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Optical tomography of small imaging domains holds great promise as the signal-to-noise ratio is usually
high, and the achievable spatial resolution is much better than in large imaging domains. Emerging
applications range from the imaging of joint diseases in human fingers to monitoring tumor growth or
brain activity in small animals. In these cases, the diameter of the tissue under investigation is typically
smaller than 3 cm, and the optical path length is only a few scattering mean-free paths. It is well known
that under these conditions the widely applied diffusion approximation to the equation of radiative
transfer (ERT) is of limited applicability. To accurately model light propagation in these small domains,
the ERT has to be solved directly. We use the frequency-domain ERT to perform a sensitivity study for
small imaging domains. We found optimal source-modulation frequencies for which variations in optical
properties, size, and location of a tissue inhomogeneity lead to maximal changes in the amplitude and
phase of the measured signal. These results will be useful in the design of experiments and optical
tomographic imaging systems that probe small tissue volumes. © 2007 Optical Society of America

OCIS codes: 170.0170, 170.3880, 170.6960.

1. Introduction

Big strides have been made over the past ten years
toward optical tomographic imaging of biological
tissues.1–3 With the emergence of the appropriate light
detection technology and suitable image reconstruc-
tion codes, the field has increasingly focused on clinical
and preclinical applications. Besides human breast
and brain imaging, which involve light transmission
across large tissue volumes ��25 to 1000 cm3), the
imaging of small tissue volumes ��1 to 25 cm3) is of
great interest in many areas. Applications range
from imaging joint diseases in human fingers4,5 to
monitoring tumor growth and brain activity in small
animals.6 Because of the small geometries involved, a
considerable amount of light transmits those tissues.
And unlike in optical breast or brain imaging, the
signal-to-noise ratio level is relatively high.

While the signal levels are typically high, imaging
small tissue volumes is far from trivial. The main

challenge here is that the diffusion approximation,
which is typically used to model light propagation in
larger tissue structures, becomes less accurate. The
number of scattering events between sources and de-
tectors decreases as the medium of interest becomes
smaller; consequently, the equation of radiative trans-
fer (ERT), and not its diffusion approximation, needs
to be solved to accurately model light propagation.

Only a limited number of groups have attempted to
solve the ERT for problems encountered in optical
tomography because implementing an efficient and
accurate ERT algorithm is considerably more chal-
lenging than using the diffusion equation. Works
include solutions to the 2D time-dependent and time-
independent ERT7,8 and the 3D time-independent
ERT.9–12 Recently, our group introduced what we be-
lieve to be the first frequency-domain ERT code that
can be used for optical tomographic imaging.13,14 In
general it is believed that frequency-domain algo-
rithms can provide better separations of absorption
and scattering effects compared to steady-state or
cw methods. This belief has been supported by both
theoretical15 and numerical14,16 evidence in recent
years.

In the study at hand we use the frequency-domain
ERT code to investigate the detection limits of tis-
sue inhomogeneities with varying optical properties,
sizes, and locations. Similar studies have been per-
formed before but did not focus on small tissue vol-
umes and did not use the ERT as a light-propagation
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model. For example, Boas et al.17 studied the effect of
the source-modulation frequency on the quantifica-
tion and localization accuracy of scattering and ab-
sorbing perturbation in a 60 mm thick infinite slab,
which mimicked light propagation in female breast
tissue. Their analysis was based on analytical solu-
tion for the frequency-domain diffusion equation.
Toronov et al.18 analyzed the signal-sensitivity-to-
noise ratio (SSNR) of phase measurement at different
modulation frequencies using Monte Carlo simula-
tion of light propagation in the human head. Sen-
sitivity studies for fluorescence tomography were
presented by Eppstein et al.19 By performing sensi-
tivity studies particular for small tissue geometries
using the frequency ERT, our work provides an im-
portant insight into the potentials and limitations of
small tissue tomography and will help in the design
of appropriate experimental setups and tomographic
instrumentation.

In Section 2 we provide some theoretical and ex-
perimental background for our analysis and define
the terms signal-to-noise ratio (SNR) and SSNR. In
Section 3 we present our numerical analysis, which is
followed in Section 4 by a discussion of the results.

