(x) < , (23)

where m”* := maxm(x) and m, := min m(x).
X X

In Figure 3 we show some typical samples of the velocity field generated from the afore-
mentioned process. The top panel of Figure 3 shows the surface plots of 4 different randomly
generated velocity fields using the model (20) with M = 4. The bottom panel presents the
surface plots of 4 random realizations of the velocity field given by the model (21) with
M = 2. Random noise at different levels will be added to the sampled velocity fields to
study the generalization of the learning scheme we have. The exact level of noise will be
given later in concrete examples.
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Figure 3: Random samples of the velocity field for training of the neural networks. Top
row: velocity fields generated from (21) with M = 4; bottom row: velocity fields generated
from (20) with M = 2.

L H K At t, j T
1 1 50 0.0005 0 20 05

Table 1: Values of parameters in the spatial and temporal discretization of the wave equation
and the time node of the recorded wave signal.

Finite difference scheme for the wave equation. We use the time-domain stagger-
grid finite difference scheme that adopts a second-order in both the time and the spatial
directions to solve the wave equation (16). Precisely, the discretization is performed with
elements over the Cartesian grids formed by (zx,z) = (kAz,lAz),k, 1l = 0,1,..., K with
Ax = L/K and Az = H/K. The receivers are equally placed at the bottom surface,
coinciding with the grid points, as documented in the right panel of Figure 1, namely, there
are K + 1 receivers for each velocity model. We then record the wave signal starting at
time ty and take another shot every jAt until the termination time T, here, j is a positive
integer and At is the uniform time step size for the forward wave solver. As an example for

illustration, we take
—(2—0.6)2 —(2—0.3)2

h(t, l‘) — ¢ 001  — g 001 (24)

to be the top source in (16) and present the recorded time series wave signals in Figure 4.
Table 1 summarizes the parameters we used to generate these wavefield signals.

Figure 4, from the left panel to the right panel, shows the time series wave signals at
the bottom surface generated from the velocity model satisfying (21) with M = 2, and the
velocity model satisfying (20) with M = 4, respectively; from the top panel to the bottom
panel are the wave signals without noise, with 10% multiplication Gaussian noise, and with
10% additive Gaussian noise, respectively.

Last, we note that to obtain a reliable learning dataset, one needs to guarantee the
stability of the time integrator when solving (16). Recall that the second order time-domain
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Figure 4: The left panel presents time series wave signals at the bottom surface generated from
a velocity model satisfying (21) with M = 4, while the right panel shows time series wave signals
at the bottom surface generated from a velocity model constructed by (20) with M = 2. From the
top to the bottom are time series wave signals without noise, with 10% multiplication Gaussian
noise and with 10% additive Gaussian noise, respectively.

stagger-grid finite difference forward wave solver is stable under the following CFL condition
Af < min{Az, Az} .
V2 max, {m(x)}
To guarantee the stability of the forward solver for all velocity samples, we force
min{Az, Az}
V2 max, {mi(x)}’

where 7 is used in the scaling (23), for the data generation of the offline training stage. In
this work, we set At* = 0.0005 as shown in Table 1 based on our setting.

(25)

At = At* <

5.3 Training and testing performance

We now present a systematic numerical exploration on the training and testing performance
of the offline training stage. Given that the training and application of the Gaussian mixture
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velocity model (21) with a small amount of Gaussians functions is extremely successful (due
to the smallness of the parameter space) according to our numerical experience, we will
focus on the training of the generalized Fourier velocity model (20).

Training dataset size. We first emphasize that the training results we show in this section
are obtained on a very small dataset in the following sense. The number of data points in the
artificial dataset {g;,m;}_, is small with N = 10°. Moreover, for each mj, we collect the
wavefield from N, = 3 illumination sources and N; = 51 detectors. Those source-detector
pairs are a subset of the source-detector pairs for the dataset we used in the reconstruction
step. Moreover, at each detector, we use only data at 51 time steps out of the 1000 time
steps in the numerical solutions. This small dataset is used so that we can handle the
computational cost of the training process with our limited computing resources. It is also
intentionally done to demonstrate that one can train reasonable approximate inverse with a
significantly smaller dataset if one is willing to sacrifice a little of the training accuracy.

Training-testing dataset split. We perform a standard training-validation cycle on the
neural network approximate inverse. Before the training process starts, we randomly split
the artificial dataset of N = 10° data points into a training dataset and a testing dataset.
The training dataset takes 80% of the original dataset, while the test dataset takes the rest
20% of the data points. The training dataset and the validation dataset have no intersection,
namely, no data points in the validation set are present in the training dataset.

