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FREQUENCY DOMAIN OPTICAL TOMOGRAPHY BASED ON THE
EQUATION OF RADIATIVE TRANSFER∗
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Abstract. Optical tomography consists of reconstructing the spatial distribution of absorption
and scattering properties of a medium from surface measurements of transmitted light intensities.
Mathematically, this problem amounts to parameter identification for the equation of radiative trans-
fer (ERT) with diffusion-type boundary measurements. Because they are posed in the phase-space,
radiative transfer equations are quite challenging to solve computationally. Most past works have
considered the steady-state ERT or the diffusion approximation of the ERT. In both cases, substan-
tial cross-talk has been observed in the reconstruction of the absorption and scattering properties
of inclusions. In this paper, we present an optical tomographic reconstruction algorithm based on
the frequency-domain ERT. The inverse problem is formulated as a regularized least-squares mini-
mization problem, in which the mismatch between forward model predictions and measurements is
minimized. The ERT is discretized by using a discrete ordinates method for the directional variables
and a finite volume method for the spatial variables. A limited-memory quasi-Newton algorithm is
used to minimize the least-squares functional. Numerical simulations with synthetic data show that
the cross-talk between the two optical parameters is significantly reduced in reconstructions based
on frequency-domain data as compared to those based on steady-state data.
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1. Introduction. The inverse problem related to the equation of radiative trans-
fer (ERT) has long been of interest in many fields of applied physics and mathematics.
In this problem, one attempts to determine the spatial distribution of parameters (e.g.,
the spatial distribution of absorption and scattering coefficients) inside a medium
from either transmission or reflectance data collected by illuminating the medium
from many different directions. Applications include, for instance, astronomy [61],
nuclear science [42, 43], and atmospheric science [12]; see the review [50]. Recent ad-
vances in this field have been fueled by an increased interest in medical applications.
By performing optical measurements on the surface of the skin, optical tomographic
techniques attempt to reconstruct the spatial distribution of absorption and scattering
coefficients inside the body. These parameters can then be used for many diagnostic
purposes [13].

Mathematically, optical tomography reduces to parameter identification problems
(inverse problems) for the ERT, also referred to as the linear Boltzmann equation or
the transport equation. Most early studies in the field deal with plane-parallel ge-

∗Received by the editors November 18, 2004; accepted for publication (in revised form) March 15,
2006; published electronically September 15, 2006. The work of the first and third authors was
supported in part by the National Institute of Arthritis and Musculoskeletal and Skin Diseases
(grant 2R01 AR046255) and by the National Institute of Biomedical Imaging and Bioengineering
(grant R01 EB001900), which are both part of the National Institutes of Health. The work of the
second author was supported by NSF grant DMS-0239097 and an Alfred P. Sloan Fellowship.

http://www.siam.org/journals/sisc/28-4/61919.html
†Department of Applied Physics & Applied Mathematics, Columbia University, New York, NY

10027 (kr2002@columbia.edu, gb2030@columbia.edu).
‡Department of Biomedical Engineering and Radiology, Columbia University, New York, NY

10027 (ahh2004@columbia.edu).

1463



1464 KUI REN, GUILLAUME BAL, AND ANDREAS H. HIELSCHER

ometry [20, 24]. Inversion procedures were also developed in many more general yet
still constrained geometries; see, for instance, [3, 42, 43, 61] and the review papers
[49, 50]. Because of their geometrical specificities, most of these works do not directly
apply to biomedical applications. In the mid-1990s several groups started developing
schemes and algorithms that overcame these problems in the framework of the diffu-
sion approximation to the ERT; see, for instance, [4, 34, 57, 63]. Many theoretical
and experimental studies have shown that the diffusion approximation was valid only
in specific contexts—for instance, when the scattering coefficient is sufficiently large
and the absorption coefficient sufficiently small [16, 17, 23, 31]. While this is often the
case in biomedical applications there remain many important applications, for which
reconstructions based on the ERT are needed. Some examples include brain imaging,
where the presence of low-absorbing and low-scattering cerebrospinal fluid leads to
nondiffusive light propagation; imaging of joints, where clear synovial fluid has the
same effects as cerebrospinal fluid in the brain; and small animal imaging, where small
object dimensions (1–2 cm in diameter) invalidate the classical diffusion approxima-
tion [30, 32]; see, however, [6, 8] for ways to generalize the diffusion equation in certain
situations.

Only quite recently have studies emerged that describe ERT-based reconstruction
codes for use in biomedical optical tomography. First, a transport-backtransport
method, a nonlinear inversion method, applied to the two-dimensional time-dependent
equation of radiative transfer was reported in [18]. New algorithms were developed and
experimentally tested for two- and three-dimensional cases using a time-independent
ERT in [38, 39, 40, 41]. While these works, which address real-life three-dimensional
problems, are an important step towards practical applications, they still suffer from
considerable cross-talk between absorption and scattering reconstructions. What we
mean by cross-talk is that purely scattering (or purely absorbing) inclusions are often
reconstructed with unphysical absorption (or scattering) properties. This behavior is
well-understood from the theoretical viewpoint: Different optical distributions inside
the medium can lead to the same measurements collected at the surface of the medium
[5, 33]. To avoid such cross-talk, which may lead to wrong diagnostics, we need
different data. An experimental technique increasingly employed in recent years to
obtain additional information is to use frequency domain measurements. In this case
the source intensity is modulated (typically between 100–1000 MHz), leading to the
propagation of so-called photon density waves. Since frequency domain measurements
provide information about both the phase and the intensity of the waves (and not only
the intensity as in steady-state measurements), it is expected that the frequency-
domain techniques will allow for better separation of absorption and scattering effects
[5, 48]. Numerical reconstructions based on the frequency-domain ERT, however,
have not yet been developed in the literature. This is the major motivation for the
present work.

We will propose in the following sections a numerical procedure that solves the
frequency-domain optical tomography problem with angularly averaged measurement.
The numerical procedure involves multiple techniques such as the finite volume method
for transport discretization, limited memory BFGS for minimization, the adjoint state
method for computing Fréchet derivatives, the matrix-free approach for evaluating ma-
trix vector products, and the L-curve method for selecting regularization parameters.
The combination of those techniques allows us to perform numerical reconstructions
in geometrical settings that are of practical importance.

The remainder of the paper is organized as follows. In section 2 we formulate the
inverse problem in frequency-domain optical tomography as a classical regularized
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least-squares problem and describe the adjoint method for the computation of the
gradient of the least-squares functional. In section 3 we present the details on the
discretization of the forward and backward problems, which is based on using a dis-
crete ordinates methods for the directional variables and a finite volume method for
the spatial variables. The implementation of the minimization procedure, based on a
quasi-Newton optimization algorithm, and the choice of the regularization parameter
are described in section 4. Several numerical simulations illustrate the performance
of the code in section 5. Reconstructions based on synthetic data indeed show a sig-
nificant reduction of the cross-talk mentioned above when frequency-domain data are
used. Concluding remarks are finally offered in section 6.

2. Problem formulation. We now formulate the optical tomography problem.
Let D ⊂ R

n be our domain of interest, with sufficiently regular boundary ∂D. Then
the frequency-domain equation of radiative transfer that describes the photon density
in the phase space, i.e., as a function of position x ∈ D and direction θ ∈ Sn−1 (unit
sphere of R

n) is given by [4]

T u ≡
( iω
v

+ θ · ∇ + σa(x)
)
u(x,θ) + Q(u)(x,θ) = 0 in D × Sn−1,

u(x,θ) = f(x,θ) on Γ−,
(2.1)

where i =
√
−1, n = 2, 3 is the space dimension, v ∈ R

+ is the speed of light in the
medium, and ω is the modulation frequency of the boundary source f(x,θ). The non-
negative function σa(x) ∈ L∞(D) is the absorption coefficient. The unknown quantity,
u(x,θ), is the radiant power per unit solid angle per unit area perpendicular to the
direction of propagation at x in the direction θ. Note that u(x,θ) depends also on
ω although, for simplicity, we do not write this dependency explicitly. The boundary
sets Γ± are defined as

Γ± = {(x,θ) ∈ ∂D × Sn−1 s.t. ±θ · ν(x) > 0},

with ν(x) the outward unit normal to the domain at x ∈ ∂D. The scattering operator
Q is defined as

Q(u)(x,θ) = σs(x)
(
u(x,θ) −

∫
Sn−1

k(θ · θ′)u(x,θ′)dμ(θ′)
)
.(2.2)

