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Abstract

Photoacoustic tomography (PAT) is a hybrid imaging modality that intends to
construct high-resolution images of optical properties of heterogeneous media from
measured acoustic data generated by the photoacoustic effect. To date, most of the
model-based quantitative image reconstructions in PAT are performed with either
the radiative transport equation or its classical diffusion approximation as the model
of light propagation. In this work, we study quantitative image reconstructions in
PAT using the simplified P2 equations as the light propagation model. We provide
numerical evidences on the feasibility of this approach and derive some stability results
as theoretical justifications.

Key words. Photoacoustic tomography, radiative transport equation, simplified P2 approxi-
mation, diffusion approximation, hybrid inverse problems, hybrid imaging, image reconstruction,
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1 Introduction

Photoacoustic tomography (PAT) is a hybrid imaging method that couples ultrasound imag-
ing and optical tomography via the photoacoustic effect, enabling high-resolution imaging
of optical contrasts of heterogeneous media. In a typical way to induce the photoacoustic
effect, a short pulse of near infra-red (NIR) light is sent into an optically heterogeneous
medium, such as a piece of biological tissue, which we denote as Ω ∈ R3. In the light propa-
gation process, a portion of the photons are absorbed by the medium. The absorbed energy
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causes the medium to heat up slightly, and then cool down after the rest of the photons
exit. The heating and cooling of the medium forces the medium to expand and then con-
tract. This expansion and contraction generates a pressure field inside the medium which
then propagates outwards in the form of ultrasound. The objective of PAT is to measure
the ultrasound signals on the surface of the medium and use the measured data to recover
information on the interior optical properties of the underlying medium. Interested readers
are referred to [8, 14, 21, 43, 45, 50, 56, 67, 73, 74] for overviews of the physical principles
as well as the practical applications of PAT.

The radiation of the photons inside the medium is described accurately by the phase-
space radiative transport equation (RTE) [6, 7, 60]. Let us denote by u(x,v) the density of
photons at location x ∈ Ω, traveling in direction v ∈ S2 (S2 being the unit sphere in R3),
integrated over the period of the pulse. Then u(x,v) solves:

v · ∇u(x,v) + σa(x)u(x,v) = σs(x)K(u)(x,v) in X
u(x,v) = f(x) on Γ−

(1)

Here X = Ω×S2 is the phase space of photon propagation, with Γ− = {(x,v) : (x,v) ∈ ∂Ω×
S2 s.t. − n(x) · v > 0} denoting the incoming boundary of X (n(x) being the outer normal
vector at x ∈ ∂Ω). The positive functions σa(x) and σs(x) are respectively the absorption
and the scattering coefficients of the medium. The function f(x) denotes the incoming
illumination photon source, again integrated over the period of the pulse. To simplify the
presentation, we have chosen the illumination source to be isotropic, i.e. independent of v.
This is by no means technically necessary.

The scattering operator K is defined as

K(u)(x,v) =

∫
S2

Θ(v,v′)u(x,v′) dv′ − u(x,v)

where the kernel Θ(v,v′) describes how photons traveling in direction v′ are scattered into di-
rection v, and also satisfies the normalization condition

∫
S2 Θ(v,v′) dv′ =

∫
S2 Θ(v′,v) dv′ =

1, ∀ v ∈ S2. In practical applications in biomedical optics, Θ is often taken to be the
Henyey-Greenstein phase function, which depends only on the product v · v′. That is,
Θ = ΘHG(v · v′) [6, 61]:

ΘHG(v · v′) =
1

4π

1− g2

(1 + g2 − 2gv · v′)3/2
,

where g is the scattering anisotropy factor of the medium.

The pressure field generated at a position x ∈ Ω, due to the photoacoustic effect, is the
product of the Grüneisen coefficient, denoted by Ξ, and the absorbed energy density at x.
That is,

H = Hrte(x) = Ξ(x)σa(x)

∫
S2

u(x,v) dv. (2)

The Grüneisen coefficient Ξ is a parameter that measures the local photoacoustic efficiency
of the medium.
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This initial pressure field then evolves following the acoustic wave equation in the form
of ultrasound. The equation for the evolution reads [8, 14, 43, 50]:

1

c2(x)

∂2p

∂t2
−∆p = 0, in R+ × Ω

p(t,x) = H(x),
∂p

∂t
(t,x) = 0, in {0} × Ω

n · ∇p(t,x) = 0, on R+ × ∂Ω

(3)

where p(t,x) is the pressure field, and c(x) is the ultrasound wave speed. In the majority
of the literature for PAT, the ultrasound speed is assumed known.

The data measured in PAT are the ultrasound signals on the surface of the medium for
a long enough time period T , that is, p(t,x)|(0,T )×∂Ω. From the measured data, we attempt
to infer information on the optical properties of the underlying medium, for instance, the
coefficients σa, σs and Ξ. This inverse problem has been extensively investigated in the
past decade, from mathematical, computational as well as practical perspectives; see for
instance [2, 3, 4, 5, 13, 15, 17, 18, 19, 20, 29, 35, 36, 37, 39, 44, 46, 49, 54, 55, 56, 58, ?, 65,
68, 69, 72, 76, 77, 78] and references therein.

In most of the past research in PAT, simplified mathematical models have been used
as the model for light propagation, mainly due to the fact that the radiative transport
model (1) is a phase-space model and is therefore computationally expensive to solve. The
diffusion approximation to RTE, see (12), is the most commonly-used replacement model [12,
22]. While the diffusion approximation is much simpler for mathematical analysis and
computational solution, it often suffers in terms of accuracy, especially in regions close to
the source locations, a phenomenon that has been addressed extensively in the literature
of optical tomography [6, 34, 71], as well as PAT [70]. In this work, we study the PAT
inverse problem with the simplified P2 equations [1, 48], a more sophisticated approximation
than the classical diffusion model to the radiative transport equation, as the model of light
propagation. We show numerically that image reconstructions based on the simplified P2

model, while computationally less expensive than RTE-based reconstructions, can be more
accurate than those based on the classical diffusion model under right circumstances.

We make the following general assumptions in the rest of the paper:

(A-i) the domain Ω is simply-connected with smooth boundary ∂Ω; (A-ii) the physical
coefficients (c,Ξ, σa, σs) are positive and bounded in the sense that 0 < α ≤ c,Ξ, σa, σs ≤
α <∞ for some positive constants α and α; (A-iii) the ultrasound speed function c(x) and
the Grüneisen coefficient Ξ(x) are smooth in Ω; and (A-iv) the values of the coefficients are
known on the boundary ∂Ω.

The rest of the paper is structured as follows. We first review briefly in Section 2
the simplified P2 approximation to the radiative transport equation. We then present in
Section 3 the main computational reconstruction algorithm we use for our numerical studies.
In Section 4 we study the quantitative step of the inverse problems based on the simplified
P2 equations. Detailed numerical simulation results based on synthetic data are presented
in Section 5 to demonstrate the feasibility of our approach. Concluding remarks are offered
in Section 6.
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2 The simplified P2 approximation

The radiative transport equation (1), although often regarded as an accurate mathematical
model for light propagation in tissue-like optical media, is mathematically challenging to
analyze and computationally expensive to solve. Macroscopic approximations to the RTE
are often sought as alternative light propagation models.

A classic approach approximates the transport solution u(x,v) using its first N moments
in the direction variable v [6, 27, 53]. This can be done, for example, via the spherical
harmonics expansion. The PN approximation is the system of derived equations for the
coefficients of the expansion, i.e., the spherical harmonic moments. The standard diffusion
approximation, i.e. the P1 approximation, to the RTE is obtained when only the zeroth
moment is kept in the spherical harmonic expansion.

A major drawback of the classical PN approximation is that the number of equations in
the system grows as (N + 1)2, due to the rapid growth of the number of spherical harmonic
modes as the order N increases. This problem is avoided in the simplified PN approximation
where the number of equations involved only grows linearly with respect to N . In the rest
of this work, we will only focus on the simplified P2 equations. We refer interested readers
to [31, 42, 48, 75] and the references therein for details on the derivation and numerical
validation of the general simplified PN (N ≥ 1) equations.

To introduce the simplified P2 approximation, we first define the following sequence of
total absorption coefficients:

σan(x) = σa(x) + (1− gn)σs(x), n ≥ 0. (4)

We also define the diffusion coefficients:

D(x) =
1

3σa1(x)
, and D̃(x) =

1

7σa3(x)
. (5)

Then the simplified P2 equations, together with its boundary conditions, take the following
form [42, 48, 75]:

−∇ ·D∇φ1(x) + σaφ1(x)− 2
3
σaφ2(x) = 0, in Ω

−∇ · D̃∇φ2(x) + (5
9
σa2 + 4

9
σa)φ2(x)− 2

3
σaφ1(x) = 0, in Ω

n ·D∇φ1 + 1
2
φ1 − 1

8
φ2 = 1

2
f(x), on ∂Ω

n · D̃∇φ2 + 7
24
φ2 − 1

8
φ1 = −1

8
f(x), on ∂Ω

(6)

where φ1 and φ2 are the first two composites, i.e. linear combinations of, Legendre moments
of the transport solution u(x,v); see [31, 42, 48, 75] for more details.