5.3.1 Random Fourier velocity model: case of non-decaying coefficients

We start with the most challenging scenario where we train the neural network to approx-
imate the inverse operator for the velocity model (20) with randomly generated Fourier
coefficients without any decay requirement on the coefficients, that is, we set the decay rate
a = 0in (22). This is an extremely challenging case because the effective parameter space of
this class of velocity models grows exponentially with respect to the number of Fourier mod-
els we have in the model. Ideally, one would need an exponentially large training dataset in
order to have reasonable training results. However, due to the smooth property of the map
f : m — g, we demonstrate below that with a relatively small dataset, and a very limited
number of source detector pairs and time shots, our training result is fairly encouraging.

In Figure 5, we show three randomly selected velocity fields (m) from the testing dataset,
the corresponding neural network predictions (m = %’1(f (m))), and the error in the pre-
diction (m — m). The largest number of Fourier modes allowed in these learning processes
is 10, meaning that 0 < k,,k, < 9 in the velocity model (20). The training output is
a 10 x 10 matrix containing the content of m(k) in (20). The output space is therefore
100-dimensional. A naive visual inspection of the results in Figure 5 shows that the train-
ing process is quite successful as the testing errors seem to be pretty reasonable, especially
given that our training dataset is fairly small (0.8 x 10° data points to be precise). While
it is expected that when the number of Fourier modes allowed in the velocity model is very
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Figure 5: Three randomly selected velocity fields from the testing dataset: 5 x 5 coefficients
Fourier model, 8 x 8 coefficients Fourier model, 10 x 10 coefficients Fourier model. All cases
have decay rate &« = 0 (column 1), the corresponding predictions by the trained neural
network (column 2), the error of the prediction (column 3), and the error in the neural

network prediction (m(x)) in the Fourier domain (m(k) — m(k)) (column 4).

large, the validation error will be sufficiently large if we keep the training sample size, we
do observe that validation error is quite small in general for cases when less than 10 x 10
Fourier modes are pursued in the learning process. Increasing computational power would
certainly improve training quality.

Let us remark that our training results indeed show that we have better accuracy in
learning the low-frequency components of the inverse operator as we discussed in the previous
sections of the work. In the right column of Figure 5, we provide the Fourier coefficients
of the errors in the network prediction. In all velocity fields, we see clearly larger errors
in the higher-frequency components of the network velocity recovery. This is a universal
phenomenon that we observed over the testing dataset.

To dive a little more into the training quality and the optimization landscape after
applying our neural network preconditioner, we offer in Figure 6 the training-validation loss
curves for a typical learning experiment. We observe very similar curves for training and
validating with the velocity model (20) with different total numbers of Fourier modes. We

measure the training accuracy quantitatively with the size of the operator Z —?5_1 of. More
precisely, we evaluate the three main quantities for a data point (g, m) in the testing dataset:

(i) The error in the network prediction of Fourier modes of m:

Am(k) == m(k) — £ o f(m).
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Figure 6: Training and validation loss curves for a typical learning experiment. Very similar
curves are observed for each of the learning experiments we performed.

(ii) The landscape of the classical functional ¥(m) evaluated along a line in the direction
of a given Fourier mode of m, ¢y, passing through two different points m = f~!(g) and

Mnet = /f;?l(g):
Vo(h;k) = |lg — f(mo + h@k)”[QL?((o,T]xF)]Nsa mo = 0(m), O €{Z, fgl of}.

(iii) The landscape under our preconditioner, the new mismatch function ®(m) evaluated
as in (ii):

Do (h:k) = (£ (g) — £ o f(mo + how) T2y Mo = O(m), O €{Z, £'of}.

When a perfect learning is performed, we would have Am(k) = o, Uz(h; k) = Ws1 _(h; k),
6
and ®z(h;k) = Pp1 (b k) for any (g,m) in the training dataset, and Am(k) small,
0
Uz(h; k) = Ve o (h; k), and $z(h; k) = $;-1 ((h; k) for any (g, m) in the testing dataset.
0 0

In Figure 7, we show plots of Am(k) (left column), Wz(h; k) (red line) and Wz (k) (blue
0
line) (middle column), and ®z(h;k) (red line) and ®z-1 (k) (blue line) (right column), for
6

four randomly selected (g, m) pairs in the testing dataset. Shown are results for k = (2, 3)
and k = (1,1). Very similar behavior are observed along other coordinates (y.

