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Abstract

This work characterizes, analytically and numerically, two major effects of the
quadratic Wasserstein (W5) distance as the measure of data discrepancy in computa-
tional solutions of inverse problems. First, we show, in the infinite-dimensional setup,
that the W5 distance has a smoothing effect on the inversion process, making it robust
against high-frequency noise in the data but leading to a reduced resolution for the
reconstructed objects at a given noise level. Second, we demonstrate that, for some
finite-dimensional problems, the W5 distance leads to optimization problems that have
better convexity than the classical L? and H~! distances, making it a more preferred
distance to use when solving such inverse matching problems.
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1 Introduction

This paper is concerned with inverse problems where we intend to match certain given data
to data predicted by a (discrete or continuous) mathematical model, often called the forward
model. To set up the problem, we denote by a function m(x) : R — R (d > 1) the input
of the mathematical model that we are interested in reconstructing from a given datum g.
We denote by f the forward operator that maps the unknown quantity m to the datum g,
that is

f(m) =g, (1)
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where the operator f is assumed to be nonlinear in general. We denote by A := f'(my)
the linearization of the operator f at the background mgy. With a bit of abuse of notation,
we write Am = g to denote a linear inverse problem of the form (1) where f(m) := Am.
The space of functions where we take our unknown object m, denoted by M, and datum g,
denoted by G, as well as the exact form of the forward operator f : M +— G, will be given
later when we study specific problems.

Inverse problems for (1) are mostly solved computationally due to the lack of analytic
inversion formulas. Numerical methods often reformulate the problem as a data matching
problem where one takes the solution as the function m* that minimizes the data discrepancy,
measured in a metric ©, between the model prediction f(m) and the measured datum g.
That is,

m* = arg I/r\l/[in ®(m), with, &(m):= %QQ(f(m),g). (2)
me

The most popular metric used in the past to measure the prediction-data discrepancy is

the L? metric D(f(m),g) := ||f(m) — g||z2re) due to its mathematical and computational

simplicity. Moreover, it is often the case that a regularization term is added to the mismatch

functional ®(m) to impose extra prior knowledge on the unknown m (besides of the fact

that it is an element of M) to be reconstructed.

In recent years, the quadratic Wasserstein metric [1, 30, 33] is proposed as an alternative
for the L? metric in solving such inverse data matching problems [6, 7, 13, 18, 20, 19, 25, 20,
, 35]. Numerical experiments suggest that the quadratic Wasserstein metric has attractive
properties for some inverse data matching problems that the classical L? metric does not
have [14, 36]. The objective of this work is trying to understand mathematically these
numerical observations reported in the literature. More precisely, we attempt to characterize
the numerical inversion of (1) based on the quadratic Wasserstein metric and compare that
with the inversion based on the classical L? metric.

In the rest of the paper, we first briefly review some background materials on the
quadratic Wasserstein metric and its connection to inverse data match problems in Sec-
tion 2. We then study in Section 3 the Fourier domain behavior of the solutions to (1)
in the asymptotic regime of the Wasserstein metric: the regime where the model predic-
tion f and the datum g are sufficiently close. We show that in the asymptotic regime, the
Wasserstein inverse solution tends to be smoother than the L? based inverse solution. We
then show in Section 4 that this smoothing effect of the Wasserstein metric also exists in
the non-asymptotic regime, but in a less explicit way. In Section 5, we demonstrate, in
perhaps overly simplified settings, some advantages of the Wasserstein metric over the L2
metric in solving some important inverse matching problems: inverse transportation, back-
projection from (possibly partial) data, and deconvolution of highly concentrated sources.
Numerical simulations are shown in Section 6 to demonstrate the main findings of our study.
Concluding remarks are offered in Section 7.



2 Background and problem setup

Let f and g be two probability densities on R¢ that have the same total mass. The square
of the quadratic Wasserstein distance between f and g denoted as WZ(f, g), is defined as

Wi(f.o) = ot [ Ix=TGORxyix. Q

where T is the set of measure-preserving maps from f to g. The map T that achieves
the infimum is called the optimal transport map between f and g. In the context of (1),
the probability density f depends on the unknown function m. Therefore, WZ(f, g) can be
viewed as a mismatch functional of m for solving the inverse problem.