The initial pressure field generated due to the photoacoustic effect, corresponding to (2),
can be written as follows in the simplified P2 approximation:

H = HP2(x) = Ξ(x)σa(x)(φ1 −
2

3
φ2). (7)

To simplify the analysis, we assume in the following that the absorption coefficient σa is
very small compared to the effective scattering coefficient (1−g)σs, i.e. σa � (1−g)σs. Under
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this assumption, we can neglect the factor σa in the definitions of the diffusion coefficients
(D, D̃) and the absorption coefficients σan such that

σa0 = σa, σan = (1− gn)σs, n ≥ 1, D(x) =
1

3(1− g)σs(x)
,

D̃(x) =
3

7(1 + g + g2)
D(x), σa2 =

1 + g

3

1

D
.

(8)

We note that this assumption is not unfounded, as this is one of the assumptions under
which (simplified) PN -type approximations are shown to be valid. Moreover, in applications
of PAT for biological tissues, σa

(1−g)σs is on the order of 10−2 � 1 [41].

With the simplification in (8), the simplified P2 system (6) reduces to the following form:

−∇ ·D∇φ1 + σaφ1 − 2
3
σaφ2 = 0, in Ω

−∇ ·D∇φ2 + ( 5
9κ′

1
D

+ 4
9κ
σa)φ2 − 2

3κ
σaφ1 = 0, in Ω

n ·D∇φ1 + 1
2
φ1 − 1

8
φ2 = 1

2
f(x), on ∂Ω

n ·D∇φ2 + 7
24κ
φ2 − 1

8κ
φ1 = − 1

8κ
f(x), on ∂Ω

(9)

where

κ =
3

7(1 + g + g2)
, and κ′ =

3

1 + g
κ.

The corresponding initial pressure field HP2 in (7) remains in the same form.

It is sometimes more convenient to rewrite the simplified P2 system (9) in a new pair of

variables (ϕ1, ϕ2): ϕ1 = φ1 −
2

3
φ2 and ϕ2 = φ2. In this case, we have

−∇ ·D∇ϕ1 + (1 + 4
9κ

)σaϕ1 − 10
27κ′

1
D
ϕ2 = 0, in Ω

−∇ ·D∇ϕ2 + 5
9κ′

1
D
ϕ2 − 2

3κ
σaϕ1 = 0, in Ω

n ·D∇ϕ1 + 6κ+1
12κ

ϕ1 + 15κ−10
72κ

ϕ2 = 6κ+1
12κ

f(x), on ∂Ω
n ·D∇ϕ2 + 5

24κ
ϕ2 − 1

8κ
ϕ1 = − 1

8κ
f(x), on ∂Ω

(10)

The corresponding initial pressure field can now be written as

H = HP ′
2(x) = Ξ(x)σa(x)ϕ1(x). (11)

To recover the classical diffusion approximation to the radiative transport equation, we
drop the terms involve gradient of u2 from the simplified P2 system (10). This leads to the
simplified P1 approximation:

−∇ ·D(x)∇ϕ(x) + σa(x)ϕ(x) = 0, in Ω
n ·D∇ϕ+ 1

2
ϕ = 1

2
f(x), on ∂Ω

(12)

The corresponding initial pressure field generated in this case takes the form:

H = Hdiff (x) = Ξ(x)σa(x)ϕ(x). (13)

Note that ϕ1 in (10) and ϕ in (12) are different approximations to the same physical quantity,
the photon density. We use different symbols here for the two to avoid unnecessary confusion.
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Moreover, the boundary condition in the diffusion approximation (12), i.e. simplified P1

approximation, is slightly different from the boundary condition one can obtain from a
detailed boundary layer analysis in the classical P1 approximations [23]. For the sake of
consistency, we use the boundary condition in (12).

It is well-known that under reasonable regularity assumptions on the optical coefficients
(σa, σs) and the boundary illumination source f , the radiative transport equation (1) and its
diffusion approximation (12) are well-posed in appropriate function spaces [23]. Therefore
the initial pressure fields Hrte and Hdiff are well-defined quantities. The simplified P2 system
is less studied. It is straightforward to verify from standard theory of elliptic systems [32, 52]
that the simplified P2 system (9) is also well-posed under similar assumptions. Therefore,
HP2 is also a well-defined quantity.

3 Numerical reconstruction algorithms

In this section, we implement a standard optimal control-based numerical image recon-
struction algorithm for PAT with the simplified P2 equations (9) and the classical diffusion
equation (12) as the models of light propagation. Due to the fact that the data we have
is not enough to uniquely determine all three coefficients (Ξ, σa, σs) simultaneously [10, 51],
we consider here only the reconstruction of two coefficients. We provide the details for the
case of reconstructing (σa, σs). Reconstructing other pairs, such as (Ξ, σa), can be done very
similarly.

Let us assume that we have data collected from J ≥ 2 different illuminations {fj}Jj=1.
We denote by {p∗j}Jj=1 the measured ultrasound data. We solve the reconstruction problem
by searching for the coefficient pair (σa, σs) that minimize the mismatch between ultrasound
data predicted by the mathematical models and the measurements. More precisely, we solve
the minimization problem

min
σa,σs
O(σa, σs), subject to, la ≤ σa ≤ ua, ls ≤ σs ≤ us (14)

where the linear bounds {la, ua, ls, us} are selected in a case by case manner, as discussed
further in the numerical simulations in Section 5. The data mismatch functional is defined
as

O(σa, σs) =
1

2

J∑
j=1

∫ T

0

∫
∂Ω

(pMj − p∗j)2dS(x)dt+ αR(σa) + βR(σs), (15)

where pMj is the ultrasound signal predicted using the light propagation model M ∈
{P2, diff} with the coefficient (σa, σs). The parameters α and β are used to control the
strengths of the regularization mechanism encoded in the functional R. The regularization
functional we select here is of Tikhonov type, based on the L2 norm of the gradients,

R(σa) =
1

2
‖∇σa‖2

(L2(Ω))3 ≡
1

2

∫
Ω

|∇σa|2dx. (16)
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While we choose the same regularization functional for both σa and σs for convenience, it is
not required. Other types of regularization can also be considered, but will not be discussed
in this paper.

To solve the minimization problem (14), we use the SNOPT algorithm developed in [33].
In a nutshell, this is a sparse sequential quadratic programming (SQP) algorithm where
the Hessian of the Lagrangian is approximated by a limited-memory BFGS strategy. This
is a mature optimization technique, therefore we will not describe it in detail here. Our
main objective is to supply the optimization algorithm with a subroutine to evaluate the
mismatch functional O and its derivatives with respect to the optical properties σa and σs.
The derivatives can be computed in a standard manner using the adjoint state method. We
summarize the calculations of the derivatives in the following lemma.

Lemma 3.1. Let Ω, c and Ξ satisfy the assumptions in (A-i)-(A-iv) and assume that the
assumptions in (8) hold as well. For each 1 ≤ j ≤ J , let fj(x) be the restriction of a C1

function to ∂Ω. Then the predicted ultrasound data for illumination source fj using specified
optical model M, pMj |(0,T ]×∂Ω

, viewed as the map:

pMj |(0,T ]×∂Ω
:

(σa, σs) 7→ pMj |(0,T ]×∂Ω

C1(Ω̄)× C1(Ω̄) 7→ H1/2((0, T ]× ∂Ω)
(17)

is Fréchet differentiable at any (σa, σs) ∈ C1(Ω̄) × C1(Ω̄) that satisfies the assumptions in
(A-ii). Moreover, the mismatch functional O(σa, σs) : C1(Ω̄) × C1(Ω̄) 7→ R+ given by (15)
is Fréchet differentiable and its derivatives at (σa, σs) in the directions δσa ∈ C1

0(Ω̄) and
δσs ∈ C1

0(Ω) (such that σa + δσa and σs + δσs satisfy (A-ii)) are given as follows. Let
qj(t,x), 1 ≤ j ≤ J , be the solution to the adjoint wave equation:

1

c2(x)

∂2qj
∂t2
−∆qj = 0, in (0, T )× Ω

qj(t,x) = 0,
∂qj
∂t

(t,x) = 0, in {T} × Ω

n · ∇qj(t,x) = pMj − p∗j , on (0, T )× ∂Ω

(18)

(i) If the optical model M is the simplified P2 model (9), then

O′(σa, σs)[δσa] =
J∑
j=1

∫
Ω

(φ1,j −
2

3
φ2,j)

{
Ξ

c2

∂qj
∂t

(0,x) + (ψ1,j −
2

3κ
ψ2,j)

}
δσa(x)dx

+αR′(σa)[δσa], (19)

O′(σa, σs)[δσs] =
J∑
j=1

∫
Ω

{
∇ψ1,j · ∇ψ1,j +∇φ2,j · ∇ψ2,j

3(1− g)σ2
s

− 5(1− g2)

9κ
φ2,jψ2,j

}
δσs(x)dx

+βR′(σs)[δσs], (20)

where (φ1,j, φ2,j) solves (9) with source fj, 1 ≤ j ≤ J , while (ψ1,j, ψ2,j) solves the adjoint
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diffusion system:

−∇ ·D∇ψ1,j + σa(ψ1,j −
2

3κ
ψ2,j) = −Ξ

c2
σa∂tqj(0,x), in Ω

−∇ ·D∇ψ2,j + (
5

9κ′
1

D
+

4

9κ
σa)ψ2,j −

2

3
σaψ1,j =

2

3

Ξ

c2
σa∂tqj(0,x), in Ω

n ·D∇ψ1,j +
1

2
ψ1,j −

1

8κ
ψ2,j = 0, on ∂Ω

n ·D∇ψ2,j +
7

24κ
ψ2,j −

1

8
ψ1,j = 0, on ∂Ω

(21)

(ii) If the optical model M is the classical diffusion model (12), then

O′(σa, σs)[δσa] =
J∑
j=1

∫
Ω

ϕj

{
Ξ

c2

∂qj
∂t

(0,x) + ηj

}
δσa(x)dx

+ αR′(σa)[δσa], (22)

O′(σa, σs)[δσs] =
J∑
j=1

∫
Ω

∇ϕj · ∇ηj
3(1− g)σ2

s

δσs(x)dx + βR′(σs)[δσs], (23)

where ϕj solves (12) with source fj, 1 ≤ j ≤ J , and ηj solves

−∇ ·D(x)∇ηj(x) + σa(x)ηj(x) = −Ξ

c2
σa∂tqj(0,x), in Ω

n ·D∇ηj +
1

2
ηj = 0, on ∂Ω

(24)

Proof. The result on the classical diffusion model (12) is proved in [25]. We focus here
on the simplified P2 model. Under the assumptions stated in the lemma, standard elliptic
theory in [32, 52] implies that (9) admits a unique solution pair (φ1,j, φ2,j) ∈ H2(Ω)×H2(Ω)
for source fj. This, together with the assumption on σa, gives that the initial pressure field
HMj ∈ H1(Ω), which then ensures that the wave equation (3) admits a unique solution pMj ∈
H1((0, T ]×Ω) [24, 40, 59]. Differentiability of pMj |(0,T ]×∂Ω

with respect to the initial pressure

field HMj then follows from the linearity of the map: H1(Ω) → H1/2((0, T ] × ∂Ω) [24, 40].
It remains, following the chain rule, to show that HMj : C1(Ω̄)× C1(Ω̄) 7→ H1(Ω) is Fréchet
differentiable with respect to σa and σs. We now prove this for the derivative with respect
to σa. The other derivative follows from similar calculations.

Let
(
φ

(σa+δσa,σs)
1,j , φ

(σa+δσa,σs)
2,j

)
and

(
φ

(σa,σs)
1,j , φ

(σa,σs)
2,j

)
be the solution to the simplified P2

model (9) with coefficients (σa+δσa, σs) and (σa, σs) respectively, for source fj. Let (φ̃1,j, φ̃2,j)

be the solution to, with the notation ∆φ = φ
(σa,σs)
1,j − 2

3
φ

(σa,σs)
2,j ,

−∇ ·D∇φ̃1,j + σa(φ̃1,j − 2
3
φ̃2,j) = −∆φδσa, in Ω

−∇ ·D∇φ̃2,j + 5
9κ′

1
D
φ̃2,j − 2σa

3κ
(φ̃1,j − 2

3
φ̃2,j) = 2

3κ
∆φδσa, in Ω

n ·D∇φ̃1,j + 1
2
φ̃1,j − 1

8
φ̃2,j = 0, on ∂Ω

n ·D∇φ̃2,j + 7
24κ
φ̃2,j − 1

8κ
φ̃1,j = 0, on ∂Ω

(25)

8



We define φ̂i,j = φ
(σa+δσa,σs)
i,j − φ(σa,σs)

i,j and φi,j = φ̂i,j − φ̃i,j, i = 1, 2. It is straightforward to

check that (φ̂1,j, φ̂2,j) solves

−∇ ·D∇φ̂1,j + (σa + δσa)(φ̂1,j − 2
3
φ̂2,j) = −∆φδσa, in Ω

−∇ ·D∇φ̂2,j + 5
9κ′

1
D
φ̂2,j − 2(σa+δσa)

3κ
(φ̂1,j − 2

3
φ̂2,j) = 2

3κ
∆φδσa, in Ω

n ·D∇φ̂1,j + 1
2
φ̂1,j − 1

8
φ̂2,j = 0, on ∂Ω

n ·D∇φ̂2,j + 7
24κ
φ̂2,j − 1

8κ
φ̂1,j = 0, on ∂Ω

(26)

and (φ1,j, φ2,j) solves

−∇ ·D∇φ1,j + σa(φ1,j − 2
3
φ2,j) = −(φ̂1,j − 2

3
φ̂2,j)δσa, in Ω

−∇ ·D∇φ2,j + 5
9κ′

1
D
φ2,j − 2

3κ
σa(φ1,j − 2

3
φ2,j) = 2

3κ
(φ̂1,j − 2

3
φ̂2,j)δσa, in Ω

n ·D∇φ1,j + 1
2
φ1,j − 1

8
φ2,j = 0, on ∂Ω

n ·D∇φ2,j + 7
24κ
φ2,j − 1

8κ
φ1,j = 0, on ∂Ω

(27)

Note that in the above derivations, we have used the assumption that the boundary value of
the coefficient σa is known, i.e. δσa|∂Ω = 0; see the assumption in (A-iv) and δσa ∈ C1

0(Ω).

We first observe from the simplified P2 model (9), following standard elliptic theory [28,
32, 47, 52], that for 0 ≤ k ≤ 2,

‖(φ1,j, φ2,j)‖[Hk(Ω)]2 ≤ c1‖fj‖L2(∂Ω).

In the same way, equation (26) admits a unique solution with

‖(φ̂1,j, φ̂2,j)‖[Hk(Ω)]2 ≤ c2‖δσa(φ1,j, φ2,j)‖[L2(Ω)]2 ≤ c̃2‖δσa‖C1
0(Ω)‖(φ1,j, φ2,j)‖[L2(Ω)]2 , (28)

while (27) admits a unique solution satisfying

‖(φ1,j, φ2,j)‖[Hk(Ω)]2 ≤ c3‖δσa(φ̂1,j, φ̂2,j)‖[L2(Ω)]2 ≤ c̃3‖δσa‖C1
0(Ω)‖(φ̂1,j, φ̂2,j)‖[L2(Ω)]2 . (29)

We then deduce that

‖(φ1,j, φ2,j)‖[Hk(Ω)]2 ≤ c4‖δσa‖2
C1

0(Ω)‖fj‖L2(∂Ω), (30)

which then leads to,

lim
‖δσa‖C1

0(Ω)
→0

‖(φ1,j, φ2,j)‖[Hk(Ω)]2

‖δσa‖C1
0(Ω)

≡ lim
‖δσa‖C1

0(Ω)
→0

‖(φ̂1,j − φ̃1,j, φ̂2,j − φ̃2,j)‖[Hk(Ω)]2

‖δσa‖C1
0(Ω)

= 0. (31)

This shows that (φ1,j, φ2,j) is Fréchet differentiable with respect to σa as a map: C1(Ω̄) 7→
Hk(Ω) × Hk(Ω), 0 ≤ k ≤ 2, with Fréchet derivative in direction δσa ∈ C1

0(Ω) given by

(φ̃1,j, φ̃2,j). Differentiability of HMj with respect to σa then follows from this fact and the
chain rule.

To compute the Fréchet derivative of O(σa, σs) with respect to σa, we first compute

HMj
′
(σa, σs)[δσa] = Ξ(φ1,j −

2

3
φ2,j)δσa + Ξσa(φ1,j −

2

3
φ2,j)

′(σa, σs)[δσa],

9



and

O′(σa, σs)[δσa] =
J∑
j=1

∫ T

0

∫
∂Ω

(pMj − p∗j)pMj
′
(σa, σs)[δσa]dS(x)dt+ αR′(σa)[δσa]. (32)

Let us denote wj := pMj
′
(σa, σs)[δσa]. We verify that wj solves

1

c2(x)

∂2wj
∂t2
−∆wj = 0, in R+ × Ω

wj(t,x) = HMj
′
(σa, σs)[δσa],

∂wj
∂t

(t,x) = 0, in {0} × Ω

n · ∇wj = 0, on R+ × ∂Ω.

(33)

Multiplying the equation for qj, (18), by wj, the equation for wj, (33), by qj, and integrating
the difference over (0, T )× Ω, we arrive at∫ T

0

∫
∂Ω

(pMj − p∗j)wjdS(x)dt =

∫
Ω

Ξ

c2
(φ1,j −

2

3
φ2,j)

∂qj
∂t

(0,x)δσadx

+

∫
Ω

Ξ

c2
σa(φ1,j −

2

3
φ2,j)

′(σa, σs)[δσa]
∂qj
∂t

(0,x)dx, (34)

thanks to Green’s theorem.

