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Algorithm for solving the equation of radiative transfer
in the frequency domain
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We present an algorithm that provides a frequency-domain solution of the equation of radiative transfer (ERT)
for heterogeneous media of arbitrary shape. Although an ERT is more accurate than a diffusion equation, no
ERT code for the widely employed frequency-domain case has been developed to date. In this work the ERT
is discretized by a combination of discrete-ordinate and finite-volume methods. Two numerical simulations
are presented. © 2004 Optical Society of America
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Numerous studies concerning frequency-domain light
propagation in tissues have been carried out since
the early 1990s.1 – 6 The term “frequency domain”
refers to the case when the source intensity is modu-
lated (typically at 100–1000 MHz), which leads to
the propagation of so-called photon density waves
in highly scattering media. A major application
of these waves is in optical tomographic imaging,
where it is commonly believed that frequency-domain
techniques allow for better separation of absorption
and scattering effects compared with steady-state
methods. Currently available theoretical models for
photon-density-wave propagation in random media
are usually based on the diffusion equation,1 which
is an approximation to the more generally applicable
equation of radiative transfer (ERT).1,7 Although in
many cases the diffusion theory is indeed a good ap-
proximation for light propagation in biological tissues,
several researchers have theoretically and experimen-
tally pointed out the limits of this approximation.8 – 11

In trying to overcome these limitations, scientists have
developed radiosity-diffusion models,8 generalized dif-
fusion models for specific cases,11,12 and numeri-
cal methods for solving the full ERT directly.13 – 15

However, to the best of our knowledge, no algorithm
that solves the ERT in the frequency domain has been
presented so far.

In the frequency domain the ERT in spatial domain
D can be written as1
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where i �
p

21, x [ D , �n (n � 2, 3) and v [ �1

are spatial position and modulation frequency, v [ �1

is the speed of light in the medium, V [ Sn21 (unit
sphere of �n) is the direction of photon propagation,
and dm is the Lebesgue surface measure normalized
such that

R
Sn21 dm�V� � 1. Nonnegative functions

sa�x� and ss�x� are the absorption and scattering
coefficients, respectively, and st�x� � sa�x� 1 ss�x�.
The unknown quantity, c�x,V,v�, the radiance, is
radiant power per unit solid angle per unit area
perpendicular to the direction of propagation at x
in the direction V at modulation frequency v. The
normalized kernel k�V ? V 0� describes the probability
that photons traveling in direction V0 are scattered in
direction V. q�x,V,v� is a volume source.

Within the framework of the discrete-ordinate
method16,17 the total scalar f lux defined as the in-
tegration of c�x,V,v� over Sn21 is replaced by a
weighted summation of the radiance f ield in different
directions,16

Z
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c�x,V,v�dm�V� �
JX

j�1
hjc�x,Vj ,v� . (2)

The transport equation is thus decomposed into a dis-
crete set of J coupled differential equations that de-
scribe the photon f lux field along J directions, i.e.,

= ? �Vjc� 1
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hj 0kjj 0c�x,Vj 0 ,v� 1 q�x,Vj ,v� , (3)

for j � 1, 2, . . . ,J, where kjj 0 � k�Vj ? Vj 0�.
To further discretize the equations that result from

the discrete-ordinate method, we use a finite-volume
© 2004 Optical Society of America
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method.18 Finite-volume methods not only can handle
complicated geometry by arbitrary triangulations but
also conserve mass (or momentum, energy) in a
discrete sense, which is important in transport
calculations.

Let M be a mesh of �n consisting of polyhedral
bounded convex subsets of �n that covers our compu-
tational domain D and let E [ M be a control vol-
ume and ≠E be its boundary. Integrating the above
discrete-ordinate equations [Eq. (3)] over control vol-
ume E yields
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for j � 1, 2, . . . ,J, where nE �x� denotes the outward
normal to ≠E at point x [ ≠E , dg�x� denotes the sur-
face Lebesgue measure on ≠E , and X j � X �x,Vj ,v�.

To obtain the f inite-volume discretization equa-
tions, we assume that each of the control volumes is
small enough so that we can take values of all space-
dependent functions to be constant in the control
volume. Together with an upwind scheme for the
boundary f lux [see Eq. (6) below], we arrive at the
following equations:
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where the subscript (or superscript) E denotes the
function value on control volume E , and VE is the
volume of the control volume. An upwind scheme is
applied to approximate f lux F through the boundary
of E ,

Fj
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, (6)

where E 0 denotes the neighboring volume that has
the common boundary k with E , and SE ,k :=

R
k Vj ?

nE �x�dg�x�.
Finally, after collecting the discretized transport

equation [Eq. (5)] on all control volumes, we arrive at
the following system of algebraic equations:

AC � SC 1 Q , (7)

where A and S are discretized streaming-collision
and scattering operators, respectively, and Q is a
discretized source term.

