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Abstract
We report on the implementation of an augmented Lagrangian approach for
solving the inverse problems in diffuse optical tomography (DOT). The forward
model of light propagation is the radiative transport equation (RTE). The
inverse problem is formulated as a minimization problem with the RTE being
considered as an equality constraint on the set of ‘optical properties—radiance’
pairs. This approach allows the incorporation of the recently developed
technique of PDE-constrained optimization, which has shown great promise in
many applications that can be formulated as infinite-dimensional optimization
problems. Compared to the traditional unconstrained optimization approaches
for optical tomographic imaging where one solves several forward and adjoint
problems at each optimization iteration, the method proposed in this work
solves the forward and inverse problems simultaneously. We found in initial
studies, using synthetic data, that the image reconstruction time can typically
be reduced by a factor of 10 to 30, which depends on a combination of noise
level, regularization parameter, mesh size, initial guess, optical properties and
system geometry.

1. Introduction

Optical tomography (OT) is a fast developing area of medical imaging that provides a
number of challenging problems to researchers from the engineering, physics and mathematics
communities [3, 4, 8, 12, 21, 27, 34, 65]. In OT near-infrared light (wavelength from 700 to
900 nm) is used to illuminated the tissue and measurements of transmitted and reflected light
are taken. From these surface measurements one attempts to determine the distribution of
absorption and scattering coefficients (µa and µs , respectively) inside the tissue [4]. Tissues
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such as fat, muscle, white matter, grey matter, etc, have different values of µa and µs , which
gives rise to the contrast of this imaging modality. Moreover, the absorption coefficients
of oxygenated and deoxygenated blood are different, which allows performing spatially
dependent blood oximetry. Clinical applications of this technology include, for instance,
brain imaging [1, 8, 11, 13, 32, 62], breast imaging [37, 53, 66], and imaging of finger joints
[35, 60, 70].

One of the major challenges of OT is the development of efficient numerical algorithms for
solving both the forward and inverse light propagation problems. In general, the propagation of
the near-infrared light in tissue can be modelled by a set of equations and boundary conditions
that can be written in the following abstract form,

G(µ, ψ) = 0, (µ, ψ) ∈ U × W, (1)

where µ ≡ (µa, µs) denotes the spatially dependent optical properties of the tissue, and ψ

denotes the intensity (or fluence) distribution of light in the tissue. The operator G(µ, ψ)

should be understood as an operator from U × W to V , where U and W denote the Banach
spaces of all admissible optical properties µ and solutions ψ of the forward problem (1),
respectively, and V is another Banach space.

Models most often used are either the radiative transport equation (RTE) [14, 18], which is
believed to be a very accurate model of light propagation; or the diffusion equation [4], which
is an approximation of the RTE. In general, the diffusion equation is much easier to solve than
the RTE. However, diffusion equations are only valid in scattering-dominated (µs � 1 � µa)

media. For tissues with non-scattering regions present or tissues of small volume, the diffusion
approximation fails to describe light propagation accurately. Detailed discussion on the RTE
and its diffusion approximation can be found in classical references such as [14, 18] and more
recent papers concerning problems in optical tomography [20, 25, 31].

The measured data (in data space Z) in OT is usually a bounded linear functional of
ψ,Mψ , where M : W �→ Z is called a measurement operator. Note that M must be
introduced because in practice only partial information about the forward solution, ψ , can be
measured [4]. We will provide in section 2 a specific form of such an operator, but remark here
that when ψ can be measured directly, M is nothing but an identity operator. The objective of
OT is to transform the measured data into accurate approximation of the spatial distribution
of optical properties µ inside the tissue. Due to the lack of analytical inversion formulae, this
transformation is usually done through numerical optimization [4, 5]. The guiding principle
of the optimization approach to the inverse problems in OT is to iteratively update the model
parameter µ in such a way that the forward model (1) generates sets of data (predictions) that
match measurements with higher and higher accuracy. To be more specific, let us first denote
by M ∈ Z given experimental measurements. We then introduce a real-valued non-negative
function, called the objective function, φ : U × W �−→ R

+,

φ(µ, ψ) = α

2
‖Mψ − M‖2

Z +
β

2
R(µ), (2)

which has to be minimized to generate the inverse solution, for some positive α and β. The
first term in (2) is used to quantify the difference between the measurements and model
predictions, while the second term, R(µ), which is called a regularization term, is used to
impose additional constraints on the parameter µ [22]. The optical tomographic imaging can
now be formulated as the following equation-constrained optimization problem:

min(µ,ψ) φ(µ, ψ)

subject to (1).
(3)

Note that we do not consider here further constraints on the optical property µ, such as
simple-bound constraints specifying upper and lower bounds for the optical properties, which



Optical tomography as a PDE-constrained optimization problem 1509

might be added to (3). We refer interested readers to references [33, 54, 58, 59] for detailed
discussions on that.