Multiplying the equation for (ψ1,j, ψ2,j), i.e. (21), by (φ̃1,j, φ̃2,j) (which is nothing but

(φ′1,j(σa, σs)[δσa], φ
′
2,j(σa, σs)[δσa])), the equation for (φ̃1,j, φ̃2,j), i.e. (25), by (ψ1,j, ψ2,j), and

integrating the difference over Ω, we obtain∫
Ω

Ξ

c2
σa(φ1,j −

2

3
φ2,j)

′(σa, σs)[δσa]
∂qj
∂t

(0,x)dx

=

∫
Ω

(φ1,j −
2

3
φ2,j)(ψ1,j −

2

3κ
ψ2,j)δσadx. (35)

We now combine (32), (34) and (35) to get the final result in (19). Similar calculations for
σs yield the result in (20). This completes the proof.

Let us emphasize here that the simplified P2 diffusion system (9) is not self-adjoint.
Therefore, the diffusion operators and the boundary conditions in (21) are different from
those in (9).

The calculations in Lemma 3.1 allow us to develop a subroutine for the SNOPT algorithm
to evaluate the mismatch functional O and its derivatives with respect to σa and σs. For the
convenience of presentation, let us denote by Oj(σa, σs) the contributions to the mismatch

functional O from source fj, that is, Oj(σa, σs) =
1

2

∫ T
0

∫
∂Ω

(pMj − p∗j)
2dS(x)dt. We use

O′j to denote the derivative of Oj at (σa, σs). The algorithm for calculating O and O′ is
summarized in Subroutine 1.

10



Subroutine 1 Evaluating O and Its Derivatives at (σa, σs) for Model M
1: Initialize O = 0 and O′ = 0
2: for j = 1 to J do
3: Solve the forward model M (i.e., (9) or (12)), with illumination source fj
4: Evaluate initial pressure field HMj for model M (following (7) or (13))
5: Solve the wave equation (3) with initial condition HMj for pMj
6: Evaluate the residual zMj = pMj − p∗j and Oj = 1

2

∫ T
0

∫
∂Ω

(zMj )2dS(x)dt
7: O ← O +Oj
8: Solve the adjoint wave equation (18), and evaluate ∂tqj(0,x)
9: Solve the adjoint diffusion equation for model M (i.e., (21) or (24))

10: Evaluate the derivative O′j (following (19) and (20), or (22) and (23) )
11: O′ ← O′ +O′j
12: end for
13: O ← O + αR(σa) + βR(σs)
14: O′ ← O′ + αR′(σa)[δσa] + βR′(σs)[δσs]

4 Quantitative inversion with simplified P2

The reconstruction algorithm we implemented in the previous section is based on the one-
step approach: we reconstruct the optical coefficients directly from the measured ultrasound
signal. This is the same approach that has been recently used in [25, 57, 63]. An alterna-
tive, in fact more popular, approach for PAT reconstruction is a two-step strategy: (i)
to reconstruct the initial pressure field H from measured ultrasound data; and then (ii)
to reconstruct the optical coefficients from the reconstructed initial pressure field H. The
first step involves only the acoustic model and is independent of the optical model, and
reconstruction algorithms for this step have previously been developed in many scenar-
ios [2, 3, 4, 15, 17, 30, 36, 38, 44, 58, 68, 72, 76]. The second step of the reconstruction
have been developed for both the diffusion model (12) [10, 12] and the radiative transport
model (1) [9, 51, 64], but not the simplified P2 model (9), to our best knowledge.

The objective of this section is to study the quantitative step of PAT with the simplified
P2 model: to reconstruct the optical coefficients from the initial pressure field data H that
one recovers from the ultrasound measurements. We assume again that we have data gen-
erated from J ≥ 1 illumination sources. Let (φ1,j, φ2,j) be the solution to the simplified P2

system (9) with source fj. In the quantitative step, we wish to recover the optical coefficients
from the data {HP2

j }Jj=1.

The case of reconstructing σa only. We first consider the case where the absorption
coefficient σa is the only coefficient to be reconstructed. That is, the Grüneisen coefficient
and the scattering coefficient are both known. In this case, we can show that σa can be
uniquely recovered from only one initial pressure field. Moreover, the reconstruction of σa
is a relatively stable process.

Theorem 4.1. Under the assumptions in (A-i)-(A-iv) and (8), let HP2
j and H̃P2

j be the

11



initial pressure field corresponding to the coefficients (Ξ, σa, σs) and (Ξ, σ̃a, σs) respectively,
induced by illumination source fj. Assume further that (σa, σ̃a) ∈ C1(Ω̄) × C1(Ω̄), and fj
is such that the corresponding solution to the simplified P2 model satisfies the condition
(φ1,j − 2

3
φ2,j) 6= 0 a.e.. Then HP2

j = H̃P2
j a.e. implies σa = σ̃a a.e.. Moreover, we have the

stability estimate

‖(σa − σ̃a)(φ1,j −
2

3
φ2,j)‖L2(Ω) ≤ c‖HP2

j − H̃
P2
j ‖L2(Ω), (36)

where the constant c depends on Ω, Ξ, σs, α and α.

Proof. Let Φi,j = φi,j − φ̃i,j, i = 1, 2, where (φ1,j, φ2,j) and (φ̃1,j, φ̃2,j) are solutions to (9)
with (σa, σs) and (σ̃a, σs) respectively. We verify that (Φ1,j,Φ2,j) solves the following system

−∇ ·D∇Φ1,j +
HP2
j − H̃

P2
j

Ξ
= 0, in Ω

−∇ ·D∇Φ2,j +
5

9κ′
1

D
Φ2,j −

2

3κ

HP2
j − H̃

P2
j

Ξ
= 0, in Ω

n ·D∇Φ1,j +
1

2
Φ1,j −

1

8
Φ2,j = 0, on ∂Ω

n ·D∇Φ2,j +
7

24κ
Φ2,j −

1

8κ
Φ1,j = 0, on ∂Ω

(37)

The coefficients (i.e. D and σa2) in this system of equations are all known (since σs is known),
independent of the unknown absorption coefficient σa. With the regularity assumptions we
have, standard elliptic theory [32, 52] shows that when HP2

j = H̃P2
j a.e., i.e. HP2

j − H̃
P2
j = 0

a.e., the solution (Φ1,j,Φ2,j) = (0, 0) a.e.. This immediately implies that (φ1,j, φ2,j) =

(φ̃1,j, φ̃2,j). Therefore, σa =
H

P2
j

φ1,j− 2
3
φ2,j

=
H̃

P2
j

φ̃1,j− 2
3
φ̃2,j

= σ̃a if φ1,j − 2
3
φ2,j 6= 0 a.e.. This proves

the uniqueness part of the theorem.

To derive the stability estimate (36), we observe that

|
HP2
j − H̃

P2
j

Ξ
| = |σa(φ1,j−

2

3
φ2,j)−σ̃a(φ̃1,j−

2

3
φ̃2,j)| = |(σa−σ̃a)(φ1,j−

2

3
φ2,j)+σ̃a(Φ1,j−

2

3
Φ2,j)|.

This, together with the triangle inequality, gives that

‖(σa − σ̃a)(φ1,j −
2

3
φ2,j)‖L2(Ω) ≤ c1|

HP2
j − H̃

P2
j

Ξ
‖L2(Ω) + c2‖(Φj,Ψj)‖[L2(Ω)]2 , (38)

using the fact that σa and σ̃a are bounded as in the assumption (A-ii).

On the other hand, the system (40) provides us with the following stability estimate for
(Φ1,j,Φ2,j):

‖(Φ1,j,Φ2,j)‖[H2(Ω)]2 ≤ c3‖HP2
j − H̃

P2
j ‖L2(Ω). (39)

The estimate (36) then follows by combining (38) and (39).
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The above proof is constructive in the sense that it provides an explicit procedure for
the reconstruction of σa. To do that, we first solve

−∇ ·D∇φ1,j +
HP2
j

Ξ
= 0, in Ω

−∇ ·D∇φ2,j +
5

9κ′
1

D
φ2,j −

2

3κ

HP2
j

Ξ
= 0, in Ω

n ·D∇φ1,j +
1

2
φ1,j −

1

8
φ2,j =

1

2
fj(x), on ∂Ω

n ·D∇φ2,j +
7

24κ
φ2,j −

1

8κ
φ1,j = − 1

8κ
fj(x), on ∂Ω

(40)

for (φ1,j, φ2,j). We then simply reconstruct the absorption coefficient as σa =
HP2
j

Ξ(φ1,j − 2
3
φ2,j)

at points where φ1,j(x)− 2
3
φ2,j(x) 6= 0. When J data sets are available, we reconstruct σa as

σa =

∑J
j=1H

P2
j

Ξ
∑J

j=1(φ1,j − 2
3
φ2,j)

.

Therefore, to reconstruct σa from J initial pressure fields, we only need to solve J diffusion
systems (40) and perform some algebraic operations afterwards, even though the reconstruc-
tion problem is a nonlinear inverse problem.

The case of reconstructing the scattering coefficient or more than one coefficients are
significantly more complicated, as demonstrated in the case of the classical diffusion model
studied in [10, 12]. We do not have results for these cases in the full nonlinear setting. We
will instead study the problem in the linearized setting.

