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We consider the reconstruction of singular surfaces from the over-determined bound-
ary conditions of an elliptic problem. The problem arises in optical and impedance
tomography, where void-like structure or cracks may be modeled as diffusion processes
supported on co-dimension one surfaces. The reconstruction of such surfaces is obtained
theoretically and numerically by combining a shape sensitivity analysis with a level set
method. The shape sensitivity analysis is used to define a velocity field, which allows us

to update the surface while decreasing a given cost function, which quantifies the error
between the prediction of the forward model and the measured data. The velocity field
depends on the geometry of the surface and the tangential diffusion process supported
on it. The latter process is assumed to be known in this paper. The level set method
is next applied to evolve the surface in the direction of the velocity field. Numerical
simulations show how the surface may be reconstructed from noisy estimates of the full,
or local, Neumann-to-Dirichlet map.
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1. Introduction

The identification of unknown surfaces or interfaces in physical problems governed
by partial differential equations has been an active field of research recently.7,20,27

Apart from the fields of shape optimization and optimal design,2,31 such problems
emerge in applications such as optical tomography,7,18 inverse scattering28,35 and,
more generally, parameter identification in partial differential equations.12 Most
works in the current literature deal with the reconstruction of interfaces that sep-
arate regions with different contrasts from boundary or far-field measurements,
typically interfaces across which one of the constitutive parameters in the partial
differential equation jumps.
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In this paper, we study an inverse interface problem in which the role of the
interface is not to separate regions with different physical coefficients but rather to
be the support of a tangential diffusion process. Such a process may model thin areas
characterized by very high values of the diffusion coefficient, as in the modeling of
cracks of thickness ε � 1 and conductivity of order ε−1 in impedance tomography.
It is known25 that such cracks may be modeled by a tangential diffusion process
supported on an interface. Another application is the modeling of clear layers in
optical tomography. Optical tomography consists of probing human tissues with
near-infrared photons.4 Classical diffusion equations are known to be valid away
from clear layers.5,22,34 The results obtained before6,8 show that clear layers may
also be modeled as a tangential diffusion process supported on a co-dimension
one surface. In both applications, we thus have a second-order diffusion equation
with possibly spatially varying diffusion coefficient, which we assume to be known,
along with a singular diffusion process supported on an interface, which we want
to reconstruct from over-determined boundary measurements.

In the absence of general analytic formulas, the inverse interface problem is
usually solved by minimizing an objective function that measures the mismatch
between the model predictions and the measurements. A central element in the
minimization procedure is the calculation of the gradient of the objective function
with respect to the variations in the shape of the interface. This is the shape sen-
sitivity analysis.24,39 Another important element in the minimization procedure is
a numerical tool that is used to advect the interface once a suitable descent direc-
tion has been obtained by shape sensitivity analysis. As in the pioneering work
by Santosa35 and subsequent works mentioned in the review paper by Burger and
Osher,11 the level set method11,29 may be used to that purpose. This paper gener-
alizes the combination of a shape sensitivity analysis and level set method to the
reconstruction of surfaces supporting singular diffusion processes from boundary
measurements.

The rest of the paper is structured as follows. After introducing the singular
interface problem and the related inverse problem in Sec. 2, we perform the shape
sensitivity analysis in Sec. 3. In Sec. 4 we show how to choose a direction of descent
that allows us to move the interface in such a way that the mismatch between
the model predictions and the measurements decreases. We present in Sec. 5 a
numerical algorithm for the singular surface reconstruction based on the level set
method. Numerical reconstructions using synthetic data in academic geometries are
presented in Sec. 6. A comparison with the reconstruction of interfaces separating
domains with different diffusion constants35 is also provided. Section 7 concludes
the paper.

2. The Singular Surface Problem

2.1. Forward model

Let Ω ⊂ R
n (n = 2, 3) be a domain with Lipschitz boundary Γ(≡ ∂Ω) and Σ ⊂ Ω a

closed, non-self-intersecting, interface of class C2 embedded in Ω and separating it
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Fig. 1. Geometric setting of the problem in the two-dimensional setting with Ω = ΩI ∪ΩE ∪Σ.

into interior (ΩI) and exterior (ΩE) parts, so that we may write Ω = ΩI ∪ΩE ∪Σ.
We also require that Σ stay away from ∂Ω, i.e. d(Σ, Γ) > C for some positive
constant C. The geometry of interest is depicted in Fig. 1 in the two-dimensional
setting. We consider the following elliptic partial differential equation in Ω with
interface condition on Σ:

−∇ · D(x)∇u(x) + a(x)u(x) = 0 in Ω\Σ,

D(x)ν(x) · ∇u(x) = g(x) on Γ,

[u] = 0 on Σ,

[n · D∇u] = −∇⊥ · d(x)∇⊥u(x) on Σ.

(2.1)

The scalar (to simplify) diffusion coefficients D(x) and d(x) are uniformly positive;
the absorption coefficient a(x) is assumed to be smooth and bounded from above
and below by positive constants, i.e. 0 < c1 < a(x) < c2 < ∞; n(x) is the outward
unit normal vector to ΩI at x ∈ Σ and ν(x) is the outward unit outer normal
vector to Ω at x ∈ Γ. The tangential differential operator ∇⊥ is the restriction
of ∇ to Σ, so that for a sufficiently smooth function φ(x) defined on Ω, we have
∇⊥φ(x) = ∇φ(x) − (n(x) · ∇φ(x))n(x) for x ∈ Σ. The symbol ∇⊥ · ∇⊥ denotes
the Laplace–Beltrami operator on Σ. The jump conditions across the interface Σ
are defined by

[u] = u(x+) − u(x−), [n · D∇u] = n · D∇u(x+) − n · D∇u(x−), (2.2)

with

u(x±) = lim
t→0+

u
(
x± tn(x)

)
, ∇u(x±) = lim

t→0+
∇u
(
x± tn(x)

)
. (2.3)

Equation (2.1) models a background diffusion-absorption process in the domain
Ω with a tangential diffusion process supported on the surface Σ.8,25

The problem described in (2.1) is well-posed in the following Hilbert space:

H1
Σ(Ω) :=

{
u(x) : u ∈ H1(Ω), such that

∫
Σ

|∇⊥u|2dσ < ∞
}

, (2.4)

where H1(Ω) is the usual Sobolev space of L2 functions in the domain Ω whose
first-order partial derivatives also in L2(Ω).1,16 In other words, H1

Σ(Ω) consists of
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functions in H1(Ω) with tangential gradient on Σ in L2(Σ). One can verify that
H1

Σ(Ω) is a Hilbert space equipped with the scalar product:

(u, v)H1
Σ

=
∫

Ω

(uv + ∇u · ∇v)dx +
∫

Σ

∇⊥u · ∇⊥vdσ(x), (2.5)

where dσ(x) denote the Lebesgue measure on Σ, and a natural norm

‖u‖H1
Σ

=
√

(u, u)H1
Σ
. (2.6)

Upon multiplying (2.1) by a test function φ(x) ∈ H1
Σ(Ω) and integrating by parts,

we obtain that

S(u, φ) = fg(φ), (2.7)

where the bilinear form S(·, ·) is defined by

S(u, φ) :=
∫

Ω

D(x)∇u(x) · ∇φ(x)dx +
∫

Ω

a(x)u(x)φ(x)dx

+
∫

Σ

d(x)∇⊥u(x) · ∇⊥φ(x)dσ(x), (2.8)

and the linear form fg(φ) by

fg(φ) :=
∫

Γ

g(x)φ(x)dσ(x). (2.9)

Note that S is symmetric, i.e. S(u, φ) = S(φ, u). Because the diffusion coefficients
D(x) and d(x) and the absorption coefficient a(x) are positive and bounded, one
can verify that the bilinear form S is coercive. It then follows from Lax–Milgram
theory16,23 that if g ∈ H−1/2(Γ), then (2.1) admits a unique solution u ∈ H1

Σ with
trace on Γ, u|Γ ∈ H1/2(Γ); see also Ref. 7.