There are several techniques to solve the problem (3) [49]. All existing algorithms in
the optical tomography community convert (3) into an unconstrained optimization problem.
Employing this approach, one first solves equation (1) to obtain ψ as a function of
µ, ψ = ψ(µ), and then uses this expression to eliminate the explicit dependence of the
objective function (2) on function ψ , giving rise to another function that should be minimized
only with respect to the optical property µ, φ̃ : U �−→ R

+:

φ̃(µ) ≡ φ(µ, ψ(µ)). (4)

To minimize φ̃(µ), one can use methods such as conjugate gradient and quasi-Newton methods;
see [1, 4, 12, 23, 39, 40, 57–59, 61, 63] for details of the implementation of algorithms based
on this unconstrained approach, as applied to optical tomography.

One drawback of the above-mentioned method is that for each evaluation of the function
φ̃(µ) during the minimization process, one has to solve the forward problem (1) to obtain
ψ(µ). Therefore each inversion procedure will require solving the forward problem hundreds
of times, which requires extensive computing times.

In this work, we adopt a numerical method that, instead of solving the unconstrained
optimization problem (4), solves the constrained optimization problem (3) directly. To do that,
we introduce the following Lagrangian functional for problem (3), L : U × W × V∗ �→ R,

L(µ, ψ; λ) = φ(µ, ψ) − 〈λ,G(µ, ψ)〉, (5)

where λ ∈ V∗ is the Lagrange multiplier, V∗ is the dual space of V , and 〈·, ·〉 denotes the
duality pair between V and V∗. From the theory of constrained optimization it is known that
the solution to (3) satisfies the following optimality condition for L [9, 49]:

∂L
∂µ

(µ∗, ψ∗; λ∗) = 0,
∂L
∂ψ

(µ∗, ψ∗; λ∗) = 0, G(µ∗, ψ∗) = 0. (6)

The system (6) is also known as the Karush–Kuhn–Tacker (KKT) condition [49]. Now the
optimum point of the problem (3) can be found by solving this KKT system. This approach
is often referred to as the all-at-once method because it solves the forward and minimization
problems simultaneously as compared to the unconstrained optimization approach.

This kind of constrained optimization technique promises a much faster solution of the
inverse problem and has already proved to be very useful in other applications such as shape
design in aerodynamics [51, 64] and optimal control of incompressible flows [26]. (See also
[10] for a general overview). However, implementation of this PDE-constrained optimization
approach for DOT has never been reported to the best of our knowledge.

The remainder of the paper is structured as follows. After briefly introducing numerical
schemes to discretize the radiative transport equation (7) in section 2, we describe in detail
the implementation of an augmented Lagrangian method to solve the optimality condition (6)
in section 3. This method was introduced by Hestenes [30] and Powell [55] and proved
to be efficient in other applications. We then present some numerical reconstruction results
from synthetic data and compare the performance of our method to that of an quasi-Newton
unconstrained minimization method in section 4. Conclusions are drawn in section 5.

2. The forward problem

We consider the frequency-domain version of the radiative transport equation as the forward
model of light propagation in tissues. In the case where time harmonic sources are used, this
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model can be written for a fixed modulation frequency ω as [56],(
− iω

v
+ Ω ·∇ + µt(x)

)
ψ(x,Ω) = µs(x)

∫
S2

k(Ω ·Ω′)ψ(x,Ω′) dΩ′, in X = D × S2,

(7)

where ψ(x,Ω) is the radiance at location x ∈ D ⊂ R
3 and in direction � ∈ S2 (unit sphere

in R
3). Here we drop the explicit dependence of ψ on the modulation frequency ω. The

function µt(x) = µa(x) + µs(x) is a total attenuation, with µa(x) and µs(x) the absorption
and scattering coefficients, respectively. The function k(Ω ·Ω′) is a scattering kernel that
describes a probability that photons propagating in direction �′ are scattered into direction �.
The angular element d�′ is normalized,

∫
S2 dΩ′ = 1.