2. Signal and Noise Model

First we formulate the numerical model of the light
transport with the ERT and set up the discretization
formulation. The theoretical foundation for the sen-
sitivity analysis based on this forward model is pre-
sented, and the shot-noise-dominant noise model is
given. Finally the SNR and the SSNR of the forms are
defined.

A. Theoretical Background of Signal and Signal
Sensitivity Based on the Equation of Radiative Transfer

The frequency-domain ERT that describes the photon
density in the phase space, i.e., as a function of posi-
tion x � � � �3 and direction � � S2 (unit sphere of
�3), is given by13

��
i�
v � �� � �t�x����x, �� � �s�x�

��
S2

k�������x, ���d�� � 0 in � � S2

��x, �� � q�x, �� on 	�. (1)

Here i � ��1, v is the speed of light in the medium,
and � is the source-modulation frequency. The pa-
rameter �t � �a � �s, with �a and �s being the
absorption and scattering coefficients, respectively.
��x, �� is the radiance at position x traveling in di-
rection � with the unit of W m�2sr�1; here note that
��x, �� is frequency dependent. q�x, 
� is the source
with the unit of W m�3sr�1 defined on the bound-
ary set

	� � 	�x, �� � �� � S2 such that � ���x�  0
,

with ��x� the outward unit normal to the domain at
x � ��. The scattering kernel k�����, which describes
the probability that photons traveling in direction ��
scatter into direction �, is a positive function inde-
pendent of x. The scattering kernel for light propa-
gation in tissues is chosen here as the Henyey–
Greenstein phase function20,21

k����� �
1 � g2

�1 � g2 � 2g cos ��3�2, (2)

where � is the angle between � and ��, i.e., ��� �
cos � and g � ��1, 1� is the so-called anisotropy fac-
tor. The larger g is, the more forward directed is the
scattering; for g � 0 the scattering is isotropic. The
reduced or transport scattering coefficient is given by
�s� � �1 � g��s. The scattering kernel satisfies the
normalization condition �S2 k�����d�� � 1.

Solving Eq. (1) results in a value for the radiance �.
In the optical tomography experiments, however, one
typically measures the outgoing current, which is
given by

J�xd� ��
S�

2

���xd���xd, ��d�. (3)

Here xd is the position of detector S�
2 � 	� : � � S2, and

���xd�  0}. The outgoing current J�xd� is a complex
functional of optical parameters �a and �s.

If we denote ���a, ��s� as the perturbation of ��a, �s�,
we can define the signal sensitivity as

�J�xd����a, ��s� ��
S�

2

���xd����xd, ��d�. (4)

After a perturbation over the transport solution, we
obtain the following transport equation for ��:

�
i�
v � �� � �t�x�����x, �� � �s�x��

S2

k��������x, ���d��

� ���a�x� � ��s�x����x, ��

� ��s�x��
S2

k�������x, ���

� d��, (5)

with the boundary condition

���x, �� � 0 on 	�. (6)

We now introduce the adjoint transport Green’s
function G�x, �; xd, �d�, which solves the following
transport equation:
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�
i�
v � �� � �t�x��G�x, �; xd, �d� � �s�x��

S2

k�����

� G�x, �; xd, �d�
� d��, (7)

with the boundary condition

G�x, �; xd, �d� � ��� � �d���x � xd� on 	�. (8)

If we multiply Eq. (5) by G�x, �; xd, �d�, multiply Eq.
(7) by ��, and use integration by parts over the two
equations, we obtain

���xd, �d� ��
X

G�x, �; xd, �d������a�x�

� ��s�x����x, �� � ��s�x�

��
S2

k�������x, ���d���dxd�, (9)

where short notation X � � � S2 has been used. This
tells us that the signal sensitivity is given by

�J�xd����a, ��s� ��
�

��a�x; xd���a�x�

� �s�x; xd���s�x��dx, (10)

with

�a�x; xd� � ��
S�

2

�d��
S2

G�x, �; xd, �d���x, ��d�d�d,

(11)

�s�x; xd� � ��
S�

2

�d��
S2

G�x, �; xd, �d�

���x, �� ��
S2

k�������x, ���d���
� d�d�d. (12)

The functions �a�x; xd� and �s�x; xd� are the
absorption and scattering sensitivity functions,
respectively.7 Here we are interested in the depen-
dences of those functions on the source-modulation
frequency and the location, diameter, and contrast
of an optical inhomogeneity. A look at the above
asymptotics tells us that the signal sensitivity ��J�
in the measured data includes contributions from the
perturbation of absorption and of scattering. As can
be seen from Eq. (10), the signal sensitivity ��J� can
be separated into the perturbation with absorption
coefficient ���a� and the scattering coefficient ���s�.