2.2. Inverse surface problem

A practically useful inverse problem related to Eq. (2.1) consists of reconstruct-
ing the interface Σ from knowledge of u at the boundary Γ. The Neumann-to-
Dirichlet (NtD) operator, which maps the incoming flux g to u on the boundary26

is defined as:

ΛΣ :
H−1/2(Γ) 	→ H1/2(Γ)

g(Γ) 	→ u|Γ.
(2.10)

This operator obviously depends on the geometry of Σ. The inverse interface prob-
lem of (2.1) may then be formulated as:

(IP) Determine the interface Σ from knowledge of the Neumann-to-
Dirichlet operator ΛΣ.
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If all the other coefficients in (2.1) are known, it is shown in a previous work7

that knowledge of the local Neumann-to-Dirichlet map uniquely determines the
interface Σ. Let us denote by Γg ⊂ Γ the part of the boundary where nonzero
boundary current are applied and measurements are taken. In other words, we
replace the boundary condition of (2.1) by

D(x)ν(x) · ∇u(x) =

{
g(x), on Γg

0, on Γ\Γg.
(2.11)

Denoting by ΛΓg

Σ the local Neumann-to-Dirichlet operator for the new problem,
which implies that u is measured only on Γg. Then we have the following uniqueness
result7:

Proposition 2.1. Let ΛΓg

Σ1
and ΛΓg

Σ2
be the local NtD maps associated with inter-

faces Σ1 and Σ2, respectively. Suppose that the functions D(x), d(x) and a(x) are
known and satisfy the above mentioned regularity assumptions. Then ΛΓg

Σ1
= ΛΓg

Σ2

implies that Σ1 = Σ2.

The objective of this paper is to design a numerical method to reconstruct the
singular interface Σ from knowledge of ΛΣ or ΛΓg

Σ . Our method is based on classical
numerical optimization techniques. We convert the reconstruction problem to a
regularized nonlinear least square problem:

Fα(Σ) :=
1
2

∥∥u − uδ
m

∥∥2

L2(Γ)
+ α

∫
Σ

dσ(x) → min
Σ∈Π

. (2.12)

Here uδ
m denotes a noisy measurement of u on the domain boundary Γ with noise

level δ, while Π denotes the space of admissible surfaces Σ. The first term in the
objective functional Fα(Σ) evaluates the discrepancy between the measured and
predicted data, while the second term is a regularization term with parameter α.
The choice of set Π is critical to the existence of minimizers to the functional
Fα(Σ). If we assume that Π consists of interfaces such that

∫
Σ dσ(x) is the (n− 1)-

dimensional Hausdorff measure of Σ, which turns out to be the perimeter of the
inner domain ΩI in two dimensions, we can then view the reconstruction of Σ
as the identification of the domain ΩI penalized by its perimeter. By techniques
such as those of Ambrosio and Buttazzo,3 Dal Maso and Toader,15 the existence of
minimizer to functional Fα should follow from the lower semicontinuity of Fα(Σ)
with respect to ΩI (thus Σ) in either the space of sets with finite parameter or the
space of simply-connected, Hausdorff measurable compact sets. For our analysis
below, we need interfaces that are at least of class C2 such that the mean curvature
of the interfaces can be defined in the classical way. It is, however, not clear to us
so far that a minimizer of Fα exists in such a class of interfaces. Our analysis in
the following sections are thus based on the assumption that a regular minimizer
does exists.

In many applications, such as the reconstruction of clear layers in optical
tomography, we may have a priori information about the location of the singular
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interface, whence constraints on the size of Π, which may simplify the inverse prob-
lem. We do not consider this situation here.

2.3. Comparison with the reconstruction of inclusions

It is instructive to compare the reconstruction of singular surfaces as they
are described in the preceding section with the more classical problem of the
reconstruction of interfaces separating regions characterized by different diffusion
coefficients.27,28,35 In the latter works, the inclusion is characterized by a constant
diffusion coefficient that differs from the constant background diffusion coefficient.
The inclusion is then reconstructed by minimizing the functional (2.12). The con-
struction of velocity fields allowing us to minimize (2.12) is not modified when the
inclusion’s and background diffusion coefficients are allowed to be (not necessarily
constant) smooth functions, so long as the difference between these functions does
not vanish. More precisely, we consider the following model for the inclusions:

−∇ · D(x)∇u(x) + a(x)u(x) = 0 in Ω,

D(x)ν(x) · ∇u(x) = g(x) on Γ,

[u] = 0 on Σ,

[n · D∇u] = 0 on Σ,

(2.13)

where the diffusion coefficient D(x) jumps across the interface Σ

D(x) =

{
D0(x) + δD(x) ≡ DI(x), x ∈ ΩI ,

D0(x) ≡ DE(x), x ∈ ΩE ,
(2.14)

with D(x) uniformly bounded from above and below by positive constants and
δD(x) strictly positive or strictly negative. The case where D0 and δD are constant
has been studied extensively.27,28,35 The behavior of the solution u(x) to (2.1) with
d(x) > 0 is very similar to the behavior of solution of model (2.13) with δD(x) > 0.
In Sec. 6, we will give a more quantitative numerical comparison between the two
models.

3. Shape Sensitivity Analysis

In order to solve the surface reconstruction problem by minimization of the func-
tional Fα(Σ) in (2.12), it is essential to compute the variation of Fα(Σ) with respect
to a small perturbation in Σ. This involves computing the sensitivity of the diffu-
sion solution with respect to deformations in the shape. This is the shape sensitivity
analysis described in the shape optimization literature.39

The main novelty of the paper is to carry out the shape sensitivity analysis
in the presence of a singular interface. Unlike the model (2.13) treated before,27,28,35

the current jumps across the interface Σ in (2.1). This significantly modifies the
shape sensitivity analysis and the important relationship between shape and mate-
rial derivatives; see below. Let us also mention that many geometries have been
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addressed in the shape optimization literature.17,21,38,39 Because of the specificity
of problem (2.1), none of them may be applied directly, although similarities in the
methodology and mathematical machinery are easily drawn.

The framework for the shape sensitivity analysis is the following. We perturb
the interface Σ according to the map Ft : R

n → R
n (the parameter t ∈ R

+ is a
small positive real number) defined by:

Ft(x) = x + tV(x), x ∈ R
n. (3.1)

Here V(x) : R
n 	→ R

n is a vector field of class C1 with compact support in the
domain Ω so that each point on the boundary of Ω remains invariant under the
perturbation Ft. We denote this as V ∈ C1

0 (Ω; Rn). Under this perturbation, points
x ∈ Ω are mapped to x + tV(x). However, the whole domain Ω remains invariant
in the sense that Ω = Ft(Ω).