In this work, we use the Henyey–Greenstein phase function [29]

k(cos θ) = 1 − g2

(1 + g2 − 2g cos θ)3/2
,

where cos θ = Ω ·Ω′. This phase function has been used in many cases to describe the
scattering process in tissues.

We supply equation (7) with a boundary condition

ψ(x,Ω) = f (x,Ω), on 
− = {(x,Ω) ∈ ∂D × S2 s.t. Ω · n(x) < 0}, (8)

where n(x) is the unit outer normal vector at the boundary point x ∈ ∂D, and f (x,Ω)

represents a modulated source. The forward problem of optical tomography thus consists in
computing radiance distribution ψ(x,Ω) for given optical properties and a source.

The reason for using the frequency domain version of the RTE, as in the form of (7),
is that frequency domain measurements contain more information than measurements in the
stationary case. To be more specific, let us define the measurement operator in DOT. It
is a linear operator that maps the forward solution of (7) to the boundary photon current
measurement,

(Mψ)(x) =
∫

S2
+

Ω · n(x)ψ(x,Ω) dΩ, (9)

where S2
+ = {Ω : Ω ∈ S2 such that Ω · n(x) > 0}. Because ψ(x,Ω) is a complex function,

Mψ is thus a complex functional. The measurement thus contains both intensity and phase
information.

The numerical solution of the RTE (7) is extremely expensive because the equation is
posed in phase space. One thus needs to discretize in both angular and space variables. Let us
first introduce a quadrature formula for the integration of a function g(Ω) on the unit sphere
S2, ∫

S2
g(Ω) dΩ ≈

L∑
l=1

wlg(�l), (10)

where wl is the quadrature weight in direction �l , and satisfies the following normalization
condition:

L∑
l=1

wl = 1.

We can then approximate the RTE (7) by the following coupled system of partial
differential equations,
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− iω

v
ψl(x) + �l ·∇ψl(x) + µt(x)ψl(x) = µs(x)

L∑
l′=1

wl′kl,l′ψ
l′(x), l = 1, . . . , L (11)

where ψl(x) ≡ ψ(x,�l), kl,l′ ≡ k(�l · �l′). System (11) is called the discrete ordinate
formulation of the RTE, which has been studied extensively in the past decades [2, 46].

We can separate the real and imaginary parts of the system (11) to obtain

�l · ∇ψl
Re + µtψ

l
Re +

ω

v
ψl

Im = µs

L∑
l′=1

wl′kl,l′ψ
l′
Re

�l · ∇ψl
Im + µtψ

l
Im − ω

v
ψl

Re = µs

L∑
l′=1

wl′kl,l′ψ
l′
Im

l = 1, . . . , L (12)

where we use the representation ψl = ψl
Re + iψl

Im.
To discretize the system (12) spatially we use the finite-volume method [24, 56], which is

a conservative scheme on a discrete level, and allows approximation of problems on domains
of complex and irregular geometries. We cover the computational domain by a mesh Dh of
small polyhedrons (finite volumes), for instance, tetrahedrons (figures 2(b) and 10(b)).

Integrating (12) over a tetrahedron E and using the divergence theorem we obtain∫
∂E

�l · n∂Eψl
Re dσ +

∫
E

(
µtψ

l
Re +

ω

v
ψl

Im

)
dx =

∫
E

µs

L∑
l′=1

wl′kl,l′ψ
l′
Re dx,

(13)∫
∂E

�l · n∂Eψl
Im dσ +

∫
E

(
µtψ

l
Im − ω

v
ψl

Re

)
dx =

∫
E

µs

L∑
l′=1

wl′kl,l′ψ
l′
Im dx,

for l = 1, . . . , L, where n∂E is an outward normal vector at point x ∈ ∂E, dσ(x) is the
Lebesgue surface measure of ∂E.