The plots in Figure 7 provide a quantitative description of the accuracy of the trained
network. They clearly indicates that the trained fg_ ! is indeed a good approximation to f~'.
Moreover, a comparison of the second column and the third column gives the impression
that along with the coordinates we plotted, the new objective functional ® in (9) has a much
better landscape than the classical ¥ in (4). This is what we observed in other coordinates
that are not shown here as well. Therefore, the trained neural network ?0; I can work as
a nonlinear preconditioner to improve convexify of the optimization landscape. Moreover,
the plots provided a good indication that the trained network is fairly generalizable in the
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Figure 7: Plots of Am(k) (first column), Wp(h;k) (second column), and ®p(h;k) (third
column) for four different (g, m) pairs in the testing dataset. The velocity model for rows
1-2 has M = 4 and that for the plots in rows 3-4 has M = 7.

following sense. The Fourier coeflicients (including ms3) and m 1y shown in the plots) in
the training dataset are all randomly drawn in the interval [—0.5,0.5]. Here in the plots,
we consider the coefficient values in the range [—1,1]. The agreement of the red and blue
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lines outside of the training value range [—0.5,0.5], that is, in the range [—1, —0.5) U (0.5, 1],
suggests that the trained neural network can be used in a region of coefficient values that is
far larger than its training domain.

5.3.2 Random Fourier velocity model: case of decaying coefficients

While training the neural network for an approximate inverse %‘1 on a large space of velocity
field is extremely useful for generalization purpose, it also poses great challenges when the
number of Fourier modes included in the model gets very large. Not only will we need
an exponentially larger training dataset, but also the training process takes exponentially
growing computational power. This is what we observed in our numerical experiments.
In this section, we show some training-validation results for the velocity model (20) with
decaying Fourier coefficients following the pattern we imposed in (22). We present results
from two different cases: the slow decay case with o = 1/2 and the fast decay case with
a=1.

In Figure 8, we show typical validation results on five randomly selected velocity profiles
in the testing dataset. The top two rows are the results for the training of velocity model
with a = 0, the third row is the case of @ = 1/2 while the bottom two rows are for the
case of @« = 1. In both cases, the training is successful as can be seen from the relatively
small errors in the predictions. Plots of the functionals W7 and W3-1_, show similar patterns

6

as those in Figure 7. We omit those to space. Moreover, prediction errors in the Fourier
domain display very similar behavior as observed in the previous subsection: the error is
higher for high-frequency components and lower for low-frequency components.

To study the generalization capability of the learned network, we validate the learning
with on dataset generated from a different velocity model, that is consider the case where
training and testing data samples are from different classes. In Figure 9, we train a neural
network to recover the first 10 x 10 Fourier coefficient of the velocity field and validate the
trained neural network on a dataset generated from velocity models that contains 20 x 20
random Fourier modes. The decay rate in this particular case is & = 1 but similar results are
observed for & = 1/2 as well. The validation results demonstrate that the trained network
is reasonably generalizable in the setting that we considered.

5.3.3 Mesh-based velocity model

In the last training-validation numerical experiment, we demonstrate that the phenomena
observed in the previous subsections are not particularly due to the Fourier parameterization
of the velocity field in (20) that we used. Indeed, the results are more related to our method
of training. Here we perform the same type of training on a neural network whose output is
the velocity field represented on a 51 x 51 uniform mesh on the domain 2. The output space
is therefore much larger compared to the training in the case of the random Fourier velocity
model. However, the training result, after projecting into the Fourier space, has almost
identical properties as what we observed in the random Fourier model. In Figure 10, we
show the out-of-domain validation result for the training. The velocity fields that generated
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Figure 8: Validation results on four typical velocity fields in the testing dataset. Row 1
is the results for 8 Fourier velocity model with a = 0, Row 2 is the results for 10 Fourier
velocity model with o = 0, row 3 is the results for 10 Fourier velocity model with o = 1/2,
row 4 is the results for 10 Fourier velocity model with o = 1 while row 5 is are results for
20 Fourier velocity model with @ = 1. Show from left to right are: the true velocity field,
neural network prediction, the error of the prediction, and the error of the prediction in the
Fourier domain.

the training dataset have 10 x 10 Fourier modes while the velocity fields in the validation
dataset have 20 x 20 Fourier modes (but represented on a 51 x 51 uniform mesh), both
generated with a = 1. The relatively small validation errors again indicate that the training
is fairly successful and reasonably generalizable. The computational cost, in this case, is
much larger than those in the previous subsections since the neural network has a larger size
due to the increased size of the network output.
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Figure 9: Instance of validation of learning results on a different class of velocity models
for the case of & = 1. Shown from left to right are: true velocity field, the neural network
prediction, the error in the prediction, and the error in the Fourier domain.