This separation will allow us later to discuss the ab-
sorption and scattering effects independently.

Although the theoretical analysis above yields the
analytical formula of the signal and the signal sensi-
tivity, seldom is the analytical solution of the ERT
available. With the combination of the discrete ordi-
nates method22 for the angular variable and a finite-
volume discretization method for the space variable,23

the ERT can be converted to the following algebraic
equation:

A� � S� � Q, (13)

where A and S are discretized streaming-collision
and scattering operators, and Q is a discretized
source term. This algebraic Eq. (13) can be solved by
a restarted generalized minimal residual (GMRES)
algorithm.24 More details concerning the implemen-
tation of the discrete ordinates method for this spe-
cific problem can be found in Ref. 13.

B. Experimental Background of Signal, Signal Sensitivity,
and Noise

With fiber-based optical experimental measurement,
the flux J�xd� (signal measured) is the summation of
the radiance’s components on the boundary normal
direction. In the frequency-domain measurement, the
signal, consisting of amplitude (AC) and phase delay
���, can be explicitly written as

J�xd���a, �s� � AC exp�i��. (14)

Here AC and � refer to measured amplitude and
phase. Consequently, the signal sensitivity �J�xd� de-
fined as the signal caused by the optical properties’
perturbation is

�J�xd����a, ��s� � ACt exp�i�t� � ACh exp�i�h�, (15)

where ACt, �t are the amplitude and phase with per-
turbation and ACh, �h are the amplitude and phase
without perturbation. Considering that the physically
measured signals are denoted as amplitude and phase
we define the signal amplitude sensitivity ��AC� and
signal phase sensitivity ���� as �AC � ACt � ACh and
�� � �t � �h, respectively.

All measured signals contain some form of noise. In
optical tomographic imaging systems, certain types of
noise, such as that originating from inaccurate posi-
tioning of detectors and sources, can be eliminated by
careful calibration. Other noise forms, such as John-
son noise or shot noise, which are intrinsic phenom-
ena in all electronic circuits, are impossible to avoid.
Theoretical and experimental analyses of these noise
models and how they affect optical measurement sys-
tems have been given by Toronov et al.18 and by Tao
et al.25 When one considers small imaging domains,
the optical signals are usually relatively strong, and
thus shot noise is the dominant noise source. This
allows us, in this study, to rely on the analysis pro-
vided by Toronov et al.18 who derived the following
expressions for the noises (standard deviations of sig-
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nal fluctuation) in the DC intensity ��DC�, AC ampli-
tudes ��AC�, and phase ���� measurements:

�DC � ��DC�, (16)

�AC � ��DC�, (17)

�� �
1

�AC���AC
�

�AC�

��DC�
, (18)

where DC, AC, and � are the DC intensity, the
AC amplitude, and the phase measurements, re-
spectively, in the experiment. The � � denote an en-
semble measurement average.

C. Signal-to-Noise Ratio and Signal-Sensitivity-to-Noise
Ratio

With the above signal and noise models in place, we
can define the term SNR for the AC amplitude and
phase as follows:

SNRAC��� �
�AC�
�AC

�
�AC�

��DC�
, (19)

SNR���� �
���
��

�
���

�AC��AC�
� ���SNRAC. (20)

Therefore the SNR is the ratio of the signal divided
by the noise in the measurements, given by the stan-
dard deviation �. The value of the SNR is important
if we want to determine the quality of a signal avail-
able for a given tissue geometry and composition. If
we want to determine whether a heterogeneity is
detectable, we need to look at the effect this hetero-
geneity has on the measurements. Therefore we de-
fine SSNR for the AC amplitude �SSNRAC� and phase
�SSNR�� as follows:

SSNRAC��� �
��AC�

�AC
�

�ACt� � �ACh�

��DC�
, (21)

SSNR���� �
����
��

� ���t� � ��h��SNRAC. (22)

Here the SSNR is the ratio of the signal sensitivity
(AC sensitivity �AC, or phase sensitivity ��) divided
by the noise in the measurement. Note that both SNR
and SSNR are frequency dependent, as AC amplitude
and phase are frequency dependent.