We denote by Σt the image of Σ under the perturbation, and denote by ut(x)
the solution of problem (2.1) with Σ replaced by the perturbed interface Σt. The
variation of u with respect to variations in the interface Σ is called the shape
derivative of u with respect to Σ. More precisely:

Definition 3.1. (Shape derivative) Let u ∈ H1
Σ and ut ∈ H1

Σt
be solutions of

problem (2.1) with interface Σ and Σt, respectively. Assume that V ∈ C1
0 (Ω; Rn)

be a vector field given in (3.1). If the limit

u′(Σ;V) := lim
t→0

ut − u

t
(3.2)

exists in the strong (weak) topology of some Banach space of functions B(Ω), then
we call u′(Σ;V) the strong (weak) shape derivative of u in direction V.

We refer to Remark 3.3 below for a remark on the choice of a Banach space and
a topology. The calculation of u′(Σ;V) is greatly simplified by the introduction of
a material derivative39 :

Definition 3.2. (Material derivative) Let u ∈ H1
Σ, ut ∈ H1

Σt
and V be given as in

Definition 3.1, and define ut = ut ◦ Ft. If the limit

u̇(Σ;V) := lim
t→0

ut − u

t
(3.3)

exists in the strong (weak) topology of some Banach space of functions B(Ω), we
call u̇(Σ;V) the strong (weak) material derivative of u in direction V.

We also refer to Remark 3.3 for the choice of a Banach space and a topology. The
material derivative thus quantifies the variations of u with respect to changes in the
geometry for a moving (Lagrangian) coordinate system. The shape and material
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derivatives introduced in Definitions 3.1 and 3.2, respectively, are not independent
of each other. More precisely, we have39:

u′(Σ;V) = u̇(Σ;V) − V · ∇u, (3.4)

provided that both u̇(Σ;V) and V · ∇u make sense. This relation tells us that in
order to compute the shape derivative of u, we can compute the material derivative
first and then use (3.4) to obtain the shape derivative.

3.1. The material derivatives

Before we compute the material derivatives of u for model (2.1), we need to intro-
duce some notation. We will denote by (·, ·)(X) the inner product of space L2(X):

(x, y)(X) :=
∫

X

x · ydµ, (3.5)

with dµ the Lebesgue measure on a domain X . For any vector quantity Y on the
interface, we use Ynn ≡ (n ·Y)n and Y⊥ ≡ Y− (n ·Y)n to denote the normal and
tangential components of Y, respectively.

We now examine the variations of the solution to the diffusion equation (2.1)
when the interface Σt varies. We first observe that ut satisfies the following relation:

(D∇ut,∇φt)(Ω) + (aut, φt)(Ω) + (d∇⊥ut,∇⊥φt)(Σt) = fg(φt), (3.6)

for all φt ∈ H1
Σt

(Ω). We introduce

Jt = det(DFt) and At = DF−1
t DF−∗

t , (3.7)

with the superscript ∗ denoting the transpose operation and superscript −∗ denoting
the transpose of the inverse. The Jacobi matrix of the transformation Ft is denoted
by DFt. The strong continuity of the (matrix) functions Jt, At, and Ft and the
following identities can be verified39

(∇ut) ◦ Ft = (DF−∗
t )∇ut, Jt|t=0 = 1, At|t=0 = I, (3.8)

d

dt
Ft|t=0 = V,

d

dt
(DFt)|t=0 = DV,

d

dt
(DF−1

t )|t=0 = −DV, (3.9)

J ′
0 ≡ dJt

dt
|t=0 = ∇ · V, A′

0 ≡ dAt

dt
|t=0 = −(DV + (DV)∗). (3.10)

Here I is the identity matrix.
We now replace ∇⊥ut on the interface Σ by ∇u+

t − (nt · ∇u+
t )nt. We could also

replace it by ∇u−
t −(nt ·∇u−

t )nt and will show that the final result does not depend
on the chosen expression, as it should; see for example (3.29) below. We thus recast
(3.6) as

(D∇ut,∇φt)(Ω) + (aut, φt)(Ω) + (d∇u+
t ,∇φ+

t )(Σt)

− (dnt · ∇u+
t ,nt · ∇φ+

t )(Σt) = fg(φt). (3.11)
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Performing the change of variables x 	→ Ft(x) in the above equality yields

St(ut, φt) = fg(φt), (3.12)

where φt = φt ◦ Ft and St(ut, φt) are given by

St(ut, φt) ≡ (DFtJtAt∇ut,∇φt)(Ω) + (aFtJtu
t, φt)(Ω)

+ (dFtωtAt∇u+t,∇φ+t)(Σ) − (dFtπtAtn · ∇u+t,Atn · ∇φ+t)(Σ),

(3.13)

with DFt ≡ D ◦ Ft, aFt ≡ a ◦ Ft and dFt ≡ d ◦ Ft. The functions ωt and πt are
defined as

ωt = Jt‖DF−∗
t · n‖Rn , πt =

Jt

‖DF−∗
t · n‖Rn

(3.14)

with ‖ · ‖Rn denoting the Euclidean norm in R
n, and verify

ω0 = 1, π0 = 1, (3.15)

ω′
0 ≡ dωt

dt
|t=0 = ∇ · V − n∗DVn ≡ divΣV, (3.16)

π′
0 ≡ dπt

dt
|t=0 = ∇ ·V + n∗DVn. (3.17)

Choosing the test function φt in (2.7), we then deduce from (3.12) and (2.7)
that

S(u, φt) = St(ut, φt). (3.18)

On the other hand, we have for all φ, ψ ∈ H1
Σ(Ω), the following result

St(ψ, φ) − S(ψ, φ) = ((DFt −D)JtAt∇ψ,∇φ)(Ω) + (D(JtAt − I)∇ψ,∇φ)(Ω)

+ ((aFt − a)Jtψ, φ)(Ω) + (a(Jt − 1)ψ, φ)(Ω) + ((dFt − d)ωtAt∇ψ+,∇φ+)(Σ)

+ (d(ωtAt − I)∇ψ+,∇φ+)(Σ) − ((dFt − d)πtAtn · ∇ψ+,Atn · ∇φ+)(Σ)

− (d(πtAt − I)n · ∇ψ+,Atn · ∇φ)(Σ) − (dn · ∇ψ+, (At − I)n · ∇φ+)(Σ),

(3.19)

which implies that

|St(ψ, φ) − S(ψ, φ)| ≤ C1(t)
2

(‖∇ψ‖2
L2(Ω) + ‖∇φ‖2

L2(Ω))

+
C2(t)

2
(‖ψ‖2

L2(Ω) + ‖φ‖2
L2(Ω))

+
C3(t)

2
(‖∇ψ+‖2

L2(Σ) + ‖∇φ+‖2
L2(Σ))

+
C4(t)

2
(‖n · ∇ψ+‖2

L2(Σ) + ‖n · ∇φ+‖2
L2(Σ)), (3.20)
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with C1(t), C2(t), C3(t) and C4(t) given by

C1(t) = ‖(DFt −D)JtAt‖L∞(Ω) + ‖D(JtAt − I)‖L∞(Ω),

C2(t) = ‖(aFt − a)Jt‖L∞(Ω) + ‖a(Jt − 1)‖L∞(Ω),

C3(t) = ‖(dFt − d)ωtAt‖L∞(Ω) + ‖d(ωtAt − I)‖L∞(Ω),

C4(t) = ‖(dFt − d)πtAt‖L∞(Ω)‖At‖L∞(Ω)

+‖d(πtAt − I)‖L∞(Ω)‖At‖L∞(Ω) + ‖At − I‖L∞(Ω).