Here, σs(x) ∈ L∞(D) is the scattering coefficient and dμ is the surface measure on
Sn−1 normalized so that

∫
Sn−1 dμ(θ) = 1. The “collision” kernel k(θ · θ′), which

describes the probability that photons traveling in direction θ′ scatter into direction
θ, is a positive function independent of x and satisfies the normalization condition:∫

Sn−1

k(θ · θ′)dμ(θ′) = 1.(2.3)

The scattering kernel for light propagation in tissues is highly peaked forward and
is chosen as the Henyey–Greenstein phase function [29, 62]

k(θ · θ′) = C
1 − g2

(1 + g2 − 2g cosφ)3/2
,(2.4)

where φ is the angle between θ and θ′, i.e., θ · θ′ = cosφ, and where g ∈ [0, 1]
is the anisotropy factor, which measures how peaked forward the phase function is.
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The larger g is, the more forward the scattering. The anisotropy factor is often used
to define the so-called effective scattering coefficient through σ′

s = (1 − g)σs. C is a
normalization constant such that (2.3) hold. We mention that scattering kernels other
than (2.4) have also been used in some situations [36] and that simplified (Fokker–
Planck) models can also be used to analyze highly peaked scattering in biological
tissues [37].

The optical tomography problem thus consists of reconstructing σa(x) and σs(x)
in (2.1) from boundary current measurements; see (2.6) below. Our objective in this
work is to present a numerical scheme that performs the reconstruction.

2.1. Forward problem. The absorption and scattering coefficients σa and σs

cannot take negative values and have to be bounded. We thus introduce the following
parameter space Q:

Q := {(σa, σs) : σa ≥ 0, σs ≥ 0, and (σa, σs) ∈ L∞(D) × L∞(D)}.

We also introduce the functional spaces [2, 16]:

L2
θ·ν(Γ±) :=

{
u(x,θ) :

∫
Γ±

|u(x,θ)|2|θ · ν(x)|dσ(x)dμ(θ) < +∞
}
,

W2(D × Sn−1) :=
{
u(x,θ) : u ∈ L2(D × Sn−1) and θ · ∇u ∈ L2(D × Sn−1)

}
.

Adapting well-known results [2, 16] with complex-valued absorption coefficient σa+ iω
v

in L∞(D), we have the following statement about the forward problem.
Proposition 2.1. Assume that (σa, σs) ∈ Q, the modulation frequency is finite

ω < +∞, and f ∈ L2
θ·ν(Γ−). Then the forward problem (2.1) is well-posed and admits

a unique solution u(x,θ) ∈ W2(D × Sn−1).
We can then define the following albedo operator (as well as its adjoint) [14, 51]:

Λ :
f 	−→ u|Γ+

L2
θ·ν(Γ−) 	−→ L2

θ·ν(Γ+).
(2.5)

The albedo operator Λ maps the incoming flux on the boundary into the outgoing
flux and is a functional of the optical parameters σa and σs.

A major difficulty in optical tomography comes from the fact that in practice
only outgoing currents, which are angular averages of the outgoing flux and are simi-
lar to diffusion-type measurements, are available. This prevents us from using classical
uniqueness and stability results in inverse transport theory [14]. In fact, the inverse
problem we solve in this paper is very similar to the diffusion-based inverse prob-
lem [4], on which many more theoretical results exist. To date, we do not know of any
theoretical result on the reconstruction of optical properties from outgoing currents
for arbitrary geometries. This makes the development of numerical tools all the more
important.

To be consistent with existing measurement technologies, we define the following
“measurement operator”:

Gu|Γ+ :=

∫
Sn−1

+

θ · ν(x)u|Γ+
dμ(θ) ≡ z(x),

G :L2
θ·ν(Γ+) 	−→ L2(∂D) ≡ Z,

(2.6)
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with Sn−1
+ := {θ : θ ∈ Sn−1 s.t. θ · ν(x) > 0}. We will call Z the “measurement

space.” Now the composite operator GΛ : f 	→ z maps the incoming flux into the
tomographic measurements. The adjoint operator G∗ of G is defined via the identity〈

G∗g1, g2

〉
L2

θ·ν(Γ+)
= 〈g1,Gg2〉Z(2.7)

for all g1 ∈ Z and g2 ∈ L2
θ·ν(Γ+), where the symbol Y1 denotes the complex conjugate

of Y1, and 〈·, ·〉X is the usual inner product in a Hilbert space X. One observes that
G∗ is nothing but the operation of multiplication by θ · ν(x).

2.2. Least-squares formulation. The inverse problem of optical tomography
can be formulated as follows: determine (σa, σs) ∈ Q such that

GΛf = z(2.8)

holds for all possible source-measurement pairs (f, z). Here z ∈ Z ≡ L2(∂D) is the
measured data corresponding to source f . This problem is in general severely ill-posed
(assuming that uniqueness of reconstruction holds as in diffusion theory [4]) in the
sense that when no regularization is applied, noise contained in the data z is more
amplified during the inversion procedure than what would result from an arbitrary
number of differentiations [21]. Another practical difficulty in solving (2.8) lies in the
fact that the amount of available data may be quite limited [47]. For example, one
may only be able to use a limited number (say, Nq) of light sources. After discretizing
(2.8) on a reasonable mesh, we will end up with a very underdetermined nonlinear
system. A classical way to resolve the lack of measurements is to turn to the following
least-squares formulation: find (σa, σs) solving

F(σa, σs) =:
1

2

Nq∑
q=1

∥∥GΛfq − zq
∥∥2

Z → min .(2.9)

Here, 1 ≤ q ≤ Nq denotes the light source number. For reasons we have mentioned
earlier, the least-squares problem (2.9) is usually not stable [4]. To stabilize the
problem, we impose additional smoothness restrictions on the coefficients we wish to
reconstruct. In other words, we look for optical properties in a space that is much
smaller than Q. We call this space the space of admissible parameters:

Qad := {(σa, σs) : (σa, σs) ∈ [σl
a, σ

u
a ] × [σl

s, σ
u
s ], and (σa, σs) ∈ H1(D) ×H1(D)},

where σl
a (resp., σu

a ) and σl
s (resp., σu

s ) are lower (resp., upper) bounds of σa and σs,
respectively, with σl

a > 0 and σl
s > 0. H1(D) is the usual Hilbert space of L2(D)

functions with first-order partial derivatives in L2(D):

‖Y ‖2
H1(D) := ‖Y ‖2

L2(D) + ‖∇Y ‖2
L2(D) for Y ∈ H1(D).(2.10)

It is known that Qad is a closed and convex subset of H1(D) ×H1(D). We can thus
introduce the following regularized least-squares functional:

Fβ(σa, σs) := F(σa, σs) +
β

2
J (σa, σs),(2.11)

where the last term is a regularization term and β is the regularization parameter [21].
The method for choosing β will be described in section 4.3. We use the Tikhonov
regularization functional in our problem:

J (σa, σs) = ‖σa − σ0
a‖2

H1(D) + ε‖σs − σ0
s‖2

H1(D),(2.12)
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where σ0
a and σ0

s are initial guesses for the σa and σs profiles, and ε is a small constant.
The choice of ε is addressed in section 4.3. We thus formulate the optical tomography
problem as the following regularized least-squares problem:

min
(σa,σs)

Fβ

σl
a ≤ σa ≤ σu

a ,(RLS)

σl
s ≤ σs ≤ σu

s .

We first observe that problem (RLS) has at least one solution in the sense that the
functional Fβ(σa, σs) admits at least one minimizer. This existence result is classical
and follows from the weak lower semicontinuity and coercivity of Fβ(σa, σs) [46, 60].
However, we cannot show that Fβ(σa, σs) is strictly convex and cannot conclude that
the minimizer is unique [60].

Our implementation of the inverse problem of optical tomography is a gradient-
based minimization approach. We thus need to compute the Fréchet derivative of the
least-squares functional Fβ(σa, σs). Direct estimates of the Fréchet derivatives being
quite costly because the optical parameters are (at least at the continuous level)
infinite-dimensional objects, we adopt the adjoint state (or costate) approach [60] to
estimate the derivatives. We have the following result.