3. Numerical Frequency Sensitivity Analysis

Figure 1 illustrates a general tissue geometry used
throughout this work. The computational domain is
defined by � :� 	�x, y, z�T�x2 � y2 � 1; 0 � z � 2
.
In the simulations we place a point source at
xs � �1, 0, 1�T. Detectors are evenly distributed on a
circle defined by 	 :� 	�x, y, z�T�x2 � y2 � 1; z � 1
.
We refer to specific detectors by numbering them
counterclockwise from 1 through 12 starting at

source position S. The domain is discretized into ap-
proximately 17,000 tetrahedral elements and 48 di-
rections (S6, with full level symmetry). A cylindrical
heterogeneity with varying diameter and optical
properties is placed at various distances off center.

A. Homogeneous Media

Before investigating the influence of optical inhomo-
geneities on frequency-domain data, we studied the
effect of source-modulation frequencies on the bound-
ary measurement of a homogeneous domain. There-
fore in this case the cylindrical inhomogeneity in Fig.
1 has the same optical properties (�a � 0.05 cm�1,
�s � 10.0 cm�1, and g � 0.7) as the surrounding
medium. Using our transport-theory-based code, we
calculated the amplitude and phase delays observed
on the 12 detector positions. Figures 2(a) and 2(b)
show the amplitude values and phase delays for dif-
ferent modulation frequencies at detector positions 1
to 6 (see also Fig. 1). As expected, it can be seen that

Fig. 1. Geometric setup for numerical simulation, the diameter of
the cylinder D � 2 cm, and height H � 2 cm. The source is
identified by the letter S and the detectors by circles.

Fig. 2. (a) Amplitude and (b) phase delay as well as (c) SNRAC and
(d) SNR� of a homogeneous cylinder at modulation frequencies
from 100 to 1000 MHz. Here 1 to 6 refer to the detectors arranged
around the boundary, 1 being the closest detector to the source and
6 the farthest from the source (see also Fig. 1).

1 April 2007 � Vol. 46, No. 10 � APPLIED OPTICS 1627



as the modulation frequency increases, the amplitude
decreases while the phase delay increases. Further-
more when the detector is farther away from the
source, the amplitude on the detector is smaller, and
the phase is larger. These behaviors are not surpris-
ing as they are readily observed in many phenomena
involving wave propagation.

The amplitude and phase SNRs on different detec-
tors are plotted in Figs. 2(c) and 2(d). Since the noise
model given in the previous subsection is a propor-
tional formula, no absolute values of the SNR or
SSNR can be obtained. Hence here and in the follow-
ing sections, the SNR and SSNR curves are all nor-
malized to the respective values at 100 MHz. Note
that with an increase of the modulation frequency,
the SNRACs are decreasing at all detector positions.
The reason behind this is the decreasing AC am-
plitude and the constant noise with respect to the
modulation frequency [see Eq. (17)]. The phase
SNR�s reach the maximal values between 400 and
600 MHz, except for detectors 1 and 2, which are the
closest to the source.

After having presented some basic results for ho-
mogeneous media, we now investigate heterogeneous
media. As can be seen in Eq. (10), the signal sensi-
tivity ��J� depends on the changes in absorption ���a�
and scattering perturbation ���s� and both contribute
to the signal sensitivity independently. Therefore we
will present the effects of absorption and scattering
heterogeneities in separate subsections.

B. Signal-Sensitivity-to-Noise Ratio Studies with
Absorbing Perturbations

We start by examining the effects of absorption per-
turbations. In these cases, only the absorption prop-
erty of the heterogeneity is varied. The scattering
property of the heterogeneity is identical to that of the
background medium. The signal’s amplitude sensitiv-
ity ��AC� and phase sensitivity ���� are determined
as functions of different absorption coefficients, sizes,
and locations of the heterogeneity. We vary the
source-modulation frequency and show the SSNR
curves for the different detector locations. A sum-
mary of all cases studied is listed in Table 1.