We now use the second form of the simplified P2 system given in (10). We linearize
the system formally following the differentiability result in Lemma 3.1. We use (Ξ, σa, σs)
and (δΞ, δσa, δσs) (note the equivalence δD = −δσs/[3(1− g)σ2

s ]) to denote respectively the
background coefficients and the perturbation to the coefficients. We use

(wj, φ2,j) = (φ1,j −
2

3
φ2,j, φ2,j), and (δwj, δφ2,j) = (δφ1,j −

2

3
δφ2,j, δφ2,j) (41)

to denote the solutions to the background problem and the perturbations to the background
solution caused by the perturbation in the coefficients, respectively. We then have that
(wj, φ2,j) solves

−∇ ·D∇wj + (1 + 4
9κ

)σawj − 10
27κ′D

φ2,j = 0, in Ω
−∇ ·D∇φ2,j + 5

9κ′D
φ2,j − 2

3κ
σawj = 0, in Ω

n ·D∇wj + 6κ+1
12

wj + 15κ−10
72κ

φ2,j = 6κ+1
12

fj(x), on ∂Ω
n ·D∇φ2,j + 5

24κ
φ2,j − 1

8κ
wj = − 1

8κ
fj(x), on ∂Ω

(42)

while (δwj, δφ2,j) solves

−∇ ·D∇δwj + (1 + 4
9κ

)σaδwj − 10
27κ′D

δφ2,j = ∇ · δD∇wj − (1 + 4
9κ

)wjδσa − 10
27κ′D2φ2,jδD, in Ω

−∇ ·D∇δφ2,j + 5
9κ′D

δφ2,j − 2σa
3κ
δwj = ∇ · δD∇φ2,j +

5φ2,j

9κ′D2 δD +
2wj

3κ
δσa, in Ω

n ·D∇δwj + 6κ+1
12

δwj + 15κ−10
72κ

δφ2,j = 0, on ∂Ω
n ·D∇δφ2,j + 5

24κ
δφ2,j − 1

8κ
δwj = 0, on ∂Ω

(43)
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where we have used the fact that D|∂Ω is known (since σs|∂Ω is known) in the boundary
conditions.

The perturbed initial pressure field, the data, now take the form:

δHP2
j = (δΞσa + Ξδσa)wj + Ξσaδwj. (44)

The linearized data show that if the background Grüneisen coefficient Ξ = 0, then δHP2
j =

δΞσa(φ1,j − 2
3
φ2,j). Therefore, we can reconstruct δΞ, but not the other parameters. If

the background absorption coefficient σa = 0 (which means that the medium is weakly
absorbing), then δHP2

j = Ξδσ(φ1,j − 2
3
φ2,j). Therefore, we can reconstruct δσa but not the

other parameters.

The case of reconstructing σs only. We start with the case of reconstructing only the
scattering coefficient.

We have the following result in the linearized setting.

Theorem 4.2. Under the assumptions in (A-i)-(A-iv) and (8) for the domain and the back-

ground coefficients, let δHP2
j and δH̃P2

j be two perturbed data sets generated with perturbed
coefficients δσs and δσ̃s respectively. Then we have the following bound on the reconstruction:∫

Ω

Qj

(
δD

D
− δD̃

D

)2

dx ≤ c‖δHP2
j − δH̃

P2
j ‖H2(Ω) (45)

where the constant c depends on Ω and the background coefficients, and Qj is defined as

Qj(x) := ((1 +
4

9κ
)σawj − 4γφ2,j)φ2,j − u · ∇φ2,j −

1

3
D|∇φ2,j|2. (46)

If Qj(x) > − 10
27κ′D

φ2
2,j or Qj(x) ≥ − 10

27κ′D
φ2

2,j and |∇wj| ≥ ε > 0 for some ε, then δHP2
j =

δH̃P2
j a.e on Ω̄ implies δσs = δσ̃s a.e..

Proof. When only σs is sought, the perturbed datum (44) simplifies to

δHP2
j

Ξ
= σaδwj, (47)

while the perturbed simplified P2 system (43) simplifies to

−∇ ·D∇δwj + (1 + 4
9κ

)σaδwj − 10
27κ′D

δφ2,j = ∇ · δD∇wj − 10φ2,j

27κ′D2 δD, in Ω

−∇ ·D∇δφ2,j + 5
9κ′D

δφ2,j − 2
3κ
σaδwj = ∇ · δD∇φ2,j +

5φ2,j

9κ′D2 δD, in Ω
n ·D∇δwj + 6κ+1

12κ
δwj + 15κ−10

72κ
δφ2,j = 0, on ∂Ω

n ·D∇δφ2,j + 5
24κ
δφ2,j − 1

8κ
δwj = 0, on ∂Ω

(48)
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Using (47), we can further rewrite (48) into

− 10
27κ′D

δφ2,j = ∇ · δD∇wj − 10φ2,j

27κ′D2 δD

+∇ ·D∇ δH
P2
j

Ξσa
− (1 + 4

9κ
)
δH

P2
j

Ξ
, in Ω

−∇ ·D∇δφ2,j + 5
9κ′D

δφ2,j = ∇ · δD∇φ2,j +
5φ2,j

9κ′D2 δD + 2
3κ

δH
P2
j

Ξ
, in Ω

n ·D∇δφ2,j + 5
24κ
δφ2,j = 1

8κ

δH
P2
j

Ξσa
, on ∂Ω

δD = 0, on ∂Ω

(49)

Note that we have added the natural boundary condition for δD that we assumed in the
assumption (A-iv). This can now be seen as a system of partial differential equations with
(δφ2,j, δD) as the unknown.

Let u = D∇wj, µ = δD/D, γ = 10
27κ′D

and Yj = ∇ ·D∇ δH
P2
j

Ξσa
− (1 + 4

9κ
)
δH

P2
j

Ξ
. We then

verify that the first equation in (49) can be written as

∇ · µu− γφ2,jµ+ γδφ2,j + Yj = 0, (50)

and the first equation in the background system (42) can be written as

−∇ · u + (1 +
4

9κ
)σawj − γφ2,j = 0. (51)

Moreover, we observe that for any scalar function γ and vector function u, we have

∇ · µ2u− 2µ∇ · µu + µ2∇ · u = 0. (52)

Using (50) and (51), we can write (52) as

∇ · µ2u− µ2(3γφ2,j − (1 +
4

9κ
)σawj) + 2µ(γδφ2,j + Yj) = 0. (53)

We multiply this equation by φ2,j and integrate over Ω to get∫
Ω

µ2

[
−u · ∇φ2,j − (3γφ2,j − (1 +

4

9κ
)σawj)φ2,j

]
dx + 2

∫
Ω

µ(γδφ2,j + Yj)φ2,jdx = 0. (54)

Meanwhile, we can multiply the second equation in (49) by δφ2,j and integrate over Ω to
get∫

Ω

[
D|∇δφ2,j|2 +

3

2
γ|δφ2,j|2 + µD∇φ2,j · ∇δφ2,j −

3

2
γµφ2,jδφ2,j −

2

3κ

δHP2
j

Ξ
δφ2,j

]
dx = 0.

(55)

We can now combine (54) and (55) to get∫
Ω

µ2

[
−u · ∇φ2,j − (3γφ2,j − (1 +

4

9κ
)σawj)φ2,j

]
dx +

∫
Ω

[
4

3
D|∇δφ2,j|2 + 2γ|δφ2,j|2

]
dx

+
4

3

∫
Ω

µD∇φ2,j · ∇δφ2,jdx +

∫
Ω

2µYjφ2,jdx−
∫

Ω

8

9κ

δHP2
j

Ξ
δφ2,j = 0. (56)
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Using the fact that ∀x, y ∈ R, xy ≤ 1
2
((ax)2 + (y/a)2), ∀a 6= 0, we have the following bounds

for the last three terms in above equation:∫
Ω

µD∇φ2,j · ∇δφ2,jdx ≤
∫

Ω

[
1

4
µ2D|∇φ2,j|2 +D|∇δφ2,j|2

]
dx,∫

Ω

2µYjφ2,jdx ≤
∫

Ω

[
γµ2φ2

2,j +
Y 2
j

γ

]
dx,

∫
Ω

8δHP2
j

9κΞ
δφ2,j ≤

∫
Ω

[
(
2
√

2δHP2
j

9κΞ
√
γ

)2 + 2γδφ2
2,j

]
dx.

These bounds can be combined with (56) to conclude that∫
Ω

µ2

[
((1 +

4

9κ
)σawj − 4γφ2,j)φ2,j − u · ∇φ2,j −

1

3
D|∇φ2,j|2

]
dx ≤ c‖δHP2

j ‖2
H2(Ω), (57)

with c depending on the background coefficients as well as Ω. The stability result in (45)
then follows from the linearity of the problem.

To prove the uniqueness claim, we observe that when δHP2
j = 0 in (56), (57) becomes∫

Ω

{
µ2
[
Qj + γφ2

2,j

]
+ γ|δφ2,j|2

}
dx ≤ 0. (58)

When Qj > −γφ2
2,j, we conclude that µ ≡ 0 ≡ δφ2,j from the above inequality. When

Qj + γφ2
2,j = 0, we conclude from the above inequality that δφ2,j ≡ 0. The first equation

in (49) then simplifies to, with (δφ2,j, δH
P2
j ) = (0, 0),

∇ · µu− γφ2,jµ = 0, in Ω, µ = 0, on ∂Ω.