To get the finite-volume discretization equations, we make the hypothesis that each of the
finite volumes is small enough, so that we can assume that the values of all space-dependent
functions are constant in a volume. We also have to approximate the flux terms, i.e., the terms
involving boundary integrals. In fact, this approximation will determine the order of accuracy
of the finite-volume scheme. Here we adopt a first-order upwind scheme [56],∫

∂E

�l · n∂Eψl
Re dσ =

∑
m

�l · nτm
|τm|[ψl

Re

]
τm

, (14)

with [
ψl

Re

]
τm

=
{(

ψl
Re

)
E
, �l · nτm

� 0(
ψl

Re

)
E

′ , �l · nτm
< 0,

(15)

where τm ⊂ ∂E is the mth triangle that forms ∂E with measure |τm|. The vector nτm
is the unit

outer normal vector on τm, and E′ is the neighbour volume that shares a common face τm with
E. If the face τm happens to be part of the boundary of the computational domain, τm ⊂ ∂Dh,
and �l · nτm

< 0, then the boundary condition (8) requires that
[
ψl

Re

]
τm

= fRe(x,Ωl )|τm
.

The reason for choosing such a first-order scheme is that it preserves the positivity of
the solution of the transport equation in the case when ω = 0, which is important in optical
tomographic imaging.

After both space and angular discretization, we arrive at an algebraic system for the
equation of radiative transfer:

G(,�) ≡ T()� − S = 0. (16)
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Here T() ∈ R
2LN × R

2LN is an 2L × 2L-block matrix that denotes the discretized
transport operator, � ∈ R

2LN is a vector of the discretized radiance arranged as((
ψ1

Re

)T
, . . . ,

(
ψL

Re

)T
,
(
ψ1

Im

)T
, . . . ,

(
ψL

Im

)T )T
.  = (

T
a ,T

s

)T ∈ R
2N represents the values

of optical properties µa and µs on mesh volumes, where N is the total number of volumes of
the mesh. Matrix T has the following block structure:

T =
(

B D
−D B

)
+

(
C 0
0 C

)
. (17)

Matrices B and D are block-diagonal,

B = diag{B1, . . . , BL}, D = diag{D0, . . . , D0},
where matrix Bl approximates the streaming operator Blψ = �l · ∇ψ + µtψ , matrix D0 is
diagonal, and [D0]ii = Viω/v, Vi denotes the volume of the ith tetrahedron (finite volume) of
the mesh. Matrix C is an L × L-block matrix,

C =

C11 · · · C1L

...
. . .

...

CL1 · · · CLL

 ,

with blocks Clm that are diagonal matrices, and [Clm]ii = −Vi[s]iωmklm. Throughout
the paper [X]i (respectively [X]ij ) denotes the ith (ij th) entry of the vector (respectively
matrix) X.

3. The inverse problem

As we have mentioned before, the objective of optical tomographic imaging is to reconstruct
parameter µ through boundary measurements of outgoing photon current. This is very similar
to many other inverse problems such as optimal control [26], shape optimization [64], and
parameter identification for partial differential systems [28]. In all those problems, there
are forward models that can be written in the form of (1), with a model parameter µ that
is sought in inverse problems. Usually, the inversion can only be done by using numerical
optimization techniques. This kind of problem is often called simulation-based optimization
in the literature. In the case when the forward model is a partial differential equation, the
term PDE-constrained optimization is used instead [10]. For the OT problem, the integro-
differential radiative transport equation can be written as a system of coupled first-order partial
differential equations after passing to the discrete ordinate formulation (see (11)), we can thus
put our inverse problem in a general PDE-constrained optimization framework.

Usually in optical tomographic imaging, a set of measurements with different source
and detector pairs are performed to collect as much information as possible for the
reconstruction. We thus denote by Nsrc the total number of light sources and denote by
Ndet

j the number of detector readings corresponding to source Sj . The solution of the
forward problem (1) corresponding to Sj is denoted by �j and the set of solutions for
all sources is denoted by �̂ ≡ (

�1, . . . , �Nsrc

)
. The set of measurements is denoted by

M ≡ {
Mjd, d = 1, . . . , Ndet

j , j = 1, . . . , Nsrc
}
. Finally, for the detector located at a mesh

node xd ∈ ∂D, we denote by Pd : R
2LN �→ C the discretized version of the measurement

operator (9) which measures the outgoing photon flux at xd.
With all this notation, we are ready to introduce the objective function to be minimized,

�(, �̂) = 1

2

Nsrc∑
j=1

Nd
j∑

d=1

|Pd�j − Mjd |2
|Mjd |2 +

β

2
R(), (18)
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where β is the regularization parameter that will be used later. R() is the discretized version
of the following Tikhonov regularization functional [22, 67],

R(µ) = ‖µa‖2
H1(D) + ‖µs‖2

H1(D), (19)

with

‖p‖2
H1(D) =

∫
D
(p2 + |∇p|2) dx, ∀ p ∈ H1(D). (20)

The choice of a strong H1 (rather than L2) norm in the regularization term is necessary since
the OT problem is in general severely ill-posed [4, 6]. One usually does not expect to recover
high-frequency components of the optical properties. H1 norms help to suppress those high-
frequency modes. See [33, 52, 54, 62, 68] for various types of regularization used in optical
tomographic imaging.