06
T 08

Figure 10: Out-of-domain validation of a training result with mesh-based velocity represen-
tation. Shown from left to right are: the true velocity field, the network prediction, and the
error in the prediction.

5.4 Learning-assisted FWI reconstruction

In this section, we present inversion results for some simulated datasets to verify the efficiency
and stability of the proposed coupling method. All simulations on the inversion stage are
conducted on a quadcore Intel Core i7 with 16 GB RAM.

5.4.1 Convexity of the new objective function

Lemma 3.2 indicates that if we have relatively accurate training, the new objective function
for our coupled reconstruction scheme behaves similarly to the functional ||m — mOH%Q(Q),
mo being the true solution. Figure 7 provided some evidence of this in the training of the
random Fourier model. In the one coefficient case, plots in Figure 7 clearly show that the new
objective function is almost convex. We now present some numerical evidence in the case of
the Gaussian mixture velocity model. In particular, we are interested in seeking convexity
with respect to the location of a Gaussian perturbation. More precisely, the velocity field
m(x) is set to be a single Gaussian model with M =1 in (21), that is,

_ 2
m(x) = mo + cre 20X 0 0exe) -yl (gl oy oy o (UO1 (?2) .
1

where the background velocity mg, the amplitude ¢;, and the variance oy are fixed to be
(mo, c1,01) = (10,5,0.1). We then present the objective functions W(m) and ®(m) (v = 0)
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with respect to. the location (z}, 2$) in Figure 11. The setting of the offline training stage

for generating fA is the same as those in Section 5.2.

Figure 11 presents the landscapes of objective functions W(m) and ®(m) (v = 0) with
fixed (mg,c1,01). In particular, we set (x},25) = (0.5,—0.5) as the ground true velocity
model which generates the wave signal g. From Figure 11, we observe that, (i) the classical
objective function ¥(m) is not a convex function, and its landscape shows that the opti-
mization can be easily trapped into a local minimum if the initial model is not carefully
chosen; (ii) the new objective function ®(m) (v = 0) for the proposed coupling method be-
comes more convex which is consistent with Lemma 3.2. In addition, we note that when the
initial model is close enough to the exact model (located at the convex region of the misfit
function), the global minimum is guaranteed and one can also expect a fast convergence. In
fact, a good initial model under the setting of the proposed coupling scheme can be easily
obtained by adding a small perturbation to fA (g) as indicated by Neumann series (14).
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Figure 11: The landscape of the classical (left) and new (right) objective functions for the location
of a Gaussian perturbation of the velocity field.

5.4.2 Inversion for the velocity model (21) with M = 2

The first inversion example was performed to recover the following mixed Gaussian velocity
model (21) with M = 2 and my = 10,

2 2
m(x) = 10+ Y e HST ) ok (b ) zkz(“k °>. (26)

0 o2
k=1 k

We use the same offline training settmgs as those for the mixed Gaussian wave signal gener-
ation in Section 5.2 to construct fA for the online inversion stage. However, to generate ver-

satile wave signals at the bottom surface to recover the features {cy, ca, 01, 09, 28, 23, 2, 22},

we enforce three different top sources h;(z),i = 1,2,3 with
_ (2—0.8)2 _ (2—0.2)2 _ (2—0.4)2 _ (—0.7)2
hy (3;) L O T h2(q;) — ¢ 00l — e o001
and , ,
_ (z—0.6) _ (z-0.3)
hg(I) — ¢ 001 — e 001
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no noise 10% multiplicative noise 10% additive noise

L? L> CPU L? L CPU L? L> CPU
J error error  time(s) error error  time(s) error error  time(s)
1 1.48e-01 1.12e-00 0 2.54e-01  1.98e-00 0 2.60e-01  1.60e-00 0
20 1.10e-04 1.11e-03 6.83 1.71e-03  1.39e-02 6.71 5.79e-03  4.27e-02 6.89
40 3.21e-06 2.60e-05  13.80  4.84e-05 5.48e-04  13.60  5.88e-03 4.28e-02  13.38
60 3.09e-06 2.41e-05  20.34  5.78e-06 4.38¢-05  20.97  5.89e-03 4.28e-02  20.51
80 2.86e-06 2.66e-05  27.74  4.63e-06 4.36e-05  28.52  5.89e-03 4.28e-02  27.56

Table 2: L?/L* reconstruction errors, and the CPU time for the inversion stage with different
J-term truncated Neumann series approximation, as well as different noise level/form for the
reconstruction of the mixed Gaussian (26).

rather than one single external top source in Section 5.2.