Theorem 2.2 (Fréchet derivatives). The functional Fβ(σa, σs) is Fréchet differ-
entiable with respect to σa and σs. The derivative at (σa, σs) in the direction (ha, hs)
is given by

(
F ′

βha

F ′
βhs

)
=

⎛
⎜⎜⎜⎜⎜⎝

Re
Nq∑
q=1

〈
ϕq,

(
∂T
∂σa

ha

)
uq

〉
L2(D×Sn−1)

+ β
〈
σa − σ0

a, ha

〉
H1(D)

Re
Nq∑
q=1

〈
ϕq,

(
∂T
∂σs

hs

)
uq

〉
L2(D×Sn−1)

+ βε
〈
σs − σ0

s , hs

〉
H1(D)

⎞
⎟⎟⎟⎟⎟⎠ ,

(2.13)

where T is the transport operator defined in (2.1); uq and ϕq are the solutions of the
forward problem (2.1) with source fq and its adjoint problem (2.16) (defined below),
respectively. Re means taking the real part.

Proof. Let us denote by rq the residual GΛfq−zq = Guq|Γ+
−zq. According to [18,

19], rq is Fréchet differentiable with respect to both σa and σs. The L2-norm is Fréchet
differentiable as shown in [46]. By the chain rule, ‖rq‖2

Z is Fréchet differentiable. Since
the summation is finite, we deduce that F is differentiable. Together with the fact
that J is differentiable, we conclude that Fβ is Fréchet differentiable with respect to
σa and σs.

We now compute these Fréchet derivatives. Let us compute the derivative with
respect to σa:

F ′
β(σa, σs)ha = Re

Nq∑
q=1

〈
rq,G

(
∂uq|Γ+

∂σa
ha

)〉
Z

+ β
〈
σa − σ0

a, ha

〉
H1(D)

= Re

Nq∑
q=1

〈
G∗rq,

∂uq|Γ+

∂σa
ha

〉
L2

θ·ν(Γ+)

+ β
〈
σa − σ0

a, ha

〉
H1(D)

,

(2.14)
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where we have used the properties of the adjoint operator (2.7). On the other hand,
differentiating the transport equation (2.1) for source fq gives

T φq +

(
∂T
∂σa

ha

)
uq = 0 in D × Sn−1,

φq = 0 on Γ−,
(2.15)

where φq ≡ ∂uq

∂σa
ha, and T is the transport operator defined in (2.1). We need also to

introduce an adjoint variable ϕq of uq which is the solution of the following adjoint
transport equation:

T ∗ϕq ≡
( iω
v

− θ · ∇ + σa(x)
)
ϕq(x,θ) + Q(ϕq)(x,θ) = 0 in D × Sn−1,

ϕq(x,θ) = −G∗rq on Γ+.

(2.16)

Here we have used that Q∗ = Q, which follows from the definition (2.2). Multiplying
(2.15) by ϕq and (2.16) by φq, then integrating over D × Sn−1, we obtain

〈
G∗rq, φq

〉
L2

θ·ν(Γ+)
=

〈
ϕq,

(
∂T
∂σa

ha

)
uq

〉
L2(D×Sn−1)

,(2.17)

which leads to

F ′
β(σa, σs)ha = Re

Nq∑
q=1

〈
ϕq,

(
∂T
∂σa

ha

)
uq

〉
L2(D×Sn−1)

+ β
〈
σa − σ0

a, ha

〉
H1(D)

.

(2.18)

The derivative with respect to σs can be computed similarly.
This result shows that in order to compute the Fréchet derivative of the objective

functional Fβ(σa, σs), we need to solve one forward transport problem (2.1) and one
adjoint transport problem (2.16).

3. Discretization methods. There is a vast literature on the discretization of
radiative transfer equations; see, for instance, [1, 25, 44]. In this paper, we have
chosen to use the discrete ordinates method to discretize the directional variables and
the finite volume method [22] to discretize the spatial variables.

3.1. The discrete ordinates formulation. In the discrete ordinates method
[1, 44], we approximate the total scalar flux, defined as the integral of u(x,θ) over
Sn−1, by the following quadrature rule:

∫
Sn−1

u(x,θ)dμ(θ) ≈
J∑

j=1

ηju(x,θj),(3.1)

where θj is the jth direction and ηj the associated weight for 1 ≤ j ≤ J . Details on
how to choose the set of directions {θj}Jj=1 and the corresponding weights {ηj}Jj=1

can be found in [44]. To ensure particle conservation, we impose that

J∑
j=1

ηj = 1.(3.2)
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The equation of radiative transfer is now decomposed as a discrete set of J coupled
differential equations that describe the photon flux field along J directions:

∇ · (θju) +

(
σt +

iω

v

)
u(x,θj) = σs(x)

J∑
j′=1

ηj′kjj′u(x,θj′)(3.3)

for j = 1, 2, . . . , J , where kjj′ = k(θj · θj′), and where σt = σa + σs. We impose

J∑
j=1

ηjkjj′ = 1, 1 ≤ j′ ≤ J,(3.4)

so that the number of photons in the system is preserved by the scattering process.

3.2. Spatial discretization. We use a finite volume method to perform the
spatial discretization. Finite volume methods [22] ensure the conservation of mass (or
momentum, energy) in a discrete sense, which is important in transport calculations.
They also have the advantage of easily handling complicated geometries by arbitrary
triangulations, which we need in tomographic applications.

We implement a cell-centered version of the finite volume methods. Consider a
mesh of R

n, M, consisting of polyhedral bounded convex subsets of R
n, which covers

our computational domain D. Let C ∈ M be a control cell, that is, an element of
the mesh M, ∂C its boundary, and VC its Lebesgue measure. We assume that the
unknown quantity, for example, u(x, θj), takes its averaged value in C (and thus is
constant). We denote this value by uC

j :

uC
j ≡ 1

VC

∫
VC

u(x,θj)dx.(3.5)

Integrating the above discrete ordinates equations (3.3) over cell C and using the
divergence theorem on the first term, we obtain the equations

∫
∂C

θj · nC(x)ujdγ(x) +

(
σC
t +

iω

v

)
VCu

C
j = VCσ

C
s

J∑
j′=1

ηj′kjj′u
C
j′(3.6)

for 1 ≤ j ≤ J , where nC(x) denotes the outward normal to ∂C at point x ∈ ∂C, dγ(x)
denotes the surface Lebesgue measure on ∂C, and σC

s (σC
t ) is the value of σs (σt) on

cell C.
Now we have to approximate the flux through the boundary of C, i.e., the first

integral term in (3.6). Let {Ci}Ii=1 be the set of neighboring cells of C. We denote by
SC,i the common edge of cell C and Ci, i.e., SC,i = ∂C ∩ ∂Ci. We then have∫

∂C
θj · nC(x)ujdγ(x) =

∑
i

∫
SC,i

θj · nC(x)ujdγ(x).(3.7)

The flux
∫
SC,i

θj · nC(x)ujdγ(x) can be approximated by various numerical schemes.

In this work, we take a first-order upwind scheme:

F C
j,i :=

∫
SC,i

θj · nC(x)ujdγ(x) =

{
θj · nC |SC,i|uC

j if θj · nC ≥ 0,

θj · nC |SC,i|uCi
j if θj · nC < 0,

(3.8)
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where |SC,i| is the Lebesgue measure of SC,i. We then obtain a full discretization of
the discrete ordinates equations

∑
i

F C
j,i +

(
σC
t +

iω

v

)
VCu

C
j = VCσ

C
s

J∑
j′=1

ηj′kjj′u
C
j′(3.9)

for j = 1, 2, . . . , J . Let N denote the total number of control cells. After collecting
the discretized transport equation (3.9) on all control cells, we arrive at the following
system of complex-valued algebraic equations:

AU = SU + G,(3.10)

where A ∈ C
NJ×NJ and S ∈ C

NJ×NJ are the discretized streaming-collision and
scattering operators, respectively. The boundary source f(x,θ), which comes into
the discretized system via the flux approximation (3.8), is denoted by G. The vector
U ∈ C

NJ×1, which contains the values of u(x,θ) on the cell C in the direction θj , is
organized as

U =

⎛
⎜⎝

U1

...
UJ

⎞
⎟⎠ , with Uj =

⎛
⎜⎝

u1
j
...

uN
j

⎞
⎟⎠ ∈ C

N .(3.11)

The matrices A and S have sparse structures. In fact, they are sparse block
matrices. A is a block diagonal matrix that can be written as

A =

⎛
⎜⎝

A1

. . .

AJ

⎞
⎟⎠ +

⎛
⎜⎝

C0

. . .