(3.21)

Here the norms ‖ · ‖L2 and ‖ · ‖L∞ are the usual ones defined on vector (matrix)
functions. Because of the strong continuity of At, Jt, ωt and πt (as functions of t),
we deduce the following result on St:

Lemma 3.1. The bilinear form St is continuous with respect to the perturbation
parameter t in (3.1) at t = 0, which means

lim
t→0+

St(·, ·) = S(·, ·). (3.22)

Let us recast the identity (3.18) as the following relation

T1 + T2 + T3 − T4 − T5 = 0, (3.23)

where the terms Tk are given by

T1 =
(DFt −D

t
JtAt∇ut + DJtAt

∇ut −∇u

t
+ DJtAt − I

t
∇u,∇φt

)
(Ω)

,

T2 =
(

aFt − a

t
Jtu

t + aJt
ut − u

t
+ a

Jt − 1
t

u, φt

)
(Ω)

,

T3 =
(

dFt − d

t
ωtAt∇u+t + d

ωtAt − I
t

∇u+t + d
∇u+t −∇u+

t
,∇φ+t

)
(Σ)

, (3.24)

T4 =
(

dFt − d

t
πtAtn · ∇u+t + d

πtAt − I
t

n · ∇u+t,Atn · ∇φ+t

)
(Σ)

,

T5 =
(

d
n · ∇u+t − n · ∇u+

t
,Atn · ∇φ+t

)
(Σ)

+
(

dn · ∇u+,
At − I

t
n · ∇φ+t

)
(Σ)

.

Thanks to the continuity of St at t = 0, we can take a limit t → 0 in (3.23) and
obtain the following equation for the material derivative of u:

(V · ∇D∇u,∇φ)(Ω) + (D∇u̇,∇φ)(Ω) + (D(J ′
0I + A′

0)∇u,∇φ)(Ω)

+ (V · ∇au, φ)(Ω) + (au̇, φ)(Ω) + (aJ ′
0u, φ)(Ω)

+ (V⊥ · ∇⊥d∇u+,∇φ+)(Σ) + (d(ω′
0I + A′

0)∇u+,∇φ+)(Σ)

+ (d∇u̇+,∇φ+)(Σ) − (V⊥ · ∇⊥dn · ∇u+,n · ∇φ+)(Σ)

− (d(π′
0I + A′

0)n · ∇u+,n · ∇φ+)(Σ) − (dn · ∇u̇+,n · ∇φ+)(Σ)

− (dn · ∇u+,A′
0n · ∇φ+)(Σ) = 0. (3.25)
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Using the expressions for A′
0, J ′

0, ω′
0 and π′

0, we can show that the following sim-
plifications are possible:

(d(ω′
0I + A′

0)∇u+,∇φ+)(Σ) − (d(π′
0I + A′

0)n · ∇u+,n · ∇φ+)(Σ)

− (dn · ∇u+,A′
0n · ∇φ+)(Σ) (ddivΣV∇⊥u,∇⊥φ)(Σ) + (dA′

0∇⊥u,∇⊥φ)(Σ),

(3.26)

where we have replaced ∇u+ − (n · ∇u+)n by ∇⊥u. The quantity divΣV is defined
in (3.16). It can also be shown that

(V⊥ · ∇⊥d∇u+,∇φ+)(Σ) − (V⊥ · ∇⊥dn · ∇u+,n · ∇φ+)(Σ)

= (V⊥ · ∇⊥d∇⊥u,∇⊥φ)(Σ) (3.27)

and

(d∇u̇+,∇φ+)(Σ) − (dn · ∇u̇+,n · ∇φ+)(Σ) = (d∇⊥u̇,∇⊥φ)(Σ). (3.28)

We can thus simplify (3.25) as

S(u̇, φ) = −(V · ∇D∇u,∇φ)(Ω) − (D(J ′
0I + A′

0)∇u,∇φ)(Ω) − (∇ · (aV)u, φ)(Ω)

− (V⊥ · ∇⊥d∇⊥u,∇⊥φ)(Σ) − (ddivΣV∇⊥u,∇⊥φ)(Σ)

− (dA′
0∇⊥u,∇⊥φ)(Σ). (3.29)

We summarize the above results in the following theorem:

Theorem 3.1. Let D(x), a(x) and d(x) be functions of class C1. Then the material
derivative u̇ ∈ H1

Σ(Ω) of the solution u ∈ H1
Σ(Ω) to (2.1) in direction V is the unique

solution to (3.29). Moreover, we verify that

[u̇] = 0 on Σ. (3.30)

The condition (3.30) comes from the third identity in (2.1).

3.2. The shape derivative

The shape derivative of u can be computed by using (3.4). However, before we
proceed to computing it, we stress that u′ can no longer be an element of H1

Σ. The
jump of the normal derivative of u across the interface Σ causes a discontinuity of
the tangential derivative of u′ across the interface according to formula (3.4), i.e.
∇⊥u′(x+) = ∇⊥u′(x−). Let us introduce the following Hilbert space

Z1
Σ(Ω) :=

{
v(x) : v ∈ H1(ΩI) ⊗ H1(ΩE), s.t.

∫
Σ

|∇⊥v+|2dσ +
∫

Σ

[v]2dσ < ∞
}

.

(3.31)

We also define κ(x) as the mean curvature of Σ (seen as a n−1 manifold embedded
in R

n) at x ∈ Σ. We now state the main result of this paper, which allows us to
characterize the shape derivative of u:
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Theorem 3.2. Assume that D(x), a(x) and d(x) are functions of class C1. Then
the shape derivative u′ ∈ Z1

Σ(Ω) of the solution u ∈ H1
Σ(Ω) to (2.1) in direction V,

is the unique solution of

(D∇u′,∇φ)(Ω) + (au′, φ)(Ω) + (d∇⊥u′+,∇⊥φ)(Σ)

= − (ddivΣV⊥∇⊥u,∇⊥φ)(Σ) − (dκVn∇⊥u,∇⊥φ)(Σ)

− (V⊥ · ∇⊥d∇⊥u,∇⊥φ)(Σ) + (V · ∇u+,∇⊥ · d∇⊥φ)(Σ)

− (dA′
0∇⊥u,∇⊥φ)(Σ) + (V⊥ · ∇⊥φ,∇ · d∇⊥u)(Σ), (3.32)

for all φ ∈ H1
Σ(Ω). Moreover, the jump of u′ across Σ is given by

[u′] = −[V · ∇u]. (3.33)

We remark that, thanks to the above jump conditions, (3.32) still holds if the
following substitutions are performed:

(d∇⊥u′+,∇⊥φ)(Σ) → (d∇⊥u′−,∇⊥φ)(Σ),

(V · ∇u+,∇⊥ · d∇⊥φ)(Σ) → (V · ∇u−,∇⊥ · d∇⊥φ)(Σ).
(3.34)

We also remark that the source term (right-hand side) in (3.32) only involves terms
defined on Σ. This is natural, for all other constitutive parameters of (2.1) are kept
independent of t, and should be contrasted with the results obtained in (3.29) for
the material derivative in Lagrangian coordinates.