For the inversion stage, we implement a J-term truncated Neumann series approxima-
tion (19) to obtain the reconstructed velocity image. Note that J = 1 corresponds to the
reconstructed velocity image from the offline training stage. We also add the Gaussian noise
with zeros mean and 10% standard derivation to test the stability of the proposed coupling
scheme. Figure 12 presents the reconstructed images. Precisely, the first three columns show
the surface plots of the exact velocity field, the neural network prediction velocity field from
the offline training stage, and the reconstructed velocity field with J = 20 from the online
inversion stage, while the last column displays the difference between the exact velocity field
(first column) and the reconstructed velocity field (third column). From the top row to
the bottom row of Figure 12, we present the results from the noise-free wave signal, the
wave signal with 10% multiplication Gaussian noise, and the wave signal with 10% additive
Gaussian noise, respectively. We see that the online inversion stage improves the accuracy
of the reconstructions for all cases. Table 2 lists the L?/L> errors on the velocity field for
the entire computational domain, as well as the CPU time for various implementations with
different values of J. There, we note that for the wave signals without noise and with 10%
multiplication Gaussian noise, both L? and L® reconstruction errors dropped by a factor
~ 10* within 30 seconds; for the wave signal with 10% additive Gaussian noise, it seems
that there is no improvement to add more Neumann terms in (19) once the L? error reduces
to 5.89 x 1072 and L™ error reduces to 4.28 x 1072; for this type of the situation, we can
use the reconstruction from adding Neumann terms as an initial guess for a gradient-based
optimization scheme to further improve the resolution of the reconstruction, see Section 4.3.

5.4.3 Inversion for the velocity model (20) with M =4

For the second inversion example, we work on reconstructing the features of the following
velocity model

m(x) = Y _ m(k)cos(k,mz)cos(k.mz), k= (kq, k) (27)
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Figure 12: The reconstructed velocity images for the mixed Gaussian (26). From the left to the
right are the ground true velocity field, the reconstructed velocity ﬁeld Wlth J = 1, the recon-
structed velocity field with J = 20, and the difference between the ground true velocity field and
the reconstructed velocity field with J = 20 (first column - third column ). From the top to the
bottom are the results from the noise-free wave signal, the wave signal with 10% multiplication
Gaussian noise, and the wave signal with 10% additive Gaussian noise.
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with @ = 0 in (22), namely, we don’t consider any decay on the coefficients for this example.
In addition, we use the same training settings as those in Section 5.2 for the Fourier wave
signal generation. But for the external top sources h;(z), we choose them to be the same as

the sources in Section 5.4.2 to generate resourceful training samples for the construction of
fA .

For the online inversion stage, we also implement a J-term truncated Neumann series
approximation (19) to recover the velocity model. To test the stability of the proposed
coupled scheme, as in Section 5.4.2, we add the Gaussian noise with zeros mean and 10%
standard derivation to the wave signals. Figure 13 presents the surface plots of the recon-
structed velocity images with J = 20, as well as the surface plots for the difference between
the reconstructed image and the ground true velocity model. The layout of Figure 13 is the
same as the one in Figure 12. We observe that the training prediction is stable with respect
to the noise, see the second column of Figure 13 and L?/L> errors when J = 1 in Table
3. In addition, we note that the inversion stage can significantly improve the accuracy of
the reconstruction. For the data without noise, the errors dropped by a factor ~ 107 within
30 seconds; even for the data with 10% Gaussian noise, the errors also dropped by a factor
~ 103 within 30 seconds.
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Figure 13: The reconstructed velocity images for the general Fourier type (20) with M = 4. From
the top to the bottom are for the velocity reconstruction without noise, Wlth 10% multiplication
Gaussian noise, with 10% additive Gaussian noise, respectively. While from the left to the right
are the ground true velocity field, the reconstructed velocity field from the neural network in the
offline training stage, and the reconstructed velocity image with J = 20, respectively.
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5.4.4 Inversion for the velocity model (20) with M =7

For the third example, we consider a velocity model which contains 8 Fourier modes in each

direction, namely,
7

m(z,z) = Z m(k) cos(k,mx) cos(k,mz). (28)

The spatial and temporal discretization, as well as the rules for data generation, the choice
of the top source h;(z) are the same as the example in Section 5.4.3.