C0

⎞
⎟⎠ ,(3.12)

where Aj ∈ C
N×N is the discretization of the advection operator A defined by Au :=

θj · ∇u. From (3.8) we can deduce that Aj has no more than N × NE nonzero
elements, where NE is the total number of edges (surfaces in three dimensions) each
control cell has.

Matrix C0 ∈ C
N×N is diagonal:

C0 =

⎛
⎜⎝

V1(σ
1
t + iω

v )
. . .

VN (σN
t + iω

v )

⎞
⎟⎠ ,

where we recall σi
t ≡ σi

a + σi
s (i = 1, . . . , N).

The matrix S can be expressed as the direct product of two smaller matrices:

S = K ⊗ D0,(3.13)

with D0 ∈ C
N×N a diagonal matrix given by

D0 =

⎛
⎜⎝

V1σ
1
s

. . .

VNσN
s

⎞
⎟⎠ ,
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and K ∈ C
J×J a dense matrix with component (K)jj′ = ηj′kjj′ . In practical appli-

cations, the number of directions is much smaller than the number of spatial mesh
elements (J � N). So although K is dense, the scattering matrix S is sparse. How-
ever, in general the matrix K is not symmetric unless we choose ηj to be constant.
The matrix A−S is thus neither symmetric nor positive definite, which is the reason
for us to choose a GMRES solver in section 4.2.

Let us remark here that our finite volume discretization reduces to an upwind
finite difference scheme on usual finite difference grids. We refer to our earlier work [54]
for some numerical tests on the finite volume discretization of the transport equation.

3.3. Discrete adjoint problem. We present in this section the numerical meth-
od we have employed to compute the gradient of discrete objective function with
respect to the optical properties on each cell.

To simplify the notation, from now on we denote by σa ∈ R
N×1 the absorption

coefficient vector (σ1
a, . . . , σ

C
a , . . . , σ

N
a )T and by σs ∈ R

N×1 the scattering coefficient
vector (σ1

s , . . . , σ
C
s , . . . , σ

N
s )T .

We want to minimize the discrepancy between model predictions and measure-
ments over a set of source and detector pairs. Let Nq denote the number of sources
used in an experiment, and let Nd denote the number of detectors used for each source.
Then the following objective function we employed takes the form

Fβ(σa, σs) =
1

2

Nq∑
q=1

Nd∑
d=1

|PdU
q − zδq,d|2 +

β

2
J (σa, σs),(3.14)

where zδq,d denote the dth measurement of the qth source. The superscript δ is used
to denote the level of noise contained in the measurements. Uq is a solution of the
transport equation for the qth source. Pd ∈ R

1×N is a discretized version of the
measurement operator. It takes the outgoing flux at detector d and averages over
Sn−1

+ . The discretized regularization term is given by

(3.15) J (σa, σs) =

N∑
C=1

( ∑
κ={x,y,z}

[DC
κ(σa − σ0

a)]
2 + (σC

a − σ0,C
a )2

)

+ ε

N∑
C=1

( ∑
κ={x,y,z}

[DC
κ(σs − σ0

s)]
2 + (σC

s − σ0,C
s )2

)
,

where DC
κ ∈ R

1×N denotes the discretized partial differential operator at cell C in the
κ (= x, y, z) direction.

We now start to compute the gradient of objective function (3.14) with respect
to optical properties on each mesh element. It is straightforward to check that

∂Fβ

∂σC
a

=
[ Nq∑
q=1

Nd∑
d=1

rqdPd
∂Uq

∂σC
a

]
Re

+
β

2

∂J
∂σC

a

,(3.16)

with rqd = PdU
q − zδq,d, and [·]Re denotes the real part of [·].

At the same time, we notice from (3.10) that

∂A

∂σC
a

Uq + A
∂Uq

∂σC
a

=
∂S

∂σC
a

Uq + S
∂Uq

∂σC
a

(3.17)
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for source q = 1, . . . , Nq, which is equivalent to saying that

∂Uq

∂σC
a

= −(A − S)−1 ∂(A − S)

∂σC
a

Uq,(3.18)

since A − S is invertible. It is very important to note that the matrices A and S
are independent of the source used. Thus, there are no superscripts q associated with
them. We thus have

∂Fβ

∂σC
a

= −
[ Nq∑
q=1

Nd∑
d=1

rqdPd(A − S)−1 ∂(A − S)

∂σC
a

Uq
]
Re

+
β

2

∂J
∂σC

a

.(3.19)

We now introduce a new state variable Ψq ∈ C
N×1 (called the adjoint variable of

Uq) given by

−
Nd∑
d=1

rqdPd(A − S)−1 = ΨqT ,(3.20)

where ΨqT denotes the transpose of Ψq. We then say that Ψq is the solution of the
following adjoint equation of (3.10):

(A − S)TΨq = −
Nd∑
d=1

rqdPT
d .(3.21)

One then arrives at

∂Fβ

∂σC
a

=
[ Nq∑
q=1

ΨqT ∂(A − S)

∂σC
a

Uq
]
Re

+
β

2

∂J
∂σC

a

,(3.22)

with

∂J
∂σC

a

= 2
( ∑
κ={x,y,z}

DC
κ(σa − σ0

a)(DC
κIC) + (σC

a − σ0,C
a )

)
,

where the unit direction vector IC ∈ R
N×1 is a vector whose Cth element is 1 and all

other components are zero.
Very similar computation leads to the fact that the derivatives of the objective

functional with respect to σC
s are given by

∂Fβ

∂σC
s

=
[ Nq∑
q=1

ΨqT ∂(A − S)

∂σC
s

Uq
]
Re

+
β

2

∂J
∂σC

s

,(3.23)

with

∂J
∂σC

s

= 2ε
( ∑
κ={x,y,z}

DC
κ(σs − σ0

s)(DC
κIC) + (σC

s − σ0,C
s )

)
.

Formulas (3.22) and (3.23) are what we used to compute the derivatives of objec-
tive function with respect to optical properties on each element. Note that we did not
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form explicitly the matrix ∂(A−S)
∂σC

a
(resp., ∂(A−S)

∂σC
s

) in the evaluations of ΨqT ∂(A−S)
∂σC

a
Uq

(resp., ΨqT ∂(A−S)
∂σC

s
Uq) because this matrix has a very simple sparse structure accord-

ing to (3.12) and (3.13). Instead, a matrix-free method was adopted. In fact, since

[
∂(A − S)

∂σC
a

]
ij

=

{
VC , i = j and mod (i,N) = C,
0 otherwise,

(3.24)

where we recall that N is the total number of volume cells that cover our computa-
tional domain, we have

ΨqT ∂(A − S)

∂σC
a

Uq =

J∑
j=1

Ψq
(j−1)×N+CVCU

q
(j−1)×N+C .(3.25)

Note that here Ψq
(j−1)×N+C (resp., Uq

(j−1)×N+C) denotes the [(j − 1) × N + C]th

element of Ψq (resp., Uq).

The same observation on ∂(A−S)
∂σC

s
leads to

(3.26) ΨqT ∂(A − S)

∂σC
s

Uq =

J∑
j=1

Ψq
(j−1)×N+CVCU

q
(j−1)×N+C

−
J∑

j′=1

J∑
j=1

(K)j′jΨ
q
(j′−1)×N+CVCU

q
(j−1)×N+C ,

where the (j′, j)th component of matrix K, (K)jj′ = ηj′kjj′ , is given in (3.13). We
can thus evaluate (3.22) and (3.23) without forming any intermediate matrices.

4. Numerical implementation. We have implemented the quasi-Newton op-
timization algorithm to solve the regularized least-squares problem (RLS) introduced
in section 2.2. We have found in practice that this method converged much faster
(in terms of function evaluations) than the nonlinear conjugate gradient method with
either the Fletcher–Reeves or the Polak–Ribière updating formula [52]. This is ex-
pected from theory [52] and is consistent with practical applications tested in [41].
We have also implemented a Gauss–Newton method [52] to solve the least-squares
problem (without the bounds constraints) and found that the method converges ex-
tremely slowly in our case. This is probably due to the fact that our problem is
highly nonlinear and the Gauss–Newton method usually does not work well in this
kind of situation [27, 52]. Detail comparison between various methods of solving the
least-squares reconstruction problem is an ongoing project.