This transport equation admits the unique solution µ = 0 when |u| ≥ ε > 0 for some
ε [10, 26]. The proof is complete.

We now consider the case where more than one coefficient is to be reconstructed. We
focus on the practically important cases of reconstructing (δΞ, δσa) and (δσa, δσs).

The case of reconstructing (δΞ, δσa). In this case, the scattering coefficient σs (and
therefore D) is known. Therefore the linearized simplified P2 equation (43) reduces to:

−∇ ·D∇δwj + (1 + 4
9κ

)σaδwj − 10
27κ′D

δφ2,j = −(1 + 4
9κ

)δσawj, in Ω
−∇ ·D∇δφ2,j + 5

9κ′
1
D
δφ2,j − 2

3κ
σaδwj = 2

3κ
δσawj, in Ω

n ·D∇δwj + 6κ+1
12

δwj + 15κ−10
72κ

δφ2,j = 0, on ∂Ω
n ·D∇δφ2,j + 5

24κ
δφ2,j − 1

8κ
δwj = 0, on ∂Ω

(59)

Since the linearized data (44) does not depend on the scattering coefficient σs explicitly, it
remains in the original form in this case.

We now develop a two-stage procedure for the reconstruction of (δΞ, δσa). We first
eliminate δΞ from the system to reconstruct δσa. To do that, we check that, for any i 6= j,

δHP2
ij ≡ wj

δHP2
i

Ξσa
− wi

δHP2
j

Ξσa
= wjδwi − wiδwj, (60)
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We then observe that δHP2
ij does NOT depend explicitly on the coefficient perturbation δΞ.

Moreover, the equations for the perturbations in (59) depend only on δσa. We could hope
to reconstruct δσa out of (59) and (60).

We have the following partial result on the reconstruction of δσa.

Theorem 4.3. Under the assumptions in (A-i)-(A-iv) and (8), let δwj and δ̃wj be solutions

to (59) with coefficients δσa and δ̃σa respectively. Assume further that the illumination source

fj is selected such that the background solution wj 6= 0. Then δwj = δ̃wj a.e. implies that

δσa = δ̃σa a.e. . Moreover, we have the following stability bound:

c‖δwj − δ̃wj‖H2(Ω) ≤ ‖(δσa − δ̃σa)wj‖L2(Ω) ≤ c̃‖δwj − δ̃wj‖H2(Ω), (61)

where c and c̃ are constants that depend on the domain Ω, the background coefficients and
the background solution (wj, φ2,j).

Proof. We first prove the injectivity claim. Let δwj = 0. Then the first equation in (59)
implies that

δσawj =
10

27κ′D
δφ2,j/(1 +

4

9κ
).

The second equation in (59), together with its boundary condition, then simplifies to

−∇ ·D∇δφ2,j + κ′′′δφ2,j = 0, in Ω
n ·D∇δφ2,j + 5

24κ
δφ2,j = 0, on ∂Ω

where k′′′ = 5
9κ′

1
D
− 2

3κ
10

27κ′D
/(1 + 4

9κ
)) > 0. This equation admits only the trivial solution

δφ2,j ≡ 0. Therefore δσa ≡ 0.

To derive the stability bound (61), we first observe that the left inequality follows directly
from classical theory for elliptic systems [32, 52]. To obtain the right inequality, we use the
first equation in (59). We take the square of both sides of the equation, integrate over Ω,
and use the triangle and the Hölder’s inequalities to obtain

‖δσawj‖2
L2(Ω) ≤ c1

(
‖δwj‖2

H2 + ‖δφ2,j‖2
L2(Ω) + ‖δwj‖H1(Ω)‖δφ2,j‖L2(Ω)

)
. (62)

We now multiply the first equation in (59) by 2
3κ

, the second equation by 1 + 4
9κ

, and add
the results together to get, after eliminating the factor 1 + 4

9κ
,

−∇ ·D∇δφ2,j +
5κ

(4 + 9κ)κ′D
δφ2,j =

6

4 + 9κ
∇ ·D∇δwj, in Ω. (63)

Moreover, from the boundary condition for δφ2,j in (59) we have

n ·D∇δφ2,j +
5

24κ
δφ2,j =

1

8κ
δwj, on ∂Ω (64)

We can therefore look at (63) and (64) as an elliptic equation for δφ2,j and conclude from
classical theory [32, 28] that

‖δφ2,j‖H2(Ω) ≤ c2‖∇ ·D∇δwj‖L2(Ω) + ‖δwj‖L2(∂Ω) ≤ c̃‖δwj‖H2(Ω). (65)

We now combine (62) and (65) to get the right equality in (61).
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So long as we could select two illumination sources fi and fj such that the background
densities wi and wj do not destroy the invertibility of the map δσa 7→ δHP2

ij = wiδwj−wjδwi,
note again that both δσa 7→ δwi and δσa 7→ δwj are invertible by the previous theorem, we
could uniquely reconstruct δσa from δHP2

ij .

To perform numerical reconstruction of δσa from J data sets, we use the usual least-
square inversion method. We minimize the functional

Ψ(δσa) =
∑

1≤i<j≤J

‖wiδwj − wjδwi − δHP2∗
ij ‖2

L2(Ω) + β‖∇δσa‖2
[L2(Ω)]3 . (66)

Note that here we form the difference data using all (i, j) pairs satisfying i < j. There
are totally J(J − 1)/2 such pairs. We solve this minimization problem using the SNOPT
algorithm we described in the previous section, even though this problem is linear. Once we
reconstructed δσa, we can reconstruct δΞ using the data (44):

δΞ =

∑J
j=1 δH

P2
j − Ξδσa

∑J
j=1wj − Ξσa

∑J
j=1 δwj

σa
∑J

j=1wj
.

The case of reconstructing (δσa, δσs). In the case where Ξ is assumed known, the
perturbed data (44) simplify to

δHP2
j

Ξ
= σaδwj + δσawj. (67)

This simplification allows us to rewrite the system of equations for the perturbations, that
is, system (43), into the form

−∇ ·D∇δwj − 10
27κ′D

δφ2,j = ∇ · δD∇wj − 10φ2,j

27κ′D2 δD − 9κ+4
9κ

δH
P2
j

Ξ
, in Ω

−∇ ·D∇δφ2,j + 5
9κ′D

δφ2,j = ∇ · δD∇φ2,j +
5φ2,j

9κ′D2 δD + 2
3κ

δH
P2
j

Ξ
, in Ω

n ·D∇δwj + 6κ+1
12

δwj + 15κ−10
72κ

δφ2,j = 0, on ∂Ω
n ·D∇δφ2,j + 5

24κ
δφ2,j − 1

8κ
δwj = 0, on ∂Ω

(68)
This system does not depend explicitly on δσa.

The simplification (67) also allows us to form the difference data δHP2
ij in the same way

as in (60). The difference data δHP2
ij in (60) do not depend on δσa either.

Let us again consider a two-stage procedure for the reconstruction of (δσa, δσs). We first
use the combination of (68) and (60) to reconstruct the perturbation of the scattering coef-
ficient, δσs (or equivalently δD). We then reconstruct δσa once δD has been reconstructed.

The following result is a simple corollary of Theorem 4.2.

Corollary 4.4. Under the same assumptions made in Theorem 4.2, the linear map

(δHp
j , δwj) :

δσs 7→ (δHp
j , δwj)

L2(Ω) 7→ H2(Ω)×H2(Ω)
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is injective when Qj(x) > − 10
27κ′D

φ2
2,j or Qj(x) ≥ − 10

27κ′D
φ2

2,j and |∇wj| ≥ ε > 0 for some ε.
Moreover, we have the following stability bound:∫

Ω

(δσs − δ̃σs)2Qjdx ≤ c
(
‖δHP2

j − δH̃
P2
j ‖2

L2(Ω) + ‖δwj − δw̃j‖2
H2(Ω)

)
, (69)

where c is a constant that depends on Ω and the background coefficients.

Proof. The proof is almost identical to that of Theorem 4.2. If we move the terms involving
δwj to the right hand side, the system (68) has exactly the same structure as (48). The
stability bound (69) follows from the same argument for (45). The injectivity claim follows
when taking (δHP2

j , δwj) = (0, 0).

To reconstruct δD from data (δHP2
i , δHP2

ij ) (or equivalently (δHP2
i , δHP2

j ) ), we need
to select two illumination sources fi and fj such that the background densities wi and
wj do not destroy the injectivity of the map δD 7→ (δHP2

i , δHP2
ij ) = (δHP2

i , wiδwj − wjδwi).
Computationally, we solve the reconstruction problem by solving a least-square minimization
problem with the same objective function in (66) (besides the regularization term which is
now on δD). Once we reconstructed δσa, we can reconstruct δσa using the data (67):

δσa =

∑J
j=1 δH

P2
j /Ξ− σa

∑J
j=1 δwj∑J

j=1 wj
.