Since the quadratic Wasserstein distance is only defined between probability measures of
the same total mass, one has to normalize f and g and turn them into probability densities
when applying them to solve inverse matching problems where f and g cannot be interpreted
as nonnegative probability density functions. This introduces new issues that need to be
addressed [15]; see more discussions at the end of Section (7). The analysis in the rest of
the paper assumes that f and g are both nonnegative and have the same total mass.

It is well-known by now that the quadratic Wasserstein distance between f and g is
connected to a weighted H ™! distance between them; see [33, Section 7.6] and [21, 28]. For
any s € R, let H*(R?) be the space of functions

HY(RY) = {m(x) = 5 gay = /Rd(£>28|m(5)|2d£ < 400}

where m(€) denotes the Fourier transform of m(x) and (§) := /1 + [£|?>. When s > 0,
H*(R?) is the usual Hilbert space of functions with s square integrable derivatives, and
HO(RY) = L2(RY). The space H*(RY) with s > 0 is understood as the dual of H*(R%). We
also introduce the space H*(R%), s > 0, with the (semi-) norm || - [l 7(ray defined through
the relation

Il 2

The space H*(R%) is defined as the dual of #*(R?) via the norm
[[ml3;-s := sup{|(w, m)] : lwllz. <1} (4)

It was shown [33, Section 7.6] that asymptotically W5 is equivalent to 7-'[(_dh), where the
subscript (dp) indicates that the space is defined with respect to the reference probability
measure dp = f(x)dx. To be precise, if i is the probability measure and dr is an infinitesimal
perturbation that has zero total mass, then

Wa(p, p+ dr) = HdWH%(‘dL) + o(dm). (5)

pe@ey = M7z + [Im]

This fact allows one to show that, for two positive probability measures 4 and v with densities
f and g that are sufficiently regular, we have the following non-asymptotic equivalence
between Wy and H(_db):

cullt = vl < Wl v) < ealli = vl | (6
W)

o
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for some constants ¢; > 0 and ¢; > 0. The second inequality is generic with ¢; = 2 [28]
Theorem 1] while the first inequality, proved in [21, Proposition 2.8] and [28, Theorem 5]
independently, requires further that f and g be bounded from above.

In the rest of this paper, we study numerical solutions to the inverse data matching
problem for (1) under three different mismatch functionals:

1

I£m) ~ gl = 5 [ (€1Fm(e) - )P, 7

O ® [(€)°(f(m)(€) —3(€))]| dE, (8)

where w(x) = 1/g(x), ® denotes the convolution operation, and

~ ‘2

1 1
B ) = 1) = alF, =5 |

(dp)

WE(F(m),0) = 5 dnt [ e~ TP fm(x))ex ©
€T Jprd

Our main goal is to analyze the differences between the Fourier contents of the inverse
matching results, a main motivation for us to choose the Fourier domain definition of the
H norms. These norms allow us to systematically study: (i) the differences between the L?
(i.e. the special case of s = 0 of ®y:(m)) and the H?®, with a positive or negative s, inversion
results; (ii) the differences between H* and ’Hf 4 Dversion results caused by the weight du;
and (iii) the similarities and differences between H{,  and W, inversion results. This is our
roadmap toward better understandings of the differences between L2-based and W,-based
inverse data matching.

Remark 2.1. Note that since the H® norm is only a shift away from the corresponding
H® norm in the Fourier representation, by replacing (&) with |€|, we do not introduce extra
mismatch functionals for those (semi-) norms. We will, however, discuss H® inversions
when we study the corresponding H?® inversions.

Remark 2.2. In the definition of the Hfdu) objective function, we take the weight function

w(x) =1/g(x) such that || f — ¢l is consistent with the linearization of Wi(f,g) [75].