In this work, we employ the BFGS update rule [52] of the inverse Hessian matrix
for our quasi-Newton method. The usual BFGS method, however, requires the explicit
construction of the Hessian matrix, which is unrealistic for large problems. The
memory size required to store the Hessian matrix is roughly proportional to the square
of the memory used for the unknown parameters. We have thus resorted to a limited-
memory version of the BFGS method which avoids the explicit construction of the
inverse Hessian matrix.

4.1. Numerical optimization. The BFGS algorithm can be viewed as a special
case of the quasi-Newton method [52]. With σ denoting the vector of discretized
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optical properties, the quasi-Newton methods can be characterized by the following
iterative process:

σk+1 = σk + αkpk, k ∈ N
+,(4.1)

where pk is a descent direction vector and αk is the step length. The BFGS algorithm
chooses pk to be the solution of an approximated solution of Newton-type optimality
equation, i.e.,

pk = Hkgk,(4.2)

where gk is the gradient of the least-squares functional, gk = −∇σFβ(σk). Hk is the
inverse Hessian matrix of Fβ at step k. Instead of computing real inverse Hessian
matrices, which is very time consuming, the BFGS algorithm chooses to approximate
Hk by the following updating rule:

Hk+1 = WT
k HkWk + ρksks

T
k ,(4.3)

with Wk = I − ρkyks
T
k , sk = σk+1 − σk, yk = gk+1 − gk, and ρk = 1

yT
k sk

. I is the

identity matrix. As we mentioned above, forming (4.3) takes a tremendous amount
of computer memory for large problems. To overcome this shortcoming, the limited-
memory version of BFGS stores only the vectors yk and sk obtained in the last m
(3 ≤ m ≤ 7 usually) iterations [35] and discards the rest. Thus after the first m
iterations, (4.3) can be expressed as

Hk+1 = (WT
k · · ·WT

k−m)H0
k+1(Wk−m · · ·Wk)

+ ρk−m(WT
k · · ·WT

k−m+1)sk−msTk−m × (Wk−m+1 · · ·Wk)
+ ρk−m+1(W

T
k · · ·WT

k−m+2)sk−m+1s
T
k−m+1 × (Wk−m+2 · · ·Wk)

...
+ ρksks

T
k ,

(4.4)

with the sparse initial guess H0
k+1 given by H0

k+1 =
yT
k+1sk+1

yT
k+1yk+1

I.

We refer interested readers to [35, 52] for more details on the limited-memory
BFGS algorithms, and to [41] for applications of those algorithms to optical tomo-
graphic problems. Convergence of BFGS algorithms has been proved under certain
conditions and has been tested on many applications [11, 52].

To impose bounds on optical parameters, we have to modify the relation (4.2)
slightly. We adopt a gradient projection method [11, 35, 52] to do this. At the
beginning of each iteration, we use the gradient projection method to find a set of
active bounds. We then solve a subminimization problem,

min
σ

Qk(σ) ≡ Fβ(σk) + gT
k (σ − σk) +

1

2
(σ − σk)

TH−1
k (σ − σk),(4.5)

on the set of free variables to find an approximation solution σk+1, treating the active
bounds as equality constraints by Lagrange multipliers. After we find an approxima-
tion solution σk+1, a line search along pk = σk+1 −σk is done to find the step length
αk in (4.1). We use a line search method that enforces the Wolfe conditions [52].
That is, we look for an αk that solves

min
αk>0

Fβ(σk + αkpk)(4.6)
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and satisfies

Fβ(σk + αkpk) ≤ Fβ(σk) + c1αk∇FT
β (σk)pk,(4.7)

∇FT
β (σk + αkpk)pk ≥ c2∇FT

β (σk)pk,(4.8)

where c1 = 10−4, c2 = 0.1 in our case. More details on how to impose bound con-
straints in BFGS algorithms can be found in [35, sect. 5.5] and [11, 64].

4.2. Solving algebraic systems. As we have mentioned before, at each step
of the minimization process, we have to solve both a discretized transport equation
(3.10) and its adjoint problem (3.21) to compute the Fréchet derivatives (3.22) and
(3.23) of the objective functional, forming the gradient vector gk in (4.2). In fact,
almost all of the computational time in the reconstruction process is devoted to the
solution of these transport equations. In this work, instead of using the popular
source iteration method, which converges very slowly in diffusive regimes unless it is
properly accelerated [1], we choose to solve the forward problems by a preconditioned
GMRES(n) algorithm [55, 56], where n denotes the number of iterative steps after
which GMRES is restarted. Our general principle is to choose n large when the
problem size is small and n small when the problem size is large. The implementation
of the algorithm is based on the template provided in [9]. The preconditioner we
employ is the zero fill-in incomplete LU factorization (ILU(0)) [53, 55] that has been
proved to be efficient in transport calculations [53]. Details about this factorization
can be found in [55]. In all of the numerical examples in section 5, we pick n = 7,
and the GMRES algorithm is stopped if the relative residual is small enough. For
example, the stopping criteria ‖G − (A − S)Uk‖l2/‖G − (A − S)U0‖l2 ≤ 10−10 is
used to solve (3.10). Here U0 is the initial guess and Uk is the U value at the kth
GMRES iteration.

4.3. Selecting regularization parameter. To choose the optimal regulariza-
tion parameter β in (2.11), we adopt the L-curve method in this study. Although
there exist proofs that the L-curve method fails to convergence for certain classes of
inverse problems [59], we have observed satisfactory results in our applications. We
plot the log of the regularization functional against the squared norm of the regular-
ized residual, say, rβ , for a range of values of the regularization parameter. The right
parameter β is the one at which the L-curve reaches the maximum of its curvature
[28, 60]. One can show that the right β maximizes the curvature function [60]

κ(β) = −R(β)S(β)[βR(β) + β2S(β)] + [R(β)S(β)]/S′(β)

[R2(β) + β2S2(β)]3/2
,(4.9)

where R(β) and S(β) are defined by

R(β) := ‖rβ‖2
L2 , S(β) := J (σa, σs).

We recall that β is not included in J (σa, σs). One notices immediately that the
L-curve method requires several reconstructions for any single problem, and thus is
very time consuming. A simple continuation method is suggested in [27] to reduce the
computational cost of regularization parameter selection. In this method, one starts
the first reconstruction with a relatively large β. The result of this reconstruction is
then taken to be the initial guess of next reconstruction with a smaller β. If the two
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β are not dramatically different from each other, then the two reconstructions should
converge to similar results. Thus, the reconstruction with smaller β is supposed to
converge quickly since its initial guess is chosen to be close enough to its real solution.
The process can be repeated to perform reconstructions with several values of β. In
practice, this continuation method saves tremendous computational time for finding
optimal regularization parameters. It now takes only about 80% extra work to find
the optimal parameters in most cases. We adopt this continuation method in our
three-dimensional numerical example (Example 4) in the next section. We present in
Figures 5.2 (B) and 5.6 (B) the L-curve we have used in Examples 1 and 3, respectively,
to choose the optimal regularization parameter β. Note that in the Figure 5.2 (B),
J (σa, σs) simplifies to ‖σa‖2

H1 since we reconstruct only σa and have chosen σ0
a = 0

in that case.
Another important issue is to choose an appropriate weight ε in the regularization

functional defined in (2.12). This weight is necessary because, in practice, σs takes
values that are about two orders of magnitude larger than σa. The weight is used
to bring the two terms in the regularization functional to the same level so that the
regularization term has an effect on both σa and σs. In all our numerical simulations in
section 5, we choose ε to be the ratio (σb

a/σ
b
s)

2, where σb
a and σb

s are optical properties
of background media.

Note that the main purpose for introducing the scaling factor ε is to reduce
computational complexity in choosing optimal regularization parameters. It is by no
means the only way to perform regularizations on both absorption and scattering
coefficients. For example, one can regularize σa and σs separately, which will involve
selecting multiple regularization parameters such as those in [10, 26, 45].

We remark finally that the H1-norm we use in the regularization functional can be
replaced by other norms or seminorms. For example, we have performed reconstruc-
tions on numerical Example 1 in section 5.3 with stricter bounds on σa and ‖∇σa‖L2

(instead of ‖σa‖H1) as the regularization functional. We have obtained very similar
results (although the optimal regularization parameter changes). The main reason
for us to use the H1-norm is that in many practical applications, we want to find
solutions near some reference (σ0

a, σ
0
s), for example, some known background.

4.4. Cost of the numerical method. The computational cost of our method
consists of two main parts. The first part is the evaluation of the objective function
and its gradient in the optimization process. The second part is the updating of the
BFGS matrices and vectors.