Proof (Proof of Theorem 3.2). First, replacing u̇ in (3.30) by u′+V ·∇u yields
the jump condition of u′ across the interface, (3.33). Similar replacements in (3.29)
lead to

(D∇u′,∇φ)(Ω) + (au′, φ)(Ω) + (d∇⊥u′+,∇⊥φ)(Σ) = −(D∇(V · ∇u),∇φ)(Ω)

− ((V · ∇D)∇u,∇φ)(Ω) − (D(J ′
0I + A′

0)∇u,∇φ)(Ω) − (aV · ∇u, φ)(Ω)

− (∇ · (aV)u, φ)(Ω) − ((V⊥ · ∇⊥d)∇⊥u,∇⊥φ)(Σ) − (ddivΣV∇⊥u,∇⊥φ)(Σ)

− (d∇⊥(V · ∇u+),∇⊥φ)(Σ) − (dA′
0∇⊥u,∇⊥φ)(Σ). (3.35)

We then verify by integrations by parts that

(D(J ′
0I + A′

0)∇u,∇φ)(Ω) = (D∇ · V∇u,∇φ)(Ω) − (D∇(V · ∇u),∇φ)(Ω)

+ (D(V · ∇)∇u,∇φ)(Ω) − (D(∇u · ∇)V,∇φ)(Ω).

(3.36)

This implies the following:

(D∇(V · ∇u),∇φ)(Ω) + (V · ∇D∇u,∇φ)(Ω) + (D(J ′
0I + A′

0)∇u,∇φ)(Ω)

= (∇ · (D∇u),V · ∇φ)(Ω) − (V⊥ · ∇⊥φ,∇ · d∇⊥u)(Σ). (3.37)
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The terms on the boundary Γ = ∂Ω vanish because V has compact support in Ω.
Thanks to the above identity, (3.35) may be recast as

(D∇u′,∇φ)(Ω) + (au′, φ)(Ω) + (d∇⊥u′+,∇⊥φ)(Σ)

= − (∇ · (D∇u),V · ∇φ)(Ω) − (V · ∇au, φ)(Ω) − (aV · ∇u, φ)(Ω) − (aJ ′
0u, φ)(Ω)

− ((V⊥ · ∇⊥d)∇⊥u,∇⊥φ)(Σ) − (ddivΣV∇⊥u,∇⊥φ)(Σ)

+ (V · ∇u+),∇⊥ · d∇⊥φ)(Σ)

− (dA′
0∇⊥u,∇⊥φ)(Σ) + (V⊥ · ∇⊥φ,∇ · d∇⊥u)(Σ). (3.38)

Further integrations by parts in (2.1) allow us to show that

−(∇·(D∇u),V·∇φ)(Ω)−(V·∇au, φ)(Ω)−(aV·∇u, φ)(Ω)−(aJ ′
0u, φ)(Ω) = 0. (3.39)

These lengthy calculations and combined with the following result39

divΣV = divΣV⊥ + κVn (3.40)

finally yield (3.32).

Remark 3.1. In some applications (including the analysis of clear layers in optical
tomography6,8), it may be necessary to generalize the above calculations to the
situation where the tangential diffusion coefficient d depends on the geometry of the
interface; for instance via its curvature. In that case, we have to impose that d(x),
assumed to be known, is shape differentiable with respect to Σt. Theorem 3.2 then
still holds provided that we add the term −(d′∇⊥u,∇⊥φ)Σ to the right-hand side
in (3.32). Although this may not be as relevant practically, similar generalizations
are possible to the case where D(x) and a(x) also depend on the geometry of the
interface.

The calculation of the material and shape derivatives of the solution u to
(2.1) can also be done with model (2.13). We provide the following result with-
out detailing its derivation. Similar results when D and δD are constant can be
found elsewhere.27,28,39

Theorem 3.3. Assume that D(x) and a(x) are functions of class C1. Then the
material derivative u̇ ∈ H1 of the solution u to Eq. (2.13) is the unique solution to

(D∇u̇,∇φ)(Ω) + (au̇, φ)(Ω)

= −(V · ∇D∇u,∇φ)(Ω) − (DA′
0∇u,∇φ)(Ω) − (∇ · (aV)u, φ)(Ω)

(3.41)

for all φ ∈ H1
Σ(Ω). The shape derivative of u′ ∈ H1 of u ∈ H1 then satisfies

(D∇u′,∇φ)(Ω) + (au′, φ)(Ω) = −(δDVn∇⊥u,∇⊥φ)(Σ) (3.42)

for all φ ∈ H1
Σ(Ω).



August 8, 2006 14:13 WSPC/103-M3AS 00156

1360 G. Bal & K. Ren

The proof of this theorem is very similar to that of Theorem 3.2 except that we
have to replace identity (3.37) by

(D∇(V · ∇u),∇φ)(Ω) + ((J ′
0I + A′

0)D∇u,∇φ)(Ω) + (V · ∇D∇u,∇φ)(Ω)

= (∇ · (D∇u),V · ∇φ)(Ω) + (δDVn∇⊥u,∇⊥φ)(Σ). (3.43)

Remark 3.2. The method based on the map in (3.1) that we have adopted in the
paper is not the only choice for shape sensitivity analysis. An a priori more general
method called the speed (or velocity) method consists of defining the transform Ft

by Ft = X(x, t) with X(x, t) the solution of the following equation:

Ẋ(t,x) = V(t,X(t,x)),

X(0,x) = x.
(3.44)

It has been shown that the velocity method and the transform method used in this
paper are actually equivalent in the sense that under sufficient regularity conditions,
it is possible to associate a unique velocity field to a given transform Ft and vice
versa.39

Remark 3.3. The calculations obtained in the preceding two sections show that
the Banach space B(Ω) may be chosen as the Hilbert H1

Σ(Ω) in Definition 3.2 of the
material derivative for model (2.1) and as H1(Ω) for model (2.13); this is because
[u̇] = 0 across Σ. In both cases, thanks to estimates of the form Ck(t) ≤ Ct for a
constant C in (3.21), we can show that convergence occurs for the strong topology.

The definition of the space B(Ω) in Definition 3.1 is the same for model (2.13).
It is however more complicated for model (2.1). Because u′ jumps across Σ, it is
not an element of H1(Ω), let alone H1

Σ(Ω). We can however choose B(Ω) = L2(Ω)
and observe that convergence in (3.2) is strong in that space. The singular interface
model (2.1) introduces singularities that are not present in the inclusion model
(2.13).

4. Choosing the Direction of Descent

The analysis presented in the last section enables us to compute the sensitivity of
the error functional (4.1) to geometric changes in the interface. Since the vector
field V(x) in (3.1) has compact support, the boundary Γ stays unaffected by per-
turbations in the interface. We can thus obtain the Eulerian derivative of the error
functional as

dFα(Σ) := lim
t→0

Fα(Σt) −Fα(Σ)
t

= (u − uδ
m, u′)(Γ) + α(κ(x), Vn)(Σ). (4.1)

The second term comes from27,39:(
d

dt

∫
Σt

dσt(x)
)∣∣∣∣

Σ

=
∫

Σ

κ(x)Vndσ(x). (4.2)

We recall that κ(x) is the mean curvature of the interface Σ at x ∈ Σ.
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Since we want the error functional (2.12) to decrease as the interface moves, we
need to find a vector field V such that dFα(Σ) ≤ 0. Let us denote by w the solution
to the following adjoint equation

−∇ · D(x)∇w(x) + a(x)w(x) = 0 in Ω\Σ,

D(x)ν(x) · ∇w(x) = u − uδ
m on Γ,

[w] = 0 on Σ,

[n · D∇w] = −∇⊥ · d(x)∇⊥w(x) on Σ.