2
=1
Hap)

We refer interested readers to [33, 21, 28] for technical discussions on the results in (5)
and (6) (under more general settings than what we present here) that connect W; with ’H(’dh).
For our purpose, these results say that: (i) in the asymptotic regime when two signals f
and g, both being probability density functions, are sufficiently close to each other, their
W, distance can be well approximated by their %@L) distance; and (ii) if Wa(f, g) = 0, then
\f — g”’ﬂi) = 0 and vice versa, that is, the exact matching solutions to the model (1), if

exists, are global minimizers to both ®y,(m) and <I>H(7d1>(m). However, let us emphasize
L

that the non-asymptotic equivalence in (6) does NOT imply that the functional Py, (m) and
(I)H(dl : (m) (if we define one) have exactly the same optimization landscape. In fact, numerical
L

evidences show that the two functionals have different optimization landscapes that are both
quite different from that of the L? mismatch functional ®@2(m) := ®»o(m); see for instance
Section (5) for analytical and numerical evidences.
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3 Frequency responses in asymptotic regime

We first study the Fourier-domain behavior of the solutions to (1) obtained by minimizing
the functionals we introduced in the previous section. At the solution, f(m) and g are
sufficiently close to each other. Therefore their W5 distance can be replaced with their 7—[(’[110

distance according to (5). In the leading order, the W5 solution is simply the 7.{@2) solution
in this regime.

3.1 ‘H’-based inverse matching for linear problems

Let us start with a linear inverse matching problem given by the model:
Am = gs, (10)

where gs denotes the datum g in (1) polluted by an additive noise introduced in the measuring
process. The subscript § is used to denote the size (in appropriate norms to be specified
soon) of the noise, that is, the size of gs — g. Besides, we assume that gs is still in the range
of the operator A. When the model is viewed as the linearization of the nonlinear model (1),
m should be regarded as the perturbation of the background mgy. The model perturbation
is also often denoted as m. We assume that the linear operator A is diagonal in the Fourier
domain, that is, it has the symbol,

A(€) ~ (&)™, (11)

for some a € R. This assumption is to make some of the calculations more concise but is
not essential as we will comment on later; see Remark 3.3. When the exponent o > 0, the
operator A is “smoothing”, in the sense that it maps a given m to an output with better
regularity than m itself. The inverse matching problem of solving for m in (10), on the other
hand, is ill-conditioned (so would be the corresponding nonlinear inverse problem f(m) = g
if A is regarded as the linearization of f). The size of «, to some extent, can describe the
degree of ill-conditionedness of the inverse matching problem.

We assume a priori that m € HP(RY) for some 3 > 0. Therefore, A could be viewed as
an operator A : H” — HP**. We now look at the inversion of the problem under the H*
(s < a+ ) framework.

We seck the solution of the inverse problem as the minimizer of the * functional ®4(m),
defined as in (7) with f(m) = Am and g replaced with g;. We verify that the Fréchet
derivative of ®s : HP — Rso at m in the direction dm is given by

B (m)lom] = [

R4

~

@ {(*[Aemne - 5] | e

where we used A* to denote the L? adjoint of the operator A. The minimizer of ®ys is
located at the place where its Fréchet derivative vanishes. Therefore the minimizer solves
the following (modified) normal equation at frequency &:

A(e) {(©> A} = A"(€) {(&)*5(€)} (12)
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The solution at frequency & is therefore

@) = (T©(©>D) T©(e>5e).

We can then perform an inverse Fourier transform to find the solution in the physical space.
The result is

—1
_ (A*PA) A*Pgs,  Pi= (I — A)*2 (13)

where the operator (Z — A)*/? is defined through the relation
(T = A)m = F((&))

F ! being the inverse Fourier transform, A being the usual Laplacian operator, and Z being
the identity operator.

Key observations. Let us first remark that the calculations above can be carried out in
the same way if the H*® norm is replaced with the H*® norm. The only changes are that (&)
should be replaced with |£| and the operator Z — A in P has to be replaced with —A.

When s = 0, assuming that o + 3 > 0, the above solution reduces to the classical L?
least-squares solution m = (A*A)~'A*gs. Moreover, when A is invertible (so will be A*),
the solution can be simplified to m = A~!g;, using the fact that (A*PA)f1 = A"1pP1A—,
which is simply the true solution to the original problem (10). Therefore, in the same
manner, as the classical L? least-squares method, the least-squares method based on the
H* norm does not change the solution to the original inverse problem when it is uniquely
solvable. This is, however, not the case for the H* inversion in general. For instance, H!
inversion only matches the derivative of the predicted data to the measured data.