The costs of the function evaluation and of its gradient scale linearly with the
number of optical sources Nq. Since each forward problem and its corresponding
adjoint problem cost about the same, each gradient calculation (about 2Nq forward
solves) is approximately twice as expensive as a function evaluation (about Nq forward
solves). The cost in updating BFGS matrices and vectors can be neglected compared
to function and gradient evaluations. The reason is that BFGS vectors (in R

2N ) are
dramatically smaller than the vectors appearing in the forward and adjoint problems
(in C

JN ).
In our computations, we store the nonzero elements of the matrix A−S by using

the compressed row storage scheme [9] whenever it is possible to do so. When it is
not possible to store A− S, we store A, C0, K, and D0 defined in (3.12) and (3.13).
This requires much less memory, but with the price that extra effort has to be paid
to evaluate matrix vector products in GMRES. We use the following procedure to
compute Y ≡ (A − S)X for any vector X with the same structure as U in (3.11):
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1. For j = 1, . . . , J ,
– Compute X′

j = D0Xj ;
– Compute X′′

j = C0Xj ;
– Compute X′′

j = X′′
j + AjXj ;

2. For j = 1, . . . , J , Yj = X′′
j −

∑
j′ Kjj′X

′
j .

We prefer to store the matrix A−S because it saves computational time when matrix-
vector products are calculated. In all the numerical examples shown in the following
section, we were able to store A − S. Note that the storage requirement does not
increase with the number of sources (Nq) because we solve the transport equation (and
its adjoint) with different sources sequentially. The storage cost of BFGS vectors can
be neglected compared with the storage of the forward and adjoint matrices and
vectors.

5. Numerical examples. We provide in this section four numerical examples
that illustrate the performance of our numerical method. In the first example, we
reconstruct the spatial distribution of the absorption coefficient while keeping the
scattering coefficient fixed. In the second example, the spatially varying scattering
coefficient is reconstructed, while the absorption coefficient is fixed. We then show an
example in which both optical properties are reconstructed simultaneously. All the
first three examples are done in two-dimensional settings. In the fourth example, we
show three-dimensional simultaneous reconstructions of both optical properties.

5.1. Domain partition and measurement setup. For our two-dimensional
simulations, we consider a computational domain of size 2 × 2 cm2, denoted by D ≡
D ∪ ∂D = [0, 2] × [0, 2]. We cover the domain by 80 × 80 cells of uniform size whose
nodes are given by

Dh = {xi,j = (xi, yj), xi = iΔx, yj = jΔy, i, j = 0, 1, . . . , 80},

with Δx = Δy = 0.025. The direction space is discretized into 128 uniformly dis-
tributed (over [0, 2π)) directions with identical quadrature weight:

S1
Δθ = {θi : θi = (i− 1) ∗ Δθ, i = 1, . . . , 128},

where Δθ = 2π/128. The above discretizations yield a total number of 819,200
unknowns for one forward problem (solving for U in (3.10)), which is also true for
the corresponding adjoint problem (Ψ in (3.21)). In all two-dimensional simulations,
four sources (Nq = 4) are used. They are located at (0, 1), (1, 0), (2, 1), and (1, 2),
respectively. For each sources, 20 detectors (Nd = 20) are used. The detectors are
uniformly distributed along the sides of the square.

For the three-dimensional simulation, we consider a cylindrical domain given by

D := {(x, y, z) : x2 + y2 ≤ 1; 0 ≤ z ≤ 2}.

We cover the domain by 22,022 tetrahedral elements. For the integration over S2, we
employ the full level symmetric S8 discrete ordinate set of [44]. This set consists of
80 directions. A total number of 16 sources (Nq = 16) are used in the simulation.
The sources are uniformly distributed on the two circles defined by Γq

i = {(x, y, z) :
x2 + y2 = 1; z = zi} (i = 1, 2), where z1 = 0.5, z2 = 1.5. We arrange 8 layers
of detectors on the boundary of the domain. Each layer has 16 detectors Those
detectors are located at Γd

j = {(x, y, z) : x2 + y2 = 1; z = zj} (j = 1, . . . , 8), with
zj = 0.3 + (j − 1) ∗ 0.2. Note that some detectors are placed on the same xy-plane as
sources (but they do not overlap each other).
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5.2. Generating synthetic data. In all the numerical reconstructions pre-
sented in section 5, the “measurements” are synthetic rather than obtained from real
experimental data. A straightforward way of generating synthetic data is to use the
same discretization for the forward model and for the inversion procedure. This may
lead to somewhat simplified inversions of the finite-dimensional problem, which is of-
ten referred to as inverse crimes in the inverse problems community [15, p. 133]. To
avoid committing these “crimes,” the data are generated with a discretization about
twice as fine (in all variables) as the discretization used in the inversions.

In the following sections, our “exact data” will thus be those obtained from the
fine mesh calculations. By noisy data, we mean the “exact data” polluted by addi-
tional multiplicative noise. Let zd be the exact data; the “noisy” data are simulated
according to the rule zδd = (1 + δ ∗ random)zd, where “random” is a uniformly dis-
tributed random variable in [−1, 1] and δ ≥ 0 will vary in our numerical simulations.

It should be noted that the “exact data” seen on the coarse grid used in the
inversion actually already contain some “noise” because they were generated by the
fine mesh calculations.

5.3. Single parameter reconstructions. We start with a simpler case where
only one optical parameter needs to be reconstructed. Such reconstructions are often
useful in practical applications. For example, it is generally believed that changes in
the oxygenation of tissues correspond mainly to changes in the absorption property
of tissues [58].

Example 1: Reconstructing σa. We first reconstruct a small absorbing disc cen-
tered at (1.15 cm, 1.15 cm) of radius 0.2 cm embedded in the two-dimensional com-
putational domain. The optical parameters for the background and the disc are
σa = 0.1 cm−1, σs = 80 cm−1 and σa = 0.2 cm−1, σs = 80 cm−1, respectively. The
anisotropy factor g = 0.90. Those are typical parameter values as they are encoun-
tered in biomedical applications. The modulation frequency of the source is ω = 600
MHz. Each reconstruction here takes approximately 5 hours on a 2.4 GHz Pentium
XEON processor.

Figure 5.1 shows the real absorption map and the reconstructed maps for different
noise levels. We also provide in Figure 5.2 (A) (solid line) the evolution of the normal-
ized objective function versus the iteration step in the case of reconstructions using
noise-free synthetic data. Note that although the total number of BFGS iterations
can be reduced by using a stricter line search scheme in the optimization algorithm,
the total computational time remains almost constant. We have tested many classical
line search algorithms. The results shown here use the one that works best for our
application.

The quality of the reconstructions is measured as follows. Denote by Mo ∈ R
N

(Mr ∈ R
N ) an exact (reconstructed) quantity, which can be either the absorption or

the scattering map. We then define the relative l2 error between Mo and Mr by

El2 =
‖Mr −Mo‖l2

‖Mo‖l2
:=

√∑N
i=1(M

r
i −Mo

i )2√∑N
i=1(M

o
i )2

.(5.1)

The quality of the reconstruction in the case of an absorbing disc is given by the
parameters shown in the second column of Table 5.1. In Figure 5.2 (B), we display
the L-curve we use to choose the optimal parameter β in the above reconstructions.
We mention again that due to the acquisition of our data presented in section 5.2, the
noise-free data actually contain “noise” on the coarse grid.
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Fig. 5.1. Maps of the reconstructed absorption coefficient σa [cm−1] in Example 1. (A) Real
absorption map. (B) Reconstructed absorption map with exact synthetic data. (C) Reconstruction
with 10% random noise. (D) Reconstruction with 20% random noise. (E) Cross sections of map
(A) (solid line), (B) (dashed line), (C) (dash-dotted line), and (D) (dotted line) along the bottom
left to top right diagonal. (F) Same as (E) except that the cross section is along y = 0.4.
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Fig. 5.2. (A) Evolution of normalized objective functional Fβ with respect to the number
of iteration steps k for Example 1. Solid line: reconstruction of an absorbing disc; dashed line:
reconstruction of a scattering disc. (B) L-curve used to choose optimal regularization parameter β
for reconstruction with noise-free data in the reconstruction of an absorbing disc. The circle (◦)
denotes the place where β is chosen. Note that here J = ‖σa‖2

H1 because we reconstruct only σa

and we have set σ0
a = 0.
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Table 5.1

Optimal regularization parameters β and errors in reconstructions for different cases in Exam-
ples 1 and 2.