For the inversion stage, we again implement a J-term truncated Neumann series ap-
proximation (19) to obtain the reconstructed velocity image. Figure 14 presents the surface
plots of the reconstructed velocity images with various values of J in the online inversion
stage. Precisely, each row of Figure 14 corresponds to one velocity model; from the left to
the right are the ground true velocity field, the reconstructed velocity image with J = 1,
the reconstructed velocity image with J = 20, and the reconstructed velocity image with
J = 50, respectively. We note that the online inversion stage improves the accuracy of the
reconstruction for all cases which verifies the effectiveness of the proposed coupling scheme.
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no noise 10% multiplicative noise 10% additive noise

L2 L CPU L2 L CPU L2 L CPU
J error error time(s) error error time(s) error error time(s)
1 1.78e-01 8.46e-01 0 1.79e-00  7.25e-00 0 2.64e-01  1.16e-00 0
20 8.52e-04 4.90e-03  6.08 1.23e-02 6.97e-02  5.81 7.13e-03  3.70e-02  5.87
40 1.49e-05 8.41e-05 11.15  4.93e-03 2.76e-02  11.24  1.69e-03 9.26e-03  11.73
60 2.60e-07 1.53e-06  17.97  3.06e-03 1.71e-02  17.42  6.81e-04 3.77¢-03  17.67
80 2.16e-08 1.34e-07  22.74  2.19e-03 1.22e-02 23.25  2.05e-04 1.12e-03  23.13

Table 3: L?/L> reconstruction errors, and the CPU time for the inversion stage with different
J-term truncated Neumann series approximation, as well as different noise level/form for the

reconstruction of the Fourier model (27).
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Figure 14: The reconstructed velocity images for the Fourier model (28). Each row corresponds
to the reconstruction of one velocity field. From the left to the right are the ground true velocity
field, the reconstructed velocity field with J = 1, the reconstructed velocity field with J = 20, and
the reconstructed velocity field with J = 50, respectively.

5.4.5 Inversion for the velocity model outside of the training domain

In the last example, we test the proposed coupling scheme on a velocity model which is
outside of the training domain. Precisely, the design of the offline training stage is the same
as the one in Section 5.4.3, namely, we focus on learning the first 5 Fourier modes along
each direction during the training. However, our goal in this example is to reconstruct the
following velocity model,

8.4, (z,2)€[0.22,0.74] x [—0.52, —0.5],

1 -1 2
7.6, otherwise, , (2,2) €10,1] x [-1,0],  (29)

m(z,z) =
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which is apparently outside of the training domain containing many high frequency com-
ponents. To reconstruct (29), we first implement the J-term truncated Neumann series
approximation (14) with J = 20 to obtain the low frequency part of the velocity model (29),
then use it as the initial guess of a quasi-Newton algorithm based on the BFGS gradient
update rule to minimize (4). In addition, to recover the high-frequency components of the
velocity field, except the 51 receivers at the bottom surface in the training stage, we place
another 51 receivers at the top surface when minimizing (4), and enforce 7 different top

sources h;(x),i =1,2--- 7 with hy, he, h3 being the same as the top sources in the training
stage, and
_ (2=0.7)2 _ (2—0.2)2 _ (2—0.3)2 _ (2—0.9)2
h4($) =e¢ 00l  —e 00T h5($) — ¢ 001 — ¢ 001
_ (2—0.2)2 _ (2—0.5)2 _ (2—0.1)2 _ (2—0.6)2
hﬁ(g;) =e 001 —¢e 00T h7(q;) — e T 001 —e¢e o001

Figure 15 presents the surface plots of the reconstructed velocity images with both noise-
free data and the data with Gaussian noises. Precisely, the top row shows the reconstructed
velocity from noise-free data, the middle row displays the reconstructed velocity from the
data with 10% multiplication Gaussian noise, and the bottom row presents the reconstructed
velocity from the data with 10% additive Gaussian noise; while from the left to the right
columns are the ground true velocity field, the reconstructed velocity image with J = 1,
the reconstructed velocity image with J = 20 (initial guess), and the reconstructed velocity
image by minimizing (4), respectively. We note that adding several terms to the Neumann
series approximation can lead to a relatively good reconstruction for the low-frequency com-
ponents of the velocity field (29) for all cases (noise-free data and the data with Gaussian
noise) by comparing the reconstruction results in column 2 and column 3. Then solving
an extra classical minimization problem as documented in Section 3.4 helps grab the high-
frequency components of the velocity field as shown in the last column.