When s > 0, P is a differential operator. Applying P to the datum g5 amplifies high-
frequency components of the datum. When s < 0, P is a (smoothing) integral operator.
Applying P to the datum gs suppresses high-frequency components of the datum. Even

though the presence of the operator P in (A*PA)_ will un-do the effect of P on the

datum in a perfect world (when A is invertible, and all calculations are done with arbitrary
precision), when operated under a given accuracy, inversion with s < 0 is less sensitive
to high-frequency noise in the data while inversion with s > 0 is more sensitive to high-
frequency noise in the data, compared to the case of s = 0 (that is, the classical L? least-
squares inversion). Therefore, inversion with s # 0 can be seen as a “preconditioned” (by
the operator P) L? least-squares inversion.

3.2 Resolution analysis of linear inverse matching

We now perform a simple resolution analysis, following the calculations in [3], on the #H?
inverse matching result for the linear model (10).



Theorem 3.1. Let A be given as in (11) and R. an approzimation to A~' defined through

its symbol:
Be)~d &% &l <&
o~ €l > ¢
Let § = ||gs — gllns be the H® norm of the additive noise in gs. Then the reconstruction error
lm —mg§|| 12, with m§ := R.gs obtained as the minimizer of ®(m)ys, is bounded by

x—S

B
lm —millze S [mll5s" " 0577, (14)

This optimal bound is achieve when we select
_ N
(€)™~ (Ollmllygs) == (15)

Proof. Following classical results in [12], it is straightforward to verify that the L? difference
between the true solution m and the approximated noisy solution mj is

lm = m§lic2 = [lm = Regsllz = |lm — Reg + Reg — Regs|| 2
= [I(Z = ReA)m + Re(g = gs)ll2 < (T = ReA)ym|lz2 + [| Re(g = 95)l[ 2. (16)

We then verify that operators Z — R.A : H?(R?) — L*(R?) and R, : H*(RY) — L*(R?) have

the following norms respectively

ez ~ (67 and (T = ReA)lluspz ~ ()77

This allows us to conclude that

R

w120 + (T — ReA)|lyposrzmllas S (€)% + (&) 77 |lmllae.

lm = mgll2 < |||

We can now select (£.) ~ (5_1Hm|]wa)a+}f—s, i.e. the relation given in (15), to minimize the
error of the reconstruction, which gives the bound in (14). O

Optimal resolution. One main message carried by the theorem above is that reconstruc-
tion based on the H*® mismatch has a spatial resolution

£ = (€)! ~ 0T,

under the conditions in the theorem. At a fixed noise level 4, for fixed o and 3, the optimal
resolution of the inverse matching result degenerates when s gets smaller. The case of s =0
corresponds to the usual reconstruction in the L? framework. The optimal resolution one
could get in this case is decided by 5. When 0 < s (< a + (), the best resolution one
could get is better than the L? case in a perfect world. When s < 0, the reconstructions
in the H?® framework provides an optimal resolution that is worse than the L? case. In
other words, the reconstructions based on the negative norms appear to be smoother than
optimal L? reconstructions in this case. See Section 6 for numerical examples that illustrate
this resolution analysis.



However, we should emphasize that the above simple calculation only provides the best-
case scenarios. It does not tell us exactly how to achieve the best results in a general
setup (when the symbol of A, i.e., the singular value decomposition of A in the discrete
case, is not precisely known). Nevertheless, the guiding principle of the analysis is well
demonstrated: least-squares with a stronger (than the L?) norm yield higher resolution
reconstructions while least-squares with a weaker norm yield lower (again compared to the
L? case) resolution reconstructions in the best case.

3.3 H‘(Sdu)-based inverse matching for linear problems

Inverse matching with the weighted H® norm can be analyzed in the same manner to study
the impact of the weight on the inverse matching result. The solution m to (10) in this case
is sought as the minimizer of the functional 4 (m) defined in (8) with f(m) = Am and

g = gs. This means that the weight w = 1/gs in our definition of the objective function.

Following the same calculation as in the previous subsection, we find that the minimizer
of the functional (I)H?d )(m) solves the following normal equation at frequency &:
i

B'G® ((€)*Am) = B'O® ((£)°%) (17)

WhereAE* is the L? adjoint of the operator B defined through the relation B =0 ®
( <§>5Afﬁ).