(4.3)

Upon multiplying (4.3) by u′, performing an integration by parts and taking into
account the fact that u′ jumps across the interface, we obtain that

(D∇w,∇u′)(Ω) + (aw, u′)(Ω) + (d∇⊥w,∇⊥u′+)(Σ)

= (u − uδ
m, u′)(Γ) − ([u′],Dn · ∇w−)(Σ). (4.4)

We also observe that the solution of (4.3) belongs to H1
Σ. Replacing the test function

φ in (3.32) by w, we obtain

(D∇u′,∇w)(Ω) + (au′, w)(Ω) + (d∇⊥u′+,∇⊥w)(Σ)

= − (ddivΣV⊥∇⊥u,∇⊥w)(Σ) − (dκVn∇⊥u,∇⊥w)(Σ)

+ (V · ∇u+,∇⊥ · d∇⊥w)(Σ) − (V⊥ · ∇⊥d∇⊥u,∇⊥w)(Σ)

− (dA′
0∇⊥u,∇⊥w)(Σ) + (V⊥ · ∇⊥w,∇ · d∇⊥u)(Σ). (4.5)

The above equations (4.4) and (4.5) imply that

(u − uδ
m, u′)(Γ) = ([u′],Dn · ∇w−)(Σ) − (ddivΣV⊥∇⊥u,∇⊥w)(Σ)

− (dκVn∇⊥u,∇⊥w)(Σ) − (V⊥ · ∇⊥d∇⊥u,∇⊥w)(Σ)

+ (V · ∇u+,∇⊥ · d∇⊥w)(Σ) − (dA′
0∇⊥u,∇⊥w)(Σ)

+ (V⊥ · ∇⊥w,∇ · d∇⊥u)(Σ). (4.6)

Since the tangential component of V does not affect the evolution of the
interface,36,39 we can assume that the vector field V|Σ is normal to Σ, i.e., V⊥|Σ = 0.
Then a combination of (4.1) and (4.6) yields

dFα(Σ) = (Vn∇⊥ · d∇⊥u,n · ∇w−)(Σ) + (Vnn · ∇u+,∇⊥ · d∇⊥w)(Σ)

− (Vndκ∇⊥u,∇⊥w)(Σ) + (ακ, Vn)(Σ). (4.7)

Using the interface conditions in (2.1) and (4.3) we can further simplify the above
equality as

dFα(Σ) = (Vn,−dκ∇⊥u · ∇⊥w − n · ∇u+n · D∇w+ + n · ∇u−n · D∇w+ + ακ)(Σ).

(4.8)

It remains to choose V such that dFα(Σ) ≤ 0. For the singular surface model
(2.1) and the model of inclusion (2.13), we show the following result.
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Proposition 4.1. For the model in (2.1), the functional Fα(Σ) given in (2.12) will
not increase if the interface moves according to a vector field characterized by

Vn = dκ∇⊥u · ∇⊥w + n · ∇u+n · D∇w+ − n · ∇u−n · D∇w− − ακ, (4.9)

where u and w solve (2.1) and (4.3), respectively. For the model given by (2.13), the
functional Fα(Σ) (2.12) is non-increasing if the interface Σ moves in the direction

Vn = −
(
δD∇⊥u · ∇⊥w + ακ

)
, (4.10)

where u solves (2.13) and w solves the adjoint problem:

−∇ · D(x)∇w(x) + a(x)w(x) = 0 in Ω,

D(x)ν(x) · ∇w(x) = u − uδ
m on Γ,

[w] = 0 on Σ,

[n · D∇w] = 0 on Σ,

(4.11)

with the diffusion coefficient D(x) given by (2.14).

Note that (4.10) is the well-known result for the inverse obstacle problem
obtained by shape sensitivity analysis.9,27,28,35 Allowing the diffusion coefficient
D to be spatially dependent in model (2.13) does not modify the choice of a veloc-
ity field. In the inverse problem for singular surfaces, both the geometry of the
surface (via its mean curvature κ) and the tangential diffusion process it carries,
enter non-trivially in the choice of the vector field given in (4.9).

5. Level Set Implementation

Once the direction of descent has been chosen, we need an efficient way to move
the interface along that direction. We use here the level set method29,32 to do
so. The level set method represents interfaces as the zero level sets of level set
functions and then moves of the interfaces implicitly by solving a Hamilton-Jacobi
equation for the level set functions. The application of the level set method to
shape optimization problem has been pioneered by Santosa35 and further studied by
many authors.2,9,12,27 We refer to the recent monographs29,30,37 and their references
therein for a detailed account of the method and its many applications.

5.1. Representing and moving interfaces

Let Σt be an evolution interface in Ω ⊂ R
n viewed as the zero level set of a function

ψ(x, t):

Σt := {x : x ∈ Ω, such that ψ(x, t) = 0}. (5.1)

To track the position of the interface Σt, we evaluate the derivative of ψ(x(t), t) = 0
with respect to t to obtain

∂ψ

∂t
+ ẋ(t) · ∇ψ =

∂ψ

∂t
+ V · ∇ψ = 0, (5.2)

where V is the velocity field at the interface. Since the tangential velocity does not
affect the evolution of the interface,36 we can choose V⊥ = 0. Using the fact that
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the normal vector of the interface can be written as n(x) = ∇ψ/|∇ψ|, we arrive at

∂ψ

∂t
+ Vn|∇ψ| = 0. (5.3)

This is a nonlinear transport equation of the Hamilton-Jacobi form. Let us now
suppose that we know an approximate position for the interface and the normal
velocity Vn at a given “time step”. Then by solving this Hamilton-Jacobi equation,
we can compute the position of the interface at the following “time step”.

5.2. Implementation of the level set method

The level set method is implemented numerically as follows. We focus on the two-
dimensional setting to simplify the calculations.

Algorithm:

L1. We choose an initial level set function ψ0(x), such that the interface can
be represented as Σ0 = {x : x ∈ Ω, ψ0(x) = 0}, and set k = 0;

L2. We solve the state equation (2.1) (resp. (2.13)) with the interface Σk =
{x : x ∈ Ω, ψk(x) = 0};

L3. We compare the solution with given measurements. If a stopping criteria
is satisfied, we stop the calculation. Otherwise:

L4. We solve the adjoint equation (4.3) (resp. 4.11)) to compute the normal
velocity Vn on Σk by (4.9) (resp. (4.10)). We extend the velocity field to a
computational tube around Σ by using (5.7) below;

L5. We move the interface Σk to a new interface Σk+1 by updating the
Hamilton–Jacobi equation (5.3) by one time step ∆t;

L6. We re-initialize the level set function according to Eq. (5.10) if necessary;
L7. We set k := k + 1 and go back to step L2.

Here are additional details about the implementation. The Hamilton–Jacobi
equation (5.3) has been discretized by using the following first-order scheme29

ψn+1
i,j − ψn

i,j

∆t
+ max(V n

i,j , 0)H+ + min(V n
i,j , 0)H− = 0, (5.4)

where the superscript n and subscript i, j denote time and space grid point, respec-
tively. The numerical Hamiltonians H+ and H− are given by

H+ =
√

max(a, 0)2 + min(b, 0)2 + max(c, 0)2 + min(d, 0)2,

H− =
√

min(a, 0)2 + max(b, 0)2 + min(c, 0)2 + max(d, 0)2,
(5.5)

with

a ≡ D−
x ψn

i,j :=
ψn

i,j − ψn
i−1,j

∆x
, b ≡ D+

x ψn
i,j :=

ψn
i+1,j − ψn

i,j

∆x
,

c ≡ D−
y ψn

i,j :=
ψn

i,j − ψn
i,j−1

∆y
, d ≡ D+

y ψn
i,j :=

ψn
i,j+1 − ψn

i,j

∆y
.