Comparing simplified P2 and P1 reconstructions. The main motivation for using
more accurate forward light propagation models in PAT is that the reconstructions based
these models are more accurate. For instance, the difference between the reconstruction of
the Grüneisen coefficient from the radiative transfer model (1) and that from the classical
diffusion model (12), using the same data H, is given as

Ξrte − Ξdiff =
H(ϕ−

∫
S2 u(x,v)dv)

σa(
∫
S2 u(x,v)dv)ϕ(x)

In this simple case, the error in the reconstruction of Ξ is proportional to the difference
between the solutions to the two models. In the next theorem, we characterize the difference
between the reconstruction of σa using the simplified P2 model (9) and that using the classical
diffusion model (12).

Theorem 4.5. Let Ω, c and Ξ satisfy the assumptions in (A-i)-(A-iv) and assume that
the assumptions in (8) holds. Let σP2

a and σP1
a be the absorption coefficients reconstructed

with the simplified P2 model (9) and the classical diffusion model (12) respectively, using the
same datum H. Assume that H is also known on the boundary ∂Ω. Then we have

σP2
a − σP1

a =
H

Ξ

φ− (φ1 − 2
3
φ2)

φ(φ1 − 2
3
φ2)

=
2

3

Ξ

HσP2
a σ

P1
a

φ2 (70)
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where φ2 solves

−∇ ·D∇φ2 +
5

9κ′D
φ2 =

2

3κ

H

Ξ
, in Ω

n ·D∇φ2 +
5

24κ
φ2 =

1

8κ
(
H

σaΞ
− f(x)), on ∂Ω

(71)

Proof. We first observe that σP2
a and σP1

a can be explicitly reconstructed with the following
procedures:

σP2
a =

H

Ξ(φ1 − 2
3
φ2)

and σP1
a =

H

Ξφ
(72)

where (φ1, φ2) is the solution to the simplified P2 system (9) with σa(φ1− 2
3
φ2) replaced with

H/Ξ, and φ is the solution to the diffusion model (12) with σaφ replaced by H/Ξ. In other
words, (φ1, φ2) solves

−∇ ·D∇φ1 = −H
Ξ
, in Ω

−∇ ·D∇φ2 +
5

9κ′D
φ2 =

2

3κ

H

Ξ
, in Ω

n ·D∇φ1 +
5

16
φ1 =

1

2
f(x)− 3

16

H

σaΞ
, on ∂Ω

n ·D∇φ2 +
5

24κ
φ2 =

1

8κ
(
H

σaΞ
− f(x)), on ∂Ω

(73)

while φ solves

−∇ ·D∇φ = −H
Ξ
, in Ω

n ·D∇φ+
1

2
φ =

1

2
f(x), on ∂Ω

(74)

We therefore conclude that

σP2
a − σP1

a =
H

Ξ

φ− (φ1 − 2
3
φ2)

φ(φ1 − 2
3
φ2)

=
Ξ

HσP2
a σ

P1
a

(
(φ− φ1) +

2

3
φ2

)
. (75)

We observe from the second equation and its boundary condition (i.e. the forth equation)
in (73) that φ2 is the unique solution to (71).

Let φ̃ = φ− φ1. We verify that φ̃ solves

−∇ ·D∇φ̃ = 0, in Ω

n ·D∇φ̃+
5

16κ
φ̃ = 0, on ∂Ω

(76)

where we have used the assumption that σa is known on ∂Ω, made in (A-iv), so that

(φ1 − 2
3
φ2) = φ =

H

Ξσa
on the boundary. This equation has a unique solution φ̃ = 0.

Therefore (75) simplifies to (70).
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This result says that the difference between reconstructions based on the simplified P2

model (9) and reconstructions based on the classical diffusion model (12) are noticeable. In
particular, if the data are generated with the simplified diffusion model (9), then using the
classical diffusion model (12) would give us reconstructions that are simply not as accurate,
vice versa. An implication of this is that if we believe that the data we used in PAT
are generated by a physical process best modeled by the radiative transport equation (1),
then using the simplified P2 model to perform reconstructions is advantageous to using
the classical diffusion model, although we do not have an explicit characterization as in
Theorem 4.5.

5 Numerical experiments

We now present some numerical simulations on the inverse problems studied in the previ-
ous sections. For simplicity, we consider a setup in which the physical properties and the
illuminations used are invariant in the z direction so that we can perform simulations in the
two-dimensional case.

The spatial variables in the simplified P2 model (9), the classical diffusion model (12), and
the acoustic equation for ultrasound propagation (3) are discretized using the finite element
method with piecewise linear Lagrange elements. The time variable in the wave equation
is discretized with a second-order finite difference scheme. The optical illumination sources
are all selected to have strength distribution along the boundary following the Gaussian
distribution with standard deviation 0.5. The specific locations, i.e. centers, of the sources
will be given later in the numerical examples.

The synthetic acoustic data we will use are generated by solving the forward diffusion
models with the true optical properties and then feeding the corresponding initial pressure
field H into the acoustic wave equation. To mimic measurement error, we pollute the data
with additional random noise by multiplying each datum point by (1 +

√
3η× 10−2random),

with random a uniformly distributed random variable taking values in [−1, 1], and η being
the noise level (i.e. the size of the variance in percentage). When no additional random
noise are added to the synthetic data, we will say the data are “clean” (η = 0). Otherwise,
we say the data are “noisy” (η 6= 0).

The numerical simulations performed are all based on the minimization of the mismatch
functional (15) as documented in Section 3. In all the simulations, the Grüneisen coefficient
is assumed known and Ξ = 0.5. We emphasize that as long as Ξ is assumed known, whether
or not it is a constant has no visible impact on the reconstruction of σa and σs.

We perform two groups of numerical simulations.

5.1 Inversions based on the simplified P2 model

In the first group, we study PAT reconstructions with the simplified P2 light propagation
model. That is, we generate synthetic data using the model equation system (9) and perform
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the reconstruction using the same system of equation.

Experiment 1 [Reconstructing σa from Acoustic Data]. In the first numerical ex-
periment, we attempt to reconstruct the absorption coefficient assuming that the scattering
coefficient, as well as the Grüneisen coefficient which is set to be Ξ = 0.5 as mentioned
above, is known. More precisely, the spatial domain we take is the square Ω = (0, 2)× (0, 2),
the scattering coefficient σs = 80, and the anisotropic factor of the scattering kernel g = 0.9.
The true absorption coefficient has the form

σa(x) = 0.1 + 0.1χB1 + 0.2χB2 , (77)

with B1 = {(x, y) : (x−1.0)2 +(y−1.5)2 ≤ (0.2)2} and B2 = {(x, y) : (x−1.5)2 +(y−1.0)2 ≤
(0.3)2}.

Figure 1: Ultrasound signals measured at two different locations ((0.0, 0.8) (left) and
(1.0, 1.2) (right)) for two different illumination sources (top row: source located on the left
boundary; bottom row: source located on the right boundary) in the time window (0, 20).

We first show in Figure 1 some typical acoustic signals we recorded in this setup. Shown
are signals measured at (0.0, 0.8) and (1.0, 1.2) respectively for two different optical illumi-
nations in the time interval (0, T = 20). Note that the data used in the reconstructions in
the rest of the paper are on a larger time interval with T = 40, even though we observe in
our numerical experiments that T = 10 is often more than enough for stable reconstructions.

In Figure 2, we show the reconstruction of the absorption coefficient (77) using data with
noise levels η = 0 (i.e. noise-free data) and η = 5 respectively. The algorithm parameters
are as follows. The initial guess for all the reconstructions is σ0

a = 0.1. The linear bounds
we impose on the absorption coefficient are very loose: 10−3 ≤ σa ≤ 0.5. The regularization
parameter in (15) was chosen as α = 1e− 9 by trial and error.

Visual observation confirms that the reconstructions are of very high quality in this case,
comparable to the quality of reconstructions for PAT using the radiative transfer model [22,
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Figure 2: The absorption coefficient σa in (77) (left) and the reconstructions using noise-free
data (η = 0, middle) and noisy data (η = 5, right).

51, 66] and the classic diffusion model [10, 19]. To quantitatively measure the quality of the
reconstructions, we compute the relative L2 distance between the reconstructions and the
true coefficient. This distance is defined as

E =
‖σ̂a − σa‖L2(Ω)

‖σa‖L2(Ω)

,

where σa and σ̂a are respectively the true and reconstructed absorption coefficients. The
relative L2 error for the reconstructions in Figure 2 are respectively E = 0.006 and E = 0.035
for the case of η = 0 and η = 5. The reconstruction results are very stable with respect to the
initial guess we used, and the linear bounds we imposed on σa do not play a major role in this
case either. These observations indicate that the inverse problem is fairly well-conditioned.

Figure 3: The absorption coefficient σa in (78) (left) and the reconstructions using noise-free
data (η = 0, middle) and noisy data (η = 5, right).