We first observe that the right-hand side of (17) and that of (12) are different. In (12),
the &-th Fourier mode of the datum g¢; is amplified or attenuated, depending on the sign
of s, by a factor of (¢)?*. While in (17), this mode is further convoluted with other modes
of the datum after the amplification/attenuation. The convolution induces mixing between
different modes of the datum. Therefore, inverse matching with the weighted norm cannot
be done mode by mode as what we did for the unweighted norm, even when we assume that
the forward operator A is diagonal. However, main effect of the norm on the inversion, the
smoothing/sharpening effect introduced by the (€)% factor (half of which come from the
factor (€)* in front of g5 while the other half come from the factor (£)* in B), are the same
in both the unweighted H® and the weighted Hfd#) norms.

The inverse matching solution, in this case, written in physical space, is:
-1
m = (A*PQA> A*P,gs.  Pyi= (T — A)2w(T — A)*2. (18)

We can again compare this with the unweighted solution in (13). The only difference is the
introduction of the inhomogeneity, which depends on the datum gs, in the preconditioning
operator P by replacing it with P,. When 0 < s (< a+ ), P and P, are (local) differential
operators. Roughly speaking, compared to P, P, emphasizes places where gs is small, be
reminded that w = 1/gs, or the s-th order derivative of gs is large. At those locations, P,
amplifies the same modes of the datum g; more than P does. When s < 0, P and P, are non-
local operators. The impact of g5 is more global (as we have seen in the previous paragraph



in the Fourier domain). It is hard to precisely characterize the impact of gs without knowing
its form explicitly. However, we can still see, for instance, from (17), that the smoother g is,
the smoother the inverse matching result will be (since g5 has fast decay and the convolution
will further smooth out (£)*gs). If gs is very rough, say that it behaves like Gaussian noise,
then gs decays very slowly. The convolution, in this case, will not smooth out (£)*gs as much
as in the previous case. The main effect of H?du) on the inverse matching result in this case
mainly comes from the norm, not the weight.

Remark 3.2. Thanks to the asymptotic equivalence between ’H&L) and Wy in (5), the
smoothing effect we observe in this section for the H&L) inverse matching (and therefore

’H(db) mverse matching since %&L) s only different from H(_dh) on the zeroth moment in the

Fourier domain) is also what we observe in the Wy inverse matching. This observation will
be demonstrated in more detail in our numerical simulations in Section 6.

3.4 Iterative solution of nonlinear inverse matching

The simple analysis in the previous sections based on the linearized quadratic Wasserstein
metric, i.e., a weighted % ~! norm, on the inverse matching of linear model (10) does not
translate directly to the case of inverse matching with the fully nonlinear model (1). Nev-
ertheless, the analysis does provide us some insights.

Let us consider an iterative matching algorithm for the nonlinear problem, starting with
a given initial guess mg, characterized by the following iteration:

Mgy1 = My, + Ek (k, k Z 0, (19)

where (. is a chosen descent direction of the objective functional at iteration k, and /¢ is the
step length at this iteration. For simplicity, let us take the steepest descent method where
the descent direction is taken as the negative gradient direction. Following the calculations
in the previous section, we verify that the Fréchet derivative of Do, (m) : HP — Rsg at

the current iteration my in the direction dm is given by

by (o)l = [ 5 [(€)°(Flome) — 3]0 @ (& (m)lomlde. (20)

(dp)

assuming that the forward model f : H? — ”Hfdu) is Fréchet differentiable at m; with
derivative f'(my)[dm]. This leads to the following descent direction (j chosen by a gradient
descent method:

-1

G == (/) Pof () ' ma) Py () = g5), (21)

Let us compare this with the descent direction resulted from the L? least-squares functional:

G = (Fme) 7/mi)) F/lma)* (Fmi) — g). (22)



We see that the iterative process of the Hfdu) inverse matching can be viewed as a precondi-
tioned version of the corresponding L? iteration. The preconditioning operator, P,, depends
on the datum gs but is independent of the iteration. When the iteration is stopped after a
finite step, the effect we observed for linear problems, that is, the smoothing effect of P, in
the case of s < 0 or its de-smoothing effect in the case of s > 0, is carried to the solution of
nonlinear problems.