6 Concluding remarks

We presented in this work an offline-online computational strategy for coupling deep learning
methods with classical model-based iterative reconstruction schemes for the FWI problem.
The main advantage of the coupling lies in two aspects. First, the coupling requires much
less rigorous training for the learning part than a purely learning based approach. This
makes the learning of the approximate inverse operator much more realistic with limited
computational resources. Second, the offline learning can still significantly reduce the online
reconstruction with new datasets when used as a nonlinear preconditioner. The numerical
simulations we performed demonstrated the feasibility of such a coupled approach.

There are many important issues in the current direction that need to be more rigorously
investigated. One particular aspect is to develop a mathematical characterization of the
training error in the learning process and study its impact on the reconstruction step. A
second aspect is to improve the learning algorithm to learn more features in the inverse
operator. As we reasoned in the paper, it is extremely challenging to learn all the details in
the inverse operator. However, we believe that one could do much better than the numerical
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Figure 15: The reconstructed velocity images for the velocity model (29). From the top to the
bottom are the reconstruction with noise-free signal, the signal with 10% multlphcatlon Gaussian
noise, and the signal with 10% additive Gaussian noise, respectively. From the left to the right
are the ground true velocity field, the reconstructed velocity field with J = 1, the reconstructed
velocity field with J = 20, and the reconstructed velocity field by minimizing (4), respectively.
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experiments in this paper where we pursue only a very small amount of features in the
learning process. Searching for better feature models for the velocity field as well as the
time traces of the wavefield is also an important task with the potential to significantly
improve the performance of the learning procedure.

Acknowledgments

This work is partially supported by the National Science Foundation through grants DMS-
1913309 and DMS-1937254.

A Adjoint state gradient calculation

We summarize here the calculation of the Fréchet derive of the objective function ®(m)
defined in (9) with respect to the velocity field m.

Following Proposition 3.1, the Fréchet differentiability of the map f(m) with respect to
m is well-established under reasonable assumptions on the smoothness of the domain, the
regularity of the incident wave source h and the regularity of the velocity field m. With
the assumption we have on the differentiability of the trained network fg_ . the Fréchet
differentiability of ®(m) in (9) is ensured.
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To simplify the notation, we denote by

r(m) = f='(f(m)) - £;(¢") (30)

the data residual and I' C €2 the subset of the boundary of the domain where acoustic data
are measured. To be concrete, we take the regularization functional to be the H! semi-norm
of the unknown m. We also assume that the velocity is known on the boundary of the
domain so that the perturbation dm|sq = 0. This assumption simplified the calculations
below but is by no means essential.

Taking the derivative of ®(m) with respect to m in the direction dm, we have

® (m)fom] = [

Q

r(m) (J%_l)l(f(m)) [f’(m)[ém]] dx + W/QVm -Vomdx. (31)

Let (]%_1),* : L*(Q) — L2((0,T] x T') be the adjoint of the operator (J%_l)/(f(m)). Using the
assumption that dm|gqg = 0, we can then write the above result as

® (m)lom] = | ' G s mfem] asiode — |

A <Am) omdx . (32)

This can be written into the following form with the adjoint operator of f’(m), f™ :

L3((0,T] x T) — L*(Q):
' (m)[dm] = /Qf/*[(fg_l)/*[r(m)]}dmdx—’y/Q (Am)émdx. (33)

The adjoint operator f* can be found in the standard way. We document the calculation
for the specific two-dimensional setup we have as follows.

For the wave equation (16), we can formally differentiate u with respect to m to have
that v’ solves

1 0%/ , omd*u |
ey A T gy (0T 0
u’(O,x,z):—Z(O,x,z) = 0, (z,2) € (0, L) x (—H,0)
W (t,0,2) = W(t,L,z), (t,2) € (0,T] x (—H,0) (34)
%—Z(t,x,—H) = 0, (t.z) € (0,T] x (0, L)
g—u(t,x,O) = 0, (t,x) € (0,T] x (0, L)
VA
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Let us define the adjoint problem

1 0%w :
Waﬁ_% —Aw = 0, in (0,7] x Q
w(T,x,z) = a—I;(T,:c,z) = 0, (x,2) € (0,L) x (—H,0)
(¢,0,2) =w(t,L,z) = 0, (t,z) € (0,T] x (—H,0)
ow ow (35)
a—(t, 0,2) + %(t,L,z) = 0, (t,z) € (0,T] x (—H,0)
g—f(t,x, —H) = 0, (t,x) € (0,7] x (0, L)
%(t,x,O) = (f;;l)/*[r(m)], (t,x) € (0,7] x (0, L)

We can then multiply the equation for v’ by w and the equation for w by u’ and use
integration by part to show that