In Figs. 3(a) and 3(b), �AC and �� at different
detector positions as functions of the modulation
frequencies are plotted for the reference case (see

Table 1). Here �AC decreases as the modulation fre-
quency increases or as the distance between a detec-
tor and source pair increases. |��| shows increases
as the modulation frequency increases.

Figures 3(c) and 3(d) show the normalized SSNRs
for the reference case at different detector positions
as functions of the modulation frequency. Again, all
these SSNR curves are normalized to the 100 MHz
point. Increasing the modulation frequency leads to a
decrease in the SSNRAC [see Fig. 3(c)]. This is in
accordance with Eq. (21) because the signal’s ampli-
tude sensitivity ��AC� decreases with the modulation
frequency, and at the same time the AC amplitude
noise ��AC� is constant. Rather than showing a steady
decrease, the SSNR�s reach distinct maxima at 400
MHz for all detector positions. That a maximum oc-
curs in the SSNR� can be understood by looking at
Eq. (22). The SSNR� is proportional to the ratio of the
signal’s phase sensitivity ���� and the phase noise
����. As the modulation frequency increases, both ��
and ���� increase, leading to some characteristic max-
ima in these SSNR� curves.

Table 1. Summary of Different Cases Used for Sensitivity Analysis with Absorption Perturbations

Test Casesa
�a

(cm�1)
�s

(cm�1)
r

(cm)
OO�
(cm)

Reference 2.0�a
b, r � 0.25 cm, OO�� 0.50 cm 0.1 10.0 0.25 0.5

Strength 1.2�a
b 0.06 10.0 0.25 0.5

1.5�a
b 0.075 10.0 0.25 0.5

Size r � 0.15 cm 0.1 10.0 0.15 0.5
r � 0.35 cm 0.1 10.0 0.35 0.5

Location OO� � 0.0 cm 0.1 10.0 0.25 0.0
OO� � 0.25 cm 0.1 10.0 0.25 0.25

aHere �a and �s are absorption and scattering coefficients, and OO� is the offset of the perturbation center from the homogeneous
background center. For all the cases, the background optical properties are set with �a

b � 0.05 cm�1, �s
b � 10.0 cm�1, and g � 0.7.

Fig. 3. (a) Signal amplitude sensitivity ��AC�, (b) phase sensitiv-
ity ����, (c) SSNRAC, and (d) SSNR� of the reference case listed in
Table 1. Here 1 to 6 refer to the detectors arranged around the
boundary, 1 being the closest detector to the source and 6 the
farthest from the source (see also Fig. 1).
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1. Absorption Perturbation Strength
To investigate how changes in the absorption pertur-
bation affect the SSNRs, we select the readings of just
one representative detector (in this case detector 3) to
limit the amount of data shown in one graph. In the
reference case (described in Subsection 3.B) the ab-
sorption coefficient of the perturbation is two times
higher than that of the background medium. Now we
add cases in which the absorption coefficients inside
the heterogeneity are 1.5 and 1.2 times higher than
that in the background medium. Figures 4(a) and 4(b)
graph the SSNRAC and SSNR�, respectively. We ob-
serve that in the SSNRAC and SSNR� plots, as the
absorption inside the heterogeneity is increased, the
SSNR values increase. However, while the SSNRAC
decreases monotonically as the source modulation is
increased, the SSNR� plots show distinct maxima at
400 MHz.

2. Absorption Perturbation Size
Next, we examine how changes in the size of a
heterogeneity influence the SSNRs on the detectors.
Cylindrical perturbations with radii of 0.15 cm,
0.25 cm (reference case), and 0.35 cm were tested.
The results for these cases are shown in Figs. 5(a)
and 5(b). As expected, we observed that with in-
creasing perturbation size the SSNRAC and SSNR�

increase. Again, the SSNRAC monotonically decreases
with modulation frequency with all perturbation
sizes, while the SSNR� curves show maxima at
�400 MHz.