Wasserstein smoothing in the asymptotic regime. To summarize, when the model
predictions and the measured data are sufficiently close to each other, inverse matching
with the quadratic Wasserstein metric, or equivalently the H&L) metric, can be viewed as
a preconditioned L?-based inverse matching. The preconditioning operator is roughly the
inverse Laplacian operator with a coefficient given by the datum. The optimal resolution of
the inversion result from the Wasserstein metric, with data at a given noise level § is roughly
of the order §ast (v being the order of the operator f’(m) at the optimal solution and

m € HP) instead of 5547 as given in the L? case. The shape of the datum g5 distorts the
Wasserstein matching result slightly from the inverse matching result with a regular H !
(semi-) norm.

Remark 3.3. The assumption that the linear operator A is diagonal in the Fourier domain,
given in (11), simplifies the calculations in this section. The assumption is not necessary at
all to show the preconditioning effect of the Wy metric. Without this assumption, we need
to replace all the multiplication of A in the Fourier domain with convolutions. The final
results remain the same. The assumption is indeed necessary in order to write down the
approximate inverse operator R. in the Fourier domain explicitly. This leads to a precise
resolution characterization in Theorem 3.1 for this reconstruction operator.

4 Wasserstein iterations in non-asymptotic regime

As we have seen from the previous sections, in the asymptotic regime, the smoothing effect
of the quadratic Wasserstein metric in solving inverse matching problems can be character-
ized relatively precise thanks to the equivalence between W5 and 7-.[(_0[;) given in (5). The
demonstrated smoothing effect makes Ws-based inverse matching very robust against high-
frequency noise in the measured data. This phenomenon has been reported in the numerical
results published in recent years [0, 13, 14, 35, 36] and is one of the main reasons that W5 is
considered as a good alternative for L?-based matching methods. In this section, we argue
that the smoothing effect of W5 can also be observed in the non-asymptotic regime, that
is, a regime where signals f and ¢ are sufficiently far away from each other. The smoothing
effect in the non-asymptotic regime implies that the landscape of the Wy objective functional
is smoother than that of the classical L? objective functional.

To see the smoothing effect of W5 in non-asymptotic regime, we analyze the inverse
matching procedure described by the iterative scheme (19) for the objective functional
Oy, (m), defined in (9). For the sake of being technically correct, we assume that the
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data we are comparing in this section are sufficiently regular. More precisely, we assume
that f € C%*(R?) and g € C%*(R?) for some a > 0. We also assume that the map m > f
(HP — C%) is Fréchet differentiable at any admissible m and denote by f'(m)[dm] the
derivative in direction dm. We can then write down the variation of @y, (m) : H” — R
at the current iteration my in the direction dm, following the differentiability result of
W2(f,g) with respect to f along mass preserving perturbations [33, Theorem 8.13]. It is,

) fom] = [ (BT pmfom] = = a0 ) T 1 o) o]
(23)

where T} denotes the optimal transport map at iteration k (that is, for my), and T,[df]
denotes the variation of T with respect to f (not m) in the direction Jf. We emphasize
again that dm is selected such that [p, f(my)dx = [p. f(my + dm)dx which is necessary
since the space of probability densities with the W5 metric is not a linear space.

Following the optimal transport theorem of Brenier [33], the optimal transport map at
the current iteration k, Ty, is given as Ty(x) := Vu(x) where u is the unique (up to a
constant) convex solution to the Monge-Ampere equation:

det(D*u(x)) = f(mi(x))/g(Vu(x)), u being convex. (24)
2 . . . 2 821,[/ .
Here D is the Hessian operator defined through the Hessian matrix D*u := ( 920 ) (with
;0
the notation x = (x1, -+ ,x4)). Interested readers are referred to [33] and the references

therein for more detailed mathematical study on the existence and uniqueness of solutions
to the Monge-Ampere equation (24).

Let ¢ := u/(f(ms))[0f] be the Fréchet derivative of u at f(my) in the direction §f, we
then verify that ¢ solves the following second-order elliptic equation to the leading order:

Z Gija——— Z b] ’ (25>
, 895 8:70]

]

where b; = det(D?*u)d,,g(Tk(x)) while a;; depend on the dimension. When d = 2, a;; =

Pu 2 o,
_g(Tk(X))ax]axl (l 7£ .]) and Qg5 = g(Tk’(X))ax]aa:J (Z 7£ j) When d = 37 we have
v 0% u 0% o
I T e el v e S ok
= T (X)) TO0T; ZE] Tl {L‘] €T; I’k ZL‘k
Q5 g( k 82 82 32 a U

— P ’

8xk/8xk/ (%kﬁxk 8$k/al’k 6a:k8xk/’ ’ ) ?é K 7& W
Let v be the solution to the (adjoint) equation:
%) oY
ij j

11



It is then straightforward to verify, following standard adjoint state calculations [34], that
update direction can be written as

x — Tw(x)|”

Gu(x) = " (mi) | =

+ o). (27)

where f"*(m;) denotes the L? adjoint of the operator f’(my).