' (m)[om)] :—/Q—( i %—?%dt)émdx—y/g(Am)émdx. (36)

When the data in the inversion are collected from N different incoming sources {hs}*,
the forward map f(m) and the data g defined in (3). Let u, (1 < s < N,) be solution
to (16) with source hg, and ws be the solution to the adjoint equation (35) with the s-th

component of (f;ﬁ 1)/* [r(m)], here
r(m) = 5! (f(m)) — £7'(g’), (37)

then derivative of ®(m) can be computed as

o' (m)[om] = /m3 Z/ 85‘285);%15 Smdx — /Q<Am>5mdx. (38)

Algorithm 1 Gradient Calculation with Adjoint State

1: for s=1to N, do

2 Solve (16) with hg for u

3 Evaluate the f(m;hs) component of f(m)

4: end for R
5: Evaluate r(m) according to (37) with the network £ !
6
7
8
9

. Evaluate 60;1)'* [r(m)] with the neural network
: for s =1 to N, do
Solve (35) with the s-th component of @g_ 1)/* [r(m)] as the source term for w;
: end for
10: Evaluate ®'(m) according to (38)
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The computational procedure is summarized in Algorithm 1. The main difference be-
tween the calculation here and the adjoint calculation for a standard FWI gradient calcula-
tion is that we need to use the network fg_ ! to backpropagate the data into the velocity field
in Line 5 of Algorithm 1 to compute the residual, and then use the adjoint of the network
operator (transpose of the gradient in the discrete case), Gg 1)/*, to map the residual r(m)
to the source of the adjoint wave equation in Line 6.

B Inversion with truncated Neumann series

The truncated Neumann series reconstruction (14) can be implemented with only the forward
wave simulation and the learned neural network (without the need for the gradient of the
learned operator). Let us define

J-1
mo :fg_l(gé), RJ :ZKJ(TI’L()),
j=0
with K defined in (14). We can then verify that
J-1
RJH(mO) = ([+KZ Kj>(m0) = m0+KRJ(m0) = m0+RJ(m0) —fb;l(f(RJ(mo))) . (39)
7=0

This leads to the computational procedure summarized in Algorithm 2. The main differ-

Algorithm 2 Reconstruction with J-Term Truncated Neumann Series

1: Evaluate mg := /f%_ '(g®) with the learned neural network
2: Set m < my;
forj=1toj=J—-1do
4: for s=1to N, do
Solve (16) with (m, hy) for us
Evaluate the f(m;hs) component of f(m)
end for R
Update m < mg +m — féfl(f(m))
end for

ence between the calculation here and the adjoint calculation for a standard FWI gradient
calculation is that we only need to evaluate the network fg_ ! to project the data back into

the velocity field to compute the residual mg —/f%_l(f (m)), and update the current result m.

C Network structure and training

For the sake of reproducibility of our research, we provide here the structures of the encoder,
decoder and predictor networks we used in the encoder-decoder-predictor training framework
described in Section 4.2; see Figure 16.
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Figure 16: Network structures of the encoder, decoder and predictor networks.

The different layers of the networks are all standard as indicated by their names. In our
implementation, the input of the neural network is the a N; x Ng x N, tensor representing
the solution of (16) for N, sources, at Ny detector points {x,4}}%,, and on N, time instances
{tj}év:tlz u(ti, xj;hs),i=1,--- N, j=1,--- ,Ng,and s = 1,--- , N;. The network outputs
the recovered input (from the decoder and the reconstructed velocity field from the predictor.
When the output velocity field is represented with the Fourier basis, the output of the
predictor is an M x M matrix whose ij-element is m(k;, k;) (0 < k;, k; < M).

Besides the sizes of the network input (that is, the input of the encoder) and the network
output (that is, the output of the predictor), the key parameters of the overall network
are: (i) the size of the latent variables, and (ii) the number of ResNet blocks in each of the
sub-networks (n;, ne and n3). In our implementation, we tested the network structure with
different numbers of ResNet blocks. The training results are not sensitive to the selection of
such numbers (which controls the size of the overall network). In the numerical simulations
we presented in the paper, we use n; = 10, ny = 5 and ng = 10. The computational code we
used for the numerical simulations in this paper, implemented using Python, are deposited
at https://github.com/wendingl/FWI_Deep_Learning.

The network training is achieved with the Adam optimizer [33]. The learning rate is
initially set to be 5% 107%, and decays by a factor of 1.2 for every 5 epoch. The batch size
is chosen to be 128. We stop the training after 50 epoch.
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