(5.6)
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The time step ∆t is chosen so small as to satisfy the CFL stability condition. The
surface Σk is updated to Σk+1 after each iteration of the Hamilton–Jacobi equation
and the vector field is updated according to (4.9).

The vector field Vn in (4.9) is only defined at the interface Σ. We need to extend
it in the neighborhood of Σ to solve the Hamilton–Jacobi equations. This is done
by using the following two-way extrapolation, equation13

Vt + S(ψ)
∇ψ

|∇ψ| · ∇V = 0, (5.7)

where the sign function is defined as

S(ψ) =



−1 if ψ < 0,

0 if ψ = 0,

+1 if ψ > 0.

(5.8)

A detailed discussion can be found elsewhere.29 Equation (5.7) is solved as follows33:

V n+1
ij − V n

ij

∆t
+ max(Sijn

x
ij , 0)D−

x V n
ij + min(Sijn

x
ij , 0)D+

x V n
ij

+ max(Sijn
y
ij , 0)D−

y V n
ij + min(Sijn

y
ij , 0)D+

y V n
ij = 0, (5.9)

over a time interval of roughly 5–10 times ∆t, where D±
x V n

ij and D±
y V n

ij are
finite differences defined as in (5.6). The sign function S(ψ) is approximated by

ψ√
ψ2+δ2

with δ a small regularization parameter. The directions n̂ = (nx, ny) =(
ψx√

ψ2
x+ψ2

y

,
ψy√

ψ2
x+ψ2

y

)
are computed by a central difference scheme.

Finally, we comment on the re-initialization process (step L6 in the above algo-
rithm). The level set function may become very flat or very steep near the interface
Σ. To avoid this, we replace the level set function ψ(x, t) by d(x, t) which is the
value of the signed distance from x to Σ. The quantity d(x, t) satisfies the Eikonal
equation |∇d| = 1, and is the steady state solution of the following re-initialization
equation

∂ψ

∂t
+ S(ψ0)(|∇ψ| − 1) = 0 in Ω × (0, +∞)

ψ(x, t) = ψ0 in Ω × {0}.
(5.10)

A stationary solution of (5.10) is obtained by choosing t large enough.29,40 Here
we approximate the function S(ψ0) by ψ0√

ψ2
0+|∇ψ0|2∆x2

as suggested before.33 The

numerical scheme for Eq. (5.10) is given by33:

ψn+1
ij − ψn

ij

∆t
+ max(Sij , 0)(H+ − 1) + min(Sij , 0)(H− − 1), (5.11)

where H± are defined as in (5.5). In the examples shown in the next section, we
reinitialize the level set function every ten time steps.
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6. Numerical Simulations

In this section, we numerically invert the singular surface problem (2.1) and
the inclusion’s support problem (2.13) by using shape derivative analysis and
the level set method. We consider the two-dimensional setting and the domain
Ω = (−1, 1) × (−1, 1). This domain is discretized by a uniform 401 × 401 grid on
which all the Hamilton–Jacobi equations are solved by using the finite difference
schemes described above and the elliptic equations (2.1) and (4.3) during the itera-
tive process are solved by the finite element method on rectangular elements10 and
a nonlinear conjugate gradient solver. All the numerical minimizations of the error
functional (4.1) presented in this paper are performed with the optimal choice of
the regularization parameter α obtained by the Morozov discrepancy principle.19

The synthetic data are calculated by solving (2.1) and (4.3) by a finite element
method on an unstructured triangulation with approximately the same number
of nodes as the uniform grid mentioned above. The only common nodes of the
two set of meshes are the boundary nodes where the measurements are taken. We
have checked that the systematic error between the solutions on the uniform mesh
and the fined unstructured mesh is far below 0.05%. The synthetic measurements
have been obtained by a different numerical procedure than what is being used
in the reconstruction algorithm to limit the occurence of “inverse crimes”, where
the minimization of the un-penalized functional (4.1) with α = 0 may return the
correct answer for the wrong reasons; see Ref. 14 for an account of this problem.

In all simulations, we have chosen the diffusion coefficients to be (D, d) = (1.0,
0.3) in model (2.1) and (D0, δD) = (1.0, 3.0) in model (2.13). The absorption
coefficient a = 0 in both models. The values taken by these parameters have a
significant impact on the reconstruction. This will be discussed briefly at the end
of this section.

6.1. Reconstructions of ellipses

We start with the simple example where ΩI is an ellipse. Note that in real applica-
tions such as optical imaging of human brain, we may be allowed to approximate
clear layers by such simple convex interfaces. The ellipse we want to reconstruct is
given in polar coordinate by

Σ =
{

(r, θ) :
(

r cos θ

a

)2

+
(

r sin θ

b

)2

= 1
}

, (6.1)

with a and b the semi-major and semi-minor axis length, respectively. We test our
algorithm with different values for (a, b).

To characterize the error in the reconstruction, we introduce the following
Fourier decomposition of r(θ):

r(θ) =
N∑

k=−N

cke−ikθ, (6.2)
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where we have chosen N = 20 in the following calculations. The complexity of
the curve will be measured by the magnitude of the Fourier coefficients ck and
their decay rate as k increases. Let c̃k be the Fourier coefficients of a reconstructed
interface. We then define the ε0 and ε−1 errors between the original and the recon-
structed interfaces as

ε0 =

(
N∑

k=−N

|ck − c̃k|2
)1/2

and ε−1 =

(
N∑

k=−N

(1 + k2)−1|ck − c̃k|2
)1/2

, (6.3)

respectively.
The reconstruction results from different additive noise levels in the case (a, b) =

(0.8, 0.4) are given in Fig. 2. The left column of Fig. 2 shows the reconstructions

(a) (b)

(c) (d)

Fig. 2. Reconstruction of the elliptic interface (6.1) with synthetic data at different noise levels for
full (top row) and local (bottom row; see text for description) Neumann-to-Dirichlet measurements.
We have (a, b) = (0.8, 0.4). The reconstructions in (a) and (c) are done with the model in (2.1),
while those in (b) and (d) are done with the model in (2.13). The lines in the pictures denote real
interfaces (solid), reconstructions from data with 0.5% additive noise (dashed), reconstructions
from data with 1% additive noise (dash-dotted) and reconstructions from data with 2% additive
noise (dotted), respectively. The initial guess is given by the circle Σ0 = {(r, θ) : (r cos θ)2 +
(r sin θ)2 = 0.82} in all the simulations.
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for the model (2.1) from full and local Neumann-to-Dirichlet measurements. In
the latter case, measurements are only taken on the left side (x = −1) of the
boundary. We have used the MATLAB contour function to plot the zero level set
(characterizing the interface Σ) of the level set function. All the simulations have
been implemented in Fortran 77. The same reconstructions have been performed
for the model (2.13) and the results are show in the right column of Fig. 2.