Cases Absorbing disc Scattering disc
Noise level 0% 10% 20% 0% 10% 20%
β × 108 1.0 2.8 4.6 1.3 2.9 5.7

El2 0.064 0.069 0.072 0.065 0.074 0.080

The reconstructions are classical examples of what we may expect in the field.
Because of the severe ill-posedness of the inverse problem, it is difficult to reconstruct
localized objects unless additional information is included in the reconstruction (which
we do not want to do here). Note that the center and the integral of the absorption
inclusion are more or less well reconstructed, even if the localized absorption map is
somewhat smeared over a relatively large domain (whose size increases as the noise
level, whence the regularization parameter β, increases). This is consistent with
results obtained from asymptotic theories; see, for instance, [7].

Example 2: Reconstructing σs. We now replace the highly absorbing disc in the
previous case with a highly scattering disc in the same position and with the same
size. The optical parameters for the background and the disc are σa = 0.1 cm−1,
σs = 70 cm−1 and σa = 0.1 cm−1, σs = 80 cm−1, respectively. Again, the anisotropy
factor g = 0.9, and the modulation frequency ω = 600 MHz. Each reconstruction
here takes approximately 6 hours on a 2.4 GHz Pentium XEON processor. Figure 5.3
shows the exact scattering map and the reconstructed maps for different noise levels.
Error estimates are presented in the third column of Table 5.1.

Fig. 5.3. Maps of reconstructed reduced scattering coefficients σ′
s = (1 − g)σs [cm−1] for

Example 1. (A) Real scattering map. (B) Reconstructed scattering map with noise-free synthetic
data. (C) Reconstruction with 10% random noise. (D) Reconstruction with 20% random noise.
(E) Cross sections of map (A) (solid line), (B) (dashed line), (C) (dash-dotted line), and (D) (dotted
line) along the bottom left to top right diagonal. (F) Same as (E) except that the cross section is
along y = 0.4.
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Fig. 5.4. Top row: Maps of reconstructed absorption coefficients σa [cm−1] at BFGS iteration
k = 40, 80, 120, and 156 (final), respectively, for the frequency domain reconstruction in Example 3.
Middle row: same as the top row but for the reduced reconstructed scattering coefficients σ′

s =
(1−g)σs [cm−1]. Bottom row: cross section of real (solid line with +) and reconstructed absorption
maps (left), reduced scattering maps (right) along the diagonal at iterations k = 40 (solid line),
80 (dashed line), 120 (dash-dotted line), and 156 (dotted line). The reconstructions are done with
noise-free synthetic data.

The quality of the reconstructions is very similar in the above two examples and
is quite satisfactory. In spite of the fact that stronger regularizations have to be
imposed as the noise level increases, the localization and the estimate for the optical
parameters in the presence of moderate noise indeed allow us to obtain reasonably
accurate information toward diagnostic purposes.

5.4. Frequency-domain versus steady-state. One of the main reasons for in-
troducing frequency-domain reconstructions is that they allow for a better separation
between the scattering and absorption properties of the inclusions [48]. Diffusion-
based theories show that both coefficients cannot be reconstructed simultaneously
without additional geometrical hypotheses [5, 33]. We now show in two numerical ex-
amples that frequency-domain data indeed substantially improve the reconstruction
of both coefficients.

Example 3: Two-dimensional simultaneous reconstruction. We reconstruct here
in the square domain two small discs of radius 0.2 cm and centered at (1.35 cm,
1.35 cm) and (0.65 cm, 0.65 cm), respectively. The first disc is highly absorbing
and the second one is highly scattering. Optical properties for the two discs are
σa = 0.2 cm−1, σs = 70 cm−1 and σa = 0.1 cm−1, σs = 80 cm−1, respectively. The
background parameters are σa = 0.1 cm−1 and σs = 70 cm−1. As before, g = 0.9
and ω = 600 MHz. Each reconstruction takes approximately 8 hours on a 2.4 GHz
Pentium XEON processor.

We compare the reconstructions based on the frequency-domain ERT with those
based on the steady-state ERT. The latter is obtained by setting the frequency ω = 0
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Fig. 5.5. Top row: Maps of reconstructed absorption coefficients σa [cm−1] at BFGS iteration
k = 40, 80, 120, and 354 (final), respectively, for the steady-state reconstruction in Example 3.
Middle row: same as the top row but for the reduced reconstructed scattering coefficients σ′

s =
(1−g)σs [cm−1]. Bottom row: cross section of real (solid line with +) and reconstructed absorption
maps (left), reduced scattering maps (right) along the diagonal at iterations k = 40 (solid line),
80 (dashed line), 120 (dash-dotted line), and 354 (dotted line). The reconstructions are done with
noise-free synthetic data.

Table 5.2

Error estimates for the reconstructions of Example 3 (E3) and Example 4 (E4) for several
iteration steps (k) in the optimization process. Here, “f” refers to frequency-domain calculations
and “s” to steady-state calculations.

k = 40 k = 80 k = 120 Final
σa σs σa σs σa σs σa σs

El2 (f) 0.121 0.144 0.092 0.112 0.080 0.092 0.063 0.076
E3 El2 (s) 0.181 0.224 0.127 0.132 0.113 0.112 0.094 0.106

El2 (f) 0.194 0.252 0.173 0.208 0.147 0.189 0.131 0.171
E4 El2 (s) 0.342 0.422 0.287 0.366 0.245 0.322 0.210 0.292

in our formulation and keeping everything else the same. Note that we observe a slight
difference (below 5%) in the computational times required for the case when ω = 0 and
the case when ω �= 0. We present in Figures 5.4 and 5.5 the reconstructions obtained
by the frequency-domain method and the steady-state method, respectively. We
also list the parameters which measure the quality of the reconstructions at different
iteration steps in Table 5.2.

Example 4: Three-dimensional simultaneous reconstruction. In the last numeri-
cal test, we show simultaneous reconstructions of two optical properties in a three-
dimensional setting. We try to reconstruct a small cylinder Ds = {(x, y, z) : (x −
0.5)2 + y2 ≤ 0.22, 0 ≤ z ≤ 2} embedded in the cylindrical domain defined in sec-
tion 5.1. Both the absorption and the scattering coefficients of the small cylinder are
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Fig. 5.6. (A) Evolution of the normalized objective functional Fβ with respect to the number
of iteration steps k for Example 3. Solid line: frequency domain reconstruction of both coefficient
simultaneously; dashed line: steady-state reconstruction of both coefficients simultaneously. (B) L-
curve used to choose optimal regularization parameter β for reconstruction with noise-free data in the
frequency domain simultaneous reconstruction of absorbing and scattering coefficients. The circle

(◦) denotes the place where β is chosen. Note that J ≡ ‖σβ‖2
H1 := ‖σβ

a‖2
H1 + ε‖σβ
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have set σ0
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Fig. 5.7. Top row: xy cross section (at z = 1) and xz cross section (at y = 0) of the
reconstructed absorption coefficient σa [cm−1] for the frequency-domain reconstruction in Exam-
ple 4. Middle row: same as the top row but for the reduced reconstructed scattering coefficients
σ′
s = (1 − g)σs [cm−1]. Bottom left: real (solid) and reconstructed (dotted) absorption coefficient

along line y = 0, z = 1. Bottom right: same as bottom left but for reconstructed reduced scattering
coefficient.
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different from those of the background. This is different from the case in Example 3
where absorption and scattering anomalies are located at different places. Optical
properties for the small cylinder are σa = 0.2 cm−1 and σs = 80 cm−1, while those
for the background are σa = 0.1 cm−1 and σs = 70 cm−1. The anisotropy factor
g = 0.9 and the modulation frequency ω = 600 MHz. Each reconstruction takes
approximately 22 hours on a 3 GHz Pentium XEON processor. As in Example 3, we
compare the frequency-domain reconstructions with the steady-state reconstructions.
Cross sections of reconstructions obtained by the frequency-domain method and the
steady-state method are presented in Figures 5.7 and 5.8, respectively. Qualities of
the reconstructions at different iteration steps are again listed in Table 5.2.

We first observe that in both the two-dimensional (Example 3) and the three-
dimensional (Example 4) reconstructions, the frequency-domain reconstruction con-
verges faster (in terms of BFGS iterations) than the steady state reconstruction; see,
for example, the results in Figure 5.6 (A) and Table 5.2. This has been confirmed
in many other geometrical settings we have tested: the speed of convergence of the
steady-state reconstruction presented here is one of the most favorable we have ob-
tained, whereas the speed of convergence of the frequency-domain reconstructions was
very often similar to what we have presented here.