To solve the system of equations [Eq. (7)] we adopt
a source iteration technique,17 for which we recast the
system as

ACl11 � SCl 1 Q , l $ 0 . (8)

The above equations are solved iteratively by a gener-
alized minimal residual algorithm19 until the conver-
gence criterion kClkL` # 10215 is satisfied.

To test the algorithm, we choose two examples.
In the f irst example we consider a two-dimensional
homogeneous medium of 5 cm 3 5 cm, defined as D :=
��x,y�T j 0 , x, y , 5�. A point source is placed at
xs � �0, 2.5�T , and 49 detectors are uniformly dis-
tributed on the right boundary of the domain [see
Fig. 1(a)]. The computational domain is discretized
into 100 3 100 square cells. We use 128 directions
(uniformly distributed on unit circle S1) with equal
weights. The scattering kernel is the Henyey–
Greenstein phase function17 with an anisotropic factor
of g � 0.9. The computation takes approximately
10 min on a 500-MHz Pentium III processor.

In the second example we compare the results
obtained for a cylindrical domain with and without a
voidlike inclusion. By voidlike inclusion we mean a
region in which both optical parameters are very small
(sa � 0.001 cm21 and ss � 0.01 cm21). The domain is
defined by D := ��x, y, z�T j x2 1 y2 , 1; 0 , z , 2� and
the void by Dv � ��x, y, z� j�x 2 0.4�2 1 y2 , 0.22,0 ,

z , 2�. A point source is placed on xs � �21, 0, 1�T ,
and the detectors are uniformly distributed on the
half-circle G � ��x, y, z� jx2 1 y2 � 1,x $ 0,z � 1�
[see Fig. 1(b)]. The domain is discretized into
11,836 tetrahedral elements, and 120 directions (S10)
with full level symmetry16 are used. Computations
take approximately 40 min on a 500-MHz Pentium III
processor.

In all computations the refractive index of the
medium is constant and equals 1.37. Nonreentry
boundary conditions16 are applied. Furthermore, we
define the complex f lux through the domain boundary
at point x with modulation frequency v by

f�x,v� �
Z

V?n�x�.0
c�x,V,v�dm�V� , (9)

where n�x� is the outer normal of the domain bound-
ary at x [ ≠D. Since f�x,v� is complex valued, we
define its amplitude I and phase u through the rela-
tion f�x,v� � I �x,v�exp�iu�x,v��, with u chosen such
that it vanishes in the vicinity of the source. If we

Fig. 1. Geometric settings of the computational domains.
Diamond, source; circles, detectors.
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Fig. 2. (a) ac amplitude and (b) phase delay computed at
the detectors for different optical parameters. Solid curve,
sa � 0.5 cm21, ss � 50 cm21; dashed curve, sa � 1.0 cm21,
ss � 50 cm21; dotted curve, sa � 0.5 cm21, ss � 100 cm21.
The anisotropy factor g � 0.9 in all cases. The modulation
frequency of the source is 200 MHz.

Fig. 3. Difference between (a) ac amplitude (I v 2 Ih)
and (b) phase delay (uv 2 uh) calculated at the detectors
for various modulation frequencies in the domain with
a void inclusion. g � 0.9 and 120 fully level-symmetric
directions16 are used. The optical parameters are
sa � 0.1 cm21 and ss � 120 cm21. Solid curve,
v � 200 MHz; circles, v � 400 MHz; dotted curve,
v � 600 MHz.

set the phase of q to zero, then u�x,v� coincides with
the so-called phase delay used in the frequency-domain
literature.

Figures 2(a) and 2(b) show ac amplitude and phase
delay for the first example calculated at detector
positions assuming different optical properties. The
modulation frequency for the source is taken to be
200 MHz. We observe that, at a fixed modulation fre-
quency, an increase in either absorption or scattering
will cause a decrease in the ac amplitude computed at
the detectors [see Fig. 2(a)]. Phase delays obtained
at the detectors [see Fig. 2(b)] increase with increas-
ing scatter but decrease with increasing absorption.
These observations agree with the underlying physics
of the transport processes.7

Figure 3 shows results for the second example. We
plot here the difference between the quantities calcu-
lated with and without the void inclusion as a function
of detector positions. We assign the superscript v to
those quantities computed in the former case and the
superscript h to those in the latter case. We show the
comparison at several modulation frequencies. It can
be seen from Fig. 3 that the ac amplitude increases at
the detectors right behind the void inclusion [Fig. 3(a)].
This well-known effect is due to the nonscattering and
nonabsorbing nature of void regions. Furthermore,
one can observe a change of phase that is becoming
more pronounced as the modulation frequency of the
source is increased [Fig. 3(b)].

In summary, we have presented an algorithm to
solve the radiative transfer equation in the frequency
domain with arbitrary geometries. The algorithm
combines the discrete ordinate method with finite-
volume discretizations. The scheme, although of
first order, preserves the positivity of the transport
solution.7 Results for two numerical examples are in
agreement with generally expected effects. Further
testing with experimental data will be necessary to
fully validate the code.
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