We first observe that unlike in the classical L? case where f"*(my) is applied directly
to the residual f(my) — g, that is, (x(x) = f*(my) [f(mk) - g}, the descent direction here

depends on the model prediction f(my) and the datum g only implicitly through the transfer
map I — T and its variation with respect to m. Only in the asymptotic regime of g being
x — Ti(x)?
) 2

residual. This is where the ’H(_dL) approximation to Wy comes from.

very close to f can we make the connection between +1(x) and the normalized

From Caffarelli’s regularity theory (c.g. [33, Theorem 4.14]), which states that when
f € Co(RY) and g € C**(R?) we have that the Monge-Ampere solution u € C**(R%), we
see that (x — Ty(x)) is at least C1*. Therefore the solution to the adjoint problem, 1,
is in C? by standard theory for elliptic partial differential equations when the problem is
not degenerate and in CY® if it is degenerate. Therefore, w +1p(x) € CH™ is one
derivative smoother than f and g (and therefore the residual). This is exactly what the
preconditioning operator P (with s = —1) did to the residual in the asymptotic regime, for
instance, as shown in (13). This shows that W, inverse matching has smoothing effect even
in the non-asymptotic regime.

In one-dimensional case, we can see the smoothing effect more explicitly since we are
allowed to construct the optimal map explicitly in this case. Let F' and G be the cumulative
density functions for f and g respectively. The optimal transportation theorem in one-
dimensional setting (c.g. [33, Theorem 2.18]) then says that the optimal transportation map
from f to g is given by T'(x) = G~! o F(z). This allows us to verify that, the gradient of
Py, (m) at my in direction dm, given in (23), is simplified to:

o) = [ (B 4 (o) = (o)) £ Ol

/ () [T (o) 4 )] m(ade (29

* -1
where the function pg(z) is defined as py(z) = / (y = Ti(y)) f(

mi(y))
dy. Therefore the
oo 9(Ti(y))

descent direction (27) simplifies to

(x — Ti(x))?

Gu(x) = 7 (mi) |5

— pr(+00) + (). (29)

It is clear from (29) that the gradient of @y, (m) at iteration k& depends only on the anti-
derivatives of f(my), g and f(my)/g(T}), through Ty (x) and py. Therefore, it is smoother
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than the Fréchet derivative of ®r2(m) in general, whether or not the signals f(m;,) and g are
close to each other. This shows why the smoothing effect of W, exists also in non-asymptotic
regime.
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Figure 1: The gradients of the objective functions ®r2(m) (left), ®.3-1(m) (middle) and
Oy, (m) (right) at the initial guess for the inverse diffusion problem in Section 6.2 in the
one-dimensional domain Q = (0, 1).
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Figure 2: The gradients of the objective functions ®r2(m) (left), ®.4-1(m) (middle) and
Dy, (m) (right) at the initial guess for the inverse diffusion problem in Section 6.2 in the
two-dimensional domain £ = (0,1) x (0, 1).

To provide some numerical evidences, we show in Figure 1 and Figure 2 some gradients of
the L? and W, objective functions, with respect to the absorption coefficient o (i.e. m = o),
for the inverse diffusion problem we study in Section 6.2, in one- and two-dimensional do-
mains 2 = (0,1) and Q = (0,1) x (0,1) respectively. The synthetic data, generated by
applying the forward operator to the true absorption coefficient and then adding multiplica-
tive random noise, contains roughly 5% of random noise. We intentionally choose initial
guesses to be relatively far away from the true coefficient so that the model prediction f(m)
is far from the data g to be matched. We are not interested in a direct quantitative compar-
ison between the gradient of the Wasserstein objective function and that of the L? objective
function since we do not have a g