As far as quality of the reconstruction is concerned, we observe a significant
improvement in the frequency domain reconstructions compared to the steady-state

Fig. 5.8. Top row: xy cross section (at z = 1) and xz cross section (at y = 0) of the recon-
structed absorption coefficient σa [cm−1] for the steady-state reconstruction in Example 4. Middle
row: same as the top row but for the reduced reconstructed scattering coefficients σ′

s = (1 − g)σs

[cm−1]. Bottom left: real (solid) and reconstructed (dotted) absorption coefficient along line y = 0,
z = 1. Bottom right: same as bottom left but for reconstructed reduced scattering coefficient.
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reconstructions. In all simulations, the stopping criterion is the same:

Fk
β (σa, σs)

F0
β(σa, σs)

≤ 10−5.

Although the L2 errors may not enjoy a dramatic improvement (see Table 5.2), they
are still significantly reduced. More importantly, the last rows in Figures 5.4 and 5.5
show dramatic reductions (at least by a factor of 2) of the cross-talk between the
absorption and scattering reconstructions: the spurious bumps (left of the left pic-
ture on the bottom row and right of the right picture on the bottom row in Fig-
ures 5.4 and 5.5) are clearly much stronger in the steady-state calculations than in
the frequency-domain calculations. This is the major advantage of the frequency-
domain calculations. Very similar phenomena are observed in the three-dimensional
simulations; see Figures 5.7 and 5.8. Although the absorption coefficient is still over-
estimated in the frequency-domain case (last row of Figure 5.7), it is better than
the situation in the steady-state case (last row of Figure 5.8) where the absorption
coefficient σa is severely overestimated, while the reduced scattering coefficient σ′

s is
severely underestimated. As predicted by theory, we have observed that an increase
in ω led to reduced cross-talk. How much this effect depends on the choice of the
frequency (as well as on possible combinations of different frequencies) and on the
geometrical setting will be explored in future works.

6. Concluding remarks. We have formulated an inverse problem in optical
tomography as a regularized least-squares problem based on the frequency-domain
equation of radiative transfer to model light propagation in biological tissues. In the
inversion procedure, the forward model is discretized by using a finite volume method
and a discrete ordinates method. We solve the regularized least-squares problem by
using a limited-memory quasi-Newton method with BFGS-type updating rule for the
Hessian matrix and have incorporated positivity constraints and L∞ bounds on the
optical parameters. Numerical reconstructions based on synthetic data provide re-
sults that are in agreement with the expected reconstructions. Notably, the crosstalk
between the two optical parameters is significantly reduced in frequency-domain re-
constructions.

The method presented here also overcomes several of the shortcomings of diffu-
sion-equation-based optical tomography [4, 16], which provides a very useful tool in
many problems but fails to adequately model strongly absorbing regions (e.g., large
blood-filled spaces such as brain hematoma), low-scattering void-like inclusions (e.g.,
spaces filled with cerebrospinal fluid, amniotic fluid, or synovial fluid), and optically
relatively thin media such as fingers and small animals. Main domains of application
of the proposed method will be functional imaging of rheumatoid arthritis of human
finger joints and small animal imaging [30, 32], where the diffusion equation typically
fails to generate accurate forward predictions. Extensive numerical reconstructions in
practically relevant geometries for these applications and based on possibly multifre-
quency experimental data will be performed in the near future.
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[22] R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, in Handbook of Numerical
Analysis VII, P. Ciarlet and J. L. Lions, eds., North-Holland, Amsterdam, 2000, pp. 713–
1020.

[23] M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, An investigation of light
transport through scattering bodies with non-scattering regions, Phys. Med. Biol., 41 (1996),
pp. 767–783.

[24] L. Fukshansky, N. Fukshansky-Kazarinova, and A. M. v. Remisowsky, Estimation of
optical properties in a living tissue by solving the inverse problem of the multiflux radiative
transfer, Appl. Opt., 30 (1991), pp. 3145–3153.

[25] F. Golse, S. Jin, and C. D. Levermore, The convergence of numerical transfer schemes
in diffusive regimes I: Discrete-ordinate method, SIAM J. Numer. Anal., 36 (1999), pp.
1333–1369.

[26] C. Gu and G. Wahba, Minimizing GCV/GML scores with multiple smoothing parameters via
the Newton method, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 383–398.

[27] E. Haber, U. Ascher, and D. Oldenburg, On optimization techniques for solving nonlinear
inverse problems, Inverse Problems, 16 (2000), pp. 1263–1280.

[28] P. C. Hansen and D. P. O’Leary, The use of the L-curve in the regularization of discrete
ill-posed problems, SIAM J. Sci. Comput., 14 (1993), pp. 1487–1503.



1488 KUI REN, GUILLAUME BAL, AND ANDREAS H. HIELSCHER

[29] L. G. Henyey and J. L. Greenstein, Diffuse radiation in the galaxy, Astrophys. J., 90 (1941),
pp. 70–83.

[30] A. Hielscher, A. Bluestone, G. Abdoulaev, A. Klose, J. Lasker, M. Stewart, U. Netz,

and J. Beuthan, Near-infrared diffuse optical tomography, Disease Markers, 18 (2002),
pp. 313–337.

[31] A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, Comparison of finite-difference
transport and diffusion calculations for photon migration in homogeneous and heteroge-
neous tissue, Phys. Med. Biol., 43 (1998), pp. 1285–1302.

[32] A. H. Hielscher, A. D. Klose, A. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and

J. Beuthan, Sagittal laser optical tomography for imaging of rheumatoid finger joints,
Phys. Med. Biology, 49 (2004), pp. 1147–1163.

[33] V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York,
1998.
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[48] T. O. McBride, B. W. Pogue, U. L. Österberg, and K. D. Paulsen, Separation of ab-

sorption and scattering heterogeneities in NIR tomographic imaging of tissue, in OSA
Technical Digest, Biomedical Topical Meetings, Optical Society of America, Washington,
DC, 2000,

[49] N. J. McCormick, Recent developments in inverse scattering transport methods, Transport
Theory Statist. Phys., 13 (1984), pp. 15–28.

[50] N. J. McCormick, Inverse radiative transfer problems: A review, Nuclear Sci. Engrg., 112
(1992), pp. 185–198.

[51] M. Mokhtar-Kharroubi, ed., Mathematical Topics in Neutron Transport Theory: New As-
pects, Ser. Adv. Math. Appl. Sci. 46, World Scientific, Singapore, 1997.

[52] J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.
[53] B. W. Patton and J. P. Holloway, Application of preconditioned GMRES to the numerical

solution of the neutron transport equation, Ann. Nuclear Energy, 29 (2002), pp. 109–136.
[54] K. Ren, G. S. Abdoulaev, G. Bal, and A. H. Hielscher, Algorithm for solving the equation

of radiative transfer in the frequency domain, Opt. Lett., 29 (2004), pp. 578–580.
[55] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[56] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.



FREQUENCY DOMAIN OPTICAL TOMOGRAPHY WITH ERT 1489

[57] J. C. Schotland, Continuous-wave diffusion imaging, J. Opt. Soc. Amer. A, 14 (1997), pp.
275–279.

[58] B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and

J. Butler, Non-invasive in vivo characterization of breast tumors using photon migration
spectroscopy, Neoplasia, 2 (2000), pp. 26–40.

[59] C. R. Vogel, Non-convergence of the L-curve regularization parameter selection method, In-
verse Problems, 12 (1996), pp. 535–547.

[60] C. R. Vogel, Computational Methods for Inverse Problems, Frontiers Appl. Math. 23, SIAM,
Philadelphia, 2002.

[61] A. P. Wang and S. Ueno, An inverse problem in a three-dimensional radiative transfer,
Astrophys. Space Sci., 155 (1989), pp. 105–111.

[62] A. J. Welch and M. J. C. Van-Gemert, Optical-Thermal Response of Laser Irradiated Tissue,
Plenum Press, New York, 1995.

[63] A. G. Yodh and B. Chance, Spectroscopy and imaging with diffusing light, Phys. Today, 48
(1995), pp. 34–40.

[64] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, L-BFGS-B–FORTRAN subroutines for large-
scale bound constrained optimization, ACM Trans. Math. Software, 23 (1997), pp. 550–560.