We list in Tables 1 and 2 the errors in the reconstructions of ellipses of different
aspect ratios using model (2.1) with full and partial Neumann-to-Dirichlet mea-
surements, respectively. Note that the closer the aspect ratio b

a is to 1.0, the less
Fourier modes are needed to accurately represent r(θ). From these tables we see
that as the aspect ratio increases, the reconstructions get more and more sensitive
to the presence of noise in the data. In the reconstructions from full data, the center
of the curves is relatively stably reconstructed even in the presence of significant
noise. In the case of local measurements on part of the boundary, the reconstructed
center of the ellipse is biased towards the part of the boundary where the boundary
measurements are taken.

Table 1. Errors in the reconstructions of ellipses (6.1) with different values of (a, b) using
model (2.1) with full measurements. The center of original interfaces (x0, y0) = (0, 0).

Cases 0.5% 1.0% 2.0%

(x0, y0) (0.001, 0.000) (−0.001, −0.002) (−0.001, −0.001)
(a, b) = (0.8, 0.4) ε0 0.037 0.057 0.078

ε−1 0.008 0.011 0.015

(x0, y0) (0.002, 0.000) (−0.002, 0.002) (−0.003, 0.001)
(a, b) = (0.8, 0.6) ε0 0.011 0.020 0.031

ε−1 0.003 0.004 0.006

(x0, y0) (−0.000, −0.002) (0.017, 0.006) (0.000, 0.009)
(a, b) = (0.8, 0.8) ε0 0.005 0.015 0.017

ε−1 0.001 0.004 0.004

Table 2. Same as Table 1 except that the reconstructions are obtained from partial
measurements.

Cases 0.5% 1.0% 2.0%

(x0, y0) (−0.039, −0.013) (−0.047, −0.017) (−0.057, −0.016)
(a, b) = (0.8, 0.4) ε0 0.076 0.098 0.104

ε−1 0.018 0.026 0.040

(x0, y0) (−0.015, 0.008) (−0.013, 0.008) (0.013, 0.009)
(a, b) = (0.8, 0.6) ε0 0.035 0.052 0.076

ε−1 0.014 0.018 0.020

(x0, y0) (−0.030, 0.010) (−0.031, 0.006) (−0.045, 0.004)
(a, b) = (0.8, 0.8) ε0 0.019 0.029 0.048

ε−1 0.007 0.011 0.019
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6.2. Reconstruction of more complicated surfaces

The reconstructions in the above section are all done with ellipses, which are con-
vex interfaces. The Fourier coefficients of those interfaces decay relatively fast as k

increases. The reconstruction of such curves is thus not very difficult because the
superposition of very few low-order Fourier modes can approximate the original
interface quite accurately and those low-order Fourier modes can be stably recon-
structed from data with even moderately high noise level. We now reconstruct
more complicated interfaces the representation of which require higher-order Fourier
modes. Since high order modes are more sensitive to the presence of noise in the
data, we expect such interfaces to be harder to reconstruct. For simplicity, we
reconstruct here star-shaped interfaces given by

Σ = {(r, θ) : r2 + 0.3r sin(Nθ) = 0.62}. (6.4)

Several choices for N are considered in the reconstructions below.

(a) (b)

(c) (d)

Fig. 3. Reconstruction of the star-shaped interface (6.4) from synthetic data with different noise
levels in the case of full (top row) and local (bottom row) Neumann-to-Dirichlet measurements.
The interface parameter is N = 3. The reconstructions in (a) and (c) are for model (2.1),
while those in (b) and (d) are for model (2.13). The lines in the pictures denote real inter-
faces (solid), reconstructions with 0.1% noise (dashed), reconstructions with 0.3% noise (dash-
dotted) and reconstructions with 0.5% noise (dotted), respectively. The initial guess is the circle
Σ0 = {(r, θ) : (r cos θ)2 + (r sin θ)2 = 0.82}.
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(a) (b)

(c) (d)

Fig. 4. Same as in Fig. 3 except that N = 5.

We show in Figs. 3 and 4 reconstructions with N = 3 and N = 5, respectively,
using synthetic data at different noise levels for full (top row) and local (bottom
row) Neumann-to-Dirichlet measurements. Again, we use only the left side (x = −1)
of the boundary for the local measurements. The errors in these reconstructions are
shown by the parameters presented in Table 3 and Fig. 5.

The latter reconstructions are more sensitive to noise in the data than those in
the preceding section although the centers of the interfaces are always relatively
well reconstructed when full measurements are available.

We observe in our numerical experiments that the ratios of the parameters,
d/D and D0/δD, have important effects on the reconstruction results. The bigger
the ratio, the more stable the reconstruction. This is simply because the effect of the
interface on the boundary measurements increases. Note, however, that when the
ratio d/δD is large, the conjugate gradient method used to calculate the solution of
(2.1) converges very slowly. This is because the conditioning number of the finite
element matrix in model (2.1) significantly increases when the ratio increases. For
this reason, we have chosen the values (D, d) = (1.0, 0.3) to save computational
time. Larger values of d would require to find an efficient preconditioner if solutions
are to be obtained in a reasonable computational time. Indeed our simulations,
based on the Morozov discrepancy principle19 to find the optimal regularization
parameter α, are very demanding computationally.
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Table 3. Reconstructed centers for the cases presented in Figs. 3 (N = 3) and 4 (N = 5).

Cases 0.5% 1.0% 2.0%

Model (2.1), N = 3
Full (0.000, 0.0110) (−0.005, 0.017) (−0.003, 0.022)

Local (−0.029, −0.015) (−0.046, −0.023) (−0.053, −0.031)

Model (2.13), N = 3
Full (−0.001, 0.003) (−0.003, −0.017) (−0.013, −0.046)

Local (−0.054, −0.028) (−0.056, −0.028) (−0.063, −0.031)

Model (2.1), N = 5
Full (0.000, −0.007) (0.001, −0.018) (0.002, −0.018)

Local (−0.061, 0.013) (−0.067, 0.019) (−0.084, 0.018)

Model (2.13), N = 5
Full (0.010, −0.006) (0.012, −0.012) (0.017, −0.015)

Local (−0.065, +0.022) (−0.099, 0.022) (−0.081, 0.021)

Fig. 5. Errors in the reconstructions of (6.4) for different noise levels and different parameters
N . Upper left: ε0 and N = 3; Upper right: ε−1 and N = 3; Bottom left: ε0 and N = 5; Bottom
right: ε−1 and N = 5.

7. Conclusions and Discussions

We have considered the reconstruction of singular surfaces in diffusion models aris-
ing in optical and electrical impedance tomography. We have performed a shape
sensitivity analysis to describe the effects of variations in the surface on the bound-
ary measurements. We have obtained that such effects primarily depended on the
mean curvature of surface and the value of the tangential diffusion process sup-
ported on the surface. This is in contrast to the classical case of discontinuous
diffusion coefficients across an interface.
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We have introduced a level set method to evolve the surface so as to mini-
mize an error functional. We have shown numerically that the reconstruction of
the low-order Fourier modes of the interface can be achieved quite accurately from
moderately noisy data. Higher frequency modes require less noisy data. The recon-
structions can be done from either full or local Neumann-to-Dirichlet measurements
although full measurements obviously provide more accurate reconstructions.

The major drawback of the current method is that it requires the diffusion
coefficient d(x) to be known. Generalizations, for instance along the lines of the
works of Chan and Tai,12 to reconstructions of both the interface and the tangential
diffusion coefficient need to be addressed. Note that in such a context, the coefficient
d(x) will depend on the geometric properties of the interface Σ (see Remark 3.1
and many previous works6,8,25).
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