3. Absorption Perturbation Location
Here we examine how perturbation location affects
the system’s detection limitation. The center of the
perturbation �O�� was placed in different locations
�OO� � 0.0 cm, 0.25 cm (reference case), and 0.5 cm)

on line OS in Fig. 1. The perturbation strength
�2.0�a� and size �r � 2.5 mm� were fixed, while the
source modulation frequencies varied from 100 to
1000 MHz. The results are shown in Figs. 6(a) and
6(b). The SSNRACs monotonically decrease with the
modulation frequency at different OO�, and the
SSNR�s show maxima at 200–400 MHz depending
on the position of the perturbation center. These two
graphs also reveal that the SSNR values become in-
creasingly larger when the heterogeneity gets closer
to the source. Therefore it is easier to detect the pres-
ence of the heterogeneity when it is closer to the
source.

C. Signal-Sensitivity-to-Noise Ratio Studies with
Scattering Perturbations

Physically, light absorption is a phenomenon in which
photons are eliminated, while light scattering is a phe-
nomenon in which the trajectories of the photons are
changed. Thus changing a tissue’s absorption proper-
ties decreases (or increases) the amount of photons
arriving at the detectors, while changing a tissue’s
scattering properties will redistribute the number of
photons that arrive at the different detectors.

Here we examine cases where the scattering prop-
erty of the heterogeneity varies, while the absorption
property of the heterogeneity is constant and identi-
cal to that of the background medium. A summary of
all cases used in the numerical experiments can be
found in Table 2.

As in the study of the absorption perturbation, the
reference case was analyzed first. Investigating the
�AC and �� with scattering perturbation shown in
Figs. 7(a) and 7(b), we find the signal’s sensitivity
trends to differ from those caused by absorption per-
turbation. The �ACs are almost independent of the
modulation frequency at the detectors close to the
source [Fig. 7(a), detectors 1 and 2]. For the detectors
farther away from the source, more complex fre-
quency dependences are observed, as some detectors
(3 and 4) monotonically increase, while others take on
minimal values between 200–400 MHz (detectors 5
and 6). In general, the ��’s increase with the modu-
lation frequency, except for detector 2.

Figures 7(c) and 7(d) show the SSNRAC and SSNR�,
respectively. In most cases the SSNRAC curves show
maxima for source-modulation frequencies between
400 and 600 MHz. However, the SSNRAC curves for
detectors 5 and 6, both far away from the source, have

Fig. 4. (a) SSNRAC and (b) SSNR� with varied strengths of ab-
sorption perturbation, 1.2�a, 1.5�a, 2.0�a.

Fig. 5. (a) SSNRAC and (b) SSNR� with varied sizes of absorption
perturbation, r � 0.15, 0.25, and 0.35 cm.

Fig. 6. (a) SSNRAC and (b) SSNR� by moving the location of
absorption perturbation OO� � 0.0, 0.25, and 0.50 cm.
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some minimal values at 200 and 400 MHz, respec-
tively. The SSNR� curves all show maximal values
at 400 MHz, except the curve for detector 1, which
strongly increases after it takes on a minimum value
at 200 MHz.

1. Scattering Perturbation Strength
In Figs. 8(a) and 8(b), SSNRACs and SSNR�s are plot-
ted for the case when the scattering coefficients in
the heterogeneity vary from 12.0 to 20.0 cm�1 corre-

sponding to the contrast ratio between 1.2 and
2.0. Similar to the case of the absorption perturba-
tion, we observe that the SSNRs increase with
the strength of the perturbation. However, the
SSNRACs with scattering perturbations show maxi-
mal values at approximately 600 MHz, while in the
absorption perturbation cases the SSNRACs monoton-
ically decreased with the increasing modulation fre-
quency. The SSNR� curves again reach maximal
values at 400 MHz.

2. Scattering Perturbation Size
The impacts of the size of the scattering perturba-
tions are plotted in Figs. 9(a) and 9(b). From these
plots, we find that SSNR�s improve with the enlarge-
ment of the perturbation size. Compared with previ-
ous cases, all SSNR�s keep their peak values at 400
MHz, while the position of the maximum in the
SSNRAC curves moves from 600 to 800 MHz.