We repeat similar numerical experiments for a few other absorption coefficients. The
quality of the reconstruction results are very similar to the case we reported above. For
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instance, in Figure 3, we show the reconstructions of a smooth absorption map defined as

σa(x) = 0.2 + 0.1 cos(πx− π) cos(πy − π). (78)

We again used the four sources to generate four data sets and initialize the reconstruction
algorithm at σ0

a = 0.1, very different from the true coefficient. We also impose the same
pointwise inequality constraints on the absorption coefficient, i.e. 10−3 ≤ σa ≤ 0.5, and the
same regularization parameter α. The reconstruction quality is comparable to the smooth
case and with results from the diffusion model [19]. The reconstruction errors are concen-
trated at the discontinuities, as expected. The relative L2 error in the reconstructions are
respectively E = 0.004 and E = 0.034 for the cases of η = 0 and η = 5.

Figure 4: Reconstructions of the absorption coefficient σa (defined in (77), top row) and the
diffusion coefficient (= 1/[3(1 − g)σs] with σs defined in (79), bottom row). Show are the
true coefficients (left) and the reconstructions using noise-free data (middle) and noisy data
with η = 5 (right).

Experiment 2 [Reconstructing (σa, σs) from Acoustic Data]. In this numerical ex-
periment, we perform simultaneous reconstruction of the absorption and the scattering coef-
ficients. The absorption coefficient is the same as the one defined in (77) while the scattering
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coefficient is defined as

σs(x) = 85 + 260χB2(x) + 260χB3(x), (79)

with B3 = {(x, y) : (x − 0.5)2 + (y − 0.8)2 ≤ (0.3)2} and B4 = {(x, y) : (x − 1.4)2 +
(y − 1.6)2 ≤ (0.2)2}. We again collect data from four different illumination patterns. The
reconstruction are initialized at σ0

a = 0.1 and σ0
s = 120. The linear bound constraints are

set as 10 ≤ σs ≤ 500 and 0 ≤ σa ≤ 1 in all cases. The regularization strength are selected
at α = 1e − 6 and β = 1e − 10 after a couple of trial and error testings. Note that the
discrepancy between the parameter α and β mainly come from the fact that the coefficients
σa and σs have values that are different on a few orders of magnitude: σa ∼ 0.1 while
σs ∼ 100.

Noise Level Ea =
‖σ̂a−σa‖L2

‖σa‖L2
Es =

‖σ̂s−σs‖L2

‖σs‖L2

η = 0 0.023 0.182
η = 2 0.043 0.251
η = 5 0.091 0.284
η = 10 0.174 0.385

Table 1: Relative L2 errors in the simultaneous reconstructions of the absorption and scat-
tering coefficients given in (77) and (79) from acoustic data with different noise levels.

In Figure 4 we show the reconstructions results from clean data and noisy data with η = 5.
The relative L2 errors in these reconstructions, as well as two additional reconstructions, are
summarized in Table 1.

We observe that the quality of the reconstructions is again very high when noise level is
very low. However, the quality degenerates quickly as the noise level increases, especially
for the scattering coefficient. As we observed in the previous cases, the box constraints on
the coefficients are very loose and do not have significant impact on the reconstructions.
Tighter bounds can be imposed to improve the quality of the reconstructions when these
a priori information are available. More carefully selection of the regularization coefficient
might also help improve the reconstructions. Those are not the directions that we want to
pursue in this research.

5.2 Inversions for cross-model comparisons

The numerical tests in Experiment 1 and Experiment 2 suggest that the PAT inverse
problem based on the simplified P2 model has very similar stability properties and recon-
struction quality as those based on the classical diffusion model or the radiative transport
model [10, 11, 51, 66], assuming that the data used in the reconstructions are generated
from the same model. In the next numerical experiment, we address a different issue in
PAT reconstructions. We are interested in studying the impact of model inaccuracies on
the quality of the reconstructions of the absorption and the scattering coefficients. More
precisely, assuming that the measurement data are generated by an accuracy model but we
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perform reconstructions based on a less accurate model. We are interested in the impact of
the inaccuracy of the inversion model on the reconstruction results. This problem has been
studied in Theorem 4.5 for the simple case of reconstructing only the absorption coefficient.
We now provide some numerical evidences.

Figure 5: Reconstructions of the absorption coefficient σa (left column) and the scattering
coefficient σs (right column) defined in (80) from noise-free data (η = 0, top row) and noisy
data with η = 5 (bottom row). The reconstructions are performed using the simplified P2

model as the forward light propagation model.

Experiment 3 [Cross-model Inversion Comparisons]. The setup is as follows. The
domain is the unit square Ω = (0, 1)× (0, 1). The true absorption and scattering coefficients
are

σa(x) = 0.2 + 0.1χB5(x),
σs(x) = 20 + 60χB6(x) + 60χB7(x),

(80)
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with B5 = {(x, y) : (x−0.5)2 +(y−0.25)2 ≤ (0.2)2}, B6 = {(x, y) : (x−0.25)2 +(y−0.75)2 ≤
(0.15)2}, and B7 = {(x, y) : (x − 0.75)2 + (y − 0.75)2 ≤ (0.15)2}. The anisotropic factor is
again g = 0.9.

We collect data from the four different illumination patterns that we used in the previous
numerical experiments. The data are generated by solving the simplified P2 model with the
true absorption and scattering coefficients. To exclude the impact of the acoustic wave
model on the comparison, we perform reconstructions directly from the internal data H, not
from the boundary ultrasound data as in the previous numerical experiments.

In all the reconstruction results below, we initialize the inversion algorithm at σ0
a = 0.1

and σ0
s = 50. The linear bound constraints are set as 10 ≤ σs ≤ 100 and 0 ≤ σa ≤ 1 in all

cases. The regularization strength are selected at α = 1e− 3 and β = 1e− 8 after extensive
numerical tests.

Noise Level Ea =
‖σ̂a−σa‖L2

‖σa‖L2
Es =

‖σ̂s−σs‖L2

‖σs‖L2

η = 0 0.039 0.244
η = 2 0.041 0.244
η = 5 0.052 0.245
η = 10 0.079 0.250

Table 2: Relative L2 errors in the simultaneous reconstructions of the absorption and scat-
tering coefficients in (80) based on the simplified P2 model data with different noise levels.

In Figure 5 and Figure 6 we show respectively the reconstruction results using the sim-
plified P2 model and the classical P1 model as the model for light propagation. The relative
errors in the reconstructions for the two groups of numerical simulations are summarized in
Table 2 and Table 3 respectively.

A quick comparison between the first row of Figure 5 and that of Figure 6 shows that
the reconstructions are significantly different, even though the internal data used in the
reconstructions are the same. To be more precise, the relative L2 errors in the reconstructions
changed from roughly (0.04, 0.24) in the first row of Figure 5 to roughly (0.12, 0.39) in the
first row of Figure 6. This shows that the right hand side of equation (70) is relatively large,
which indicates that in this specific setting, the solutions to the simplified P2 model and the
classical diffusion model are quite different.

Noise Level Ea =
‖σ̂a−σa‖L2

‖σa‖L2
Es =

‖σ̂s−σs‖L2

‖σs‖L2

η = 0 0.115 0.385
η = 2 0.116 0.388
η = 5 0.120 0.383
η = 10 0.134 0.387

Table 3: Same as Table 2 except that the reconstructions are performed using the P1

model (12) as the forward light propagation model.

The last row of Table 2 shows the reconstruction results with data containing 10% ran-
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Figure 6: Same as Figure 5 except that the reconstructions are performed using the P1

model (12) as the forward light propagation model.

dom noise. Comparing the results with these in the first row of Table 3 shows that the
former is still better. This implies in some sense that the “noise” we introduced here, by
using the classical diffusion model (12) to replace the simplified P2 model (9), is larger than
10%. Therefore, if we believe that the data are generated with accurate model, using the
same model to do PAT reconstructions gives better results than using a less accurate model.
This is in general true for most of the inverse problems we know. However, for problems such
as optical tomography, the benefit of using more accurate models in reconstructions is lost
at relatively low noise level [16, 62, 75], which is mainly due to the severe ill-conditioning of
the inversion problem. In our case, the inversion is less ill-conditioned (roughly, not math-
ematically speaking, although this can be characterized mathematically), and the accuracy
of the forward model plays a more important role.
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6 Concluding remarks

We studied in the paper the problem of reconstructing optical absorption and scattering
coefficients in quantitative photoacoustic tomography with the simplified P2 model as the
model of light propagation in the underlying medium. We showed numerically that one
can reconstruct the absorption and scattering coefficients from ultrasound data generated
under multiple illuminations, in a relatively stable manner. We also studied the quantitative
step of the reconstructions where we developed some uniqueness and stability results under
simplified circumstances.

There are multiple aspects of the current research that can be improved. One of our
near future plan is to generalize method proposed in this work to the case of the multiple
wavelength data. In that setup, we hope to be able to simultaneously reconstruct the
absorption, and the scattering and the Grüneisen coefficients as proved in the classical
diffusion case [10]. Another practically important issue to address is to perform similar
reconstructions from experimentally measured ultrasound data. It would be interesting
to see whether or not we can observe any difference between the reconstructions with the
simplified P2 model and those with the classical diffusion model with real-world experimental
data.
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