3. Scattering Perturbation Location
Changing the position of the perturbation leads to a
shift of the maximum in the SSNRAC and SSNR�

curves (see Fig. 10). As mentioned before, scattering
is a phenomenon of redistributing photons, thus, the
location of the perturbation affects the different de-
tector signal sensitivities. In Fig. 10(a), the centrally
located perturbation reaches its maximum SSNRAC
at the low modulation frequency, while in the cases of
off-center perturbation, the maximal SSNRAC values
are reached at a higher frequency. The SSNR� is
more complicated. Figure 10(b) shows that deep
embedded perturbation �OO� � 0.0 cm� has a much
lower SSNR compared with that near the surface

Table 2. Summary of Different Cases Used for Sensitivity Analysis with Scattering Perturbations

Test Casesa
�a

(cm�1)
�s

(cm�1)
r

(cm)
OO�
(cm)

Reference 2.0�s
b, r � 0.25 cm, OO� � 0.50 cm 0.05 20.0 0.25 0.5

Strength 1.2�s
b 0.05 12.0 0.25 0.5

1.5�s
b 0.05 15.0 0.25 0.5

Size r � 0.15 cm 0.05 20.0 0.15 0.5
r � 0.35 cm 0.05 20.0 0.35 0.5

Location OO� � 0.0 cm 0.05 20.0 0.25 0.0
OO� � 0.25 cm 0.05 20.0 0.25 0.25

aHere �a and �s are absorption and scattering coefficients, and OO� is the offset of the perturbation center from the homogeneous
background center. For all the cases, the background optical properties are set with �a

b � 0.05 cm�1, �s
b � 10.0 cm�1, and g � 0.7.

Fig. 7. (a) Signal amplitude sensitivity ��AC� and (b) phase sen-
sitivity ���� and as well as (c) SSNRAC, and (d) SSNR� of the
reference case listed in Table 2. Here 1 to 6 refer to the detectors
arranged around the boundary, 1 being the closest detector to the
source and 6 the farthest from the source (see also Fig. 1).

Fig. 8. (a) SSNRAC and (b) SSNR� with varied strengths of scat-
tering perturbation, 1.2�s, 1.5�s, 2.0�s.

Fig. 9. (a) SSNRAC and (b) SSNR� with varied sizes of scattering
perturbation, r � 0.15, 0.25, and 0.35 cm.
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�OO� � 0.5 cm�, which means it is hard to detect and
characterize the centrally located perturbations.

4. Discussion and Conclusions

We focused on the sensitivity analysis concerning the
effects of optical heterogeneities in a cylindrical vol-
ume, which mimics small geometries frequently en-
countered in optical tomographic imaging of small
animals or human fingers. The analysis was based on
solutions to the frequency-domain equation of radia-
tive transfer, which provides more accurate results
than the widely employed diffusion approximation.
Using different source modulation frequencies, we
studied the effects of size, location, strength, and opti-
cal properties on the detectability of embedded hetero-
geneities.

Analyzing the signal-sensitivity-to-noise ratios
(SSNRs) for various cases, we found that we could
distinguish four different situations: two for the case
of an absorbing heterogeneity and two for the case of
a scattering heterogeneity. If the heterogeneity is
purely absorbing, the SSNRAC is always largest for a
modulation frequency of 0 Hz. This result is not sur-
prising and is in agreement with previous work by
other groups.17,18 However, the SSNR� consistently
shows an optimal value for source-modulation fre-
quencies at �400 MHz. While the phase delay is
monotonically increasing with increasing modulation
frequency, this does not automatically lead to more
and more accurate phase measurements; the noise
(defined as standard deviation) in the phase mea-
surements is also increasing with increasing modu-
lation frequency. Combining these two effects results
in an optimal modulation frequency for which the
SSNR� is largest.

When scattering heterogeneities are considered a
more complex picture occurs. Now even the SSNRAC
shows optimal values at nonzero modulation frequen-
cies. While the SSNR� is again the largest for mod-
ulation frequencies at approximately 400 MHz, for
most situations considered in this study, the best
SSNRAC is obtained for a variety of values between
200 and 800 MHz, depending on the size and location
of the heterogeneity inside the medium. These find-
ings suggest that a frequency-domain optical tomo-
graphic imaging system for small animal and finger
joint studies should focus on source-modulation fre-
quencies below 800 MHz. If only one frequency is to
be used, 400 MHz appears optimal. However, a mul-

tifrequency system that allows us to perform ampli-
tude measurements at various frequencies ranging
from 0 to 800 MHz, and phase measurements be-
tween 300 and 500 MHz promises to capture most
types of effects.
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tis and Musculoskeletal and Skin Diseases (NIAMS-
2R01-AR046255) and the National Institute of
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