It is important to note that the objective function � takes into account solutions �j of the
forward problem for all Nsrc sources simultaneously. Also one has to pay special attention to
the discretization of the regularizing term R(µ) in the case when an unstructured mesh has
been used to partition the computational domain because the gradient of µa and µs has to be
calculated properly. Here we approximate the gradient of µa (the same for µs) on control
volume E based on the Green–Gauss formulation [7]

(∇µa)E = 1

VE

∑
m

µm
a |τm|nτm

, µm
a = (µa)E + (µa)E′

2
, (21)

where, as before, VE is the volume of E, τm ⊂ ∂E is the mth triangle that forms ∂E. nτm
is the

unit outer normal of τm, and E′ is the neighbour volume that shares a common face τm with E.
On the discretized level, OT can be formulated as a minimization problem subject to the

constraints (16) for Nsrc different sources:

min(,�̂)∈R
2N×R

2LN �(, �̂), subject to Gj(,�j ) = 0, j = 1, . . . , Nsrc. (22)

Note that each discrete constraint Gj(,�j ) = 0 binds the vector of optical properties  and
the vector of fluences �j for a particular source Sj . The overall number of discrete constraints
is (number of sources) × (number of ordinates) × (number of finite volumes) × 2.

3.1. An augmented Lagrangian approach

We introduce a Lagrangian function L : R
2N × R

2LNNsrc × R
2LNNsrc �→ R defined by

L(, �̂; λ̂) = �(, �̂) −
Nsrc∑
j=1

λT
j Gj (,�j ), λj ∈ R

2LN (23)

where λ̂ ≡ (
λ1, . . . , λNsrc

)
. The solution to the optimization problem (22) satisfies the KKT

optimality condition with (23), which is given by the following system:

∇L(, �̂; λ̂) = ∇�(, �̂) −
Nsrc∑
j=1

λT
j ∇Gj(,�j ) = 0,

∇�̂L(, �̂; λ̂) = ∇�̂�(, �̂) −
Nsrc∑
j=1

λT
j ∇�Gj(,�j ) = 0, (24)

∇λj
L(, �̂; λ̂) = Gj(,�j ) = 0, j = 1, . . . , Nsrc.

In other words, if (∗, �̂∗) provides an optimal solution of (22), then there exist λ∗
j ∈

R
2LN, j = 1, . . . , Nsrc, such that (∗, �̂∗, λ̂∗) is a stationary point of the Lagrangian

function (23).
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There exist several methods to find the stationary point of the Lagrangian function. For
example, one can solve system (24) directly if an efficient nonlinear algebraic solver is available
[10]. Here, we propose to use an augmented Lagrangian method (ALM), which is an iterative
method easy to implement. The method defines an augmented Lagrangian function by

LK(, �̂; λ̂) = L(, �̂; λ̂) +
1

2K

Nsrc∑
j=1

‖Gj(,�j )‖2
l2 , (25)

where the term (1/2K)
∑Nsrc

j=1 ‖Gj(,�j )‖2
l2 is a penalty for violating the constraints

Gj(,�j ) = 0, j = 1, . . . , Nsrc. In the augmented Lagrangian method, we look for a
stationary point of the function LK instead of L. Note that in the limit, when the constraints
are satisfied exactly, LK = L.

Assume that at the kth iteration of the algorithm we have an approximation (k, �̂k, λ̂k)

to the stationary point (∗, �̂∗, λ̂∗) of the Lagrangian function. Let us fix the current estimates
of the Lagrangian multipliers λ̂k and a penalty parameter Kk . Minimization of LKk

(, �̂; λ̂k)

with respect to  and �̂ yields the following system:

∇�(, �̂) −
Nsrc∑
j=1

[(
λk

j

)T − 1

Kk

GT
j (,�j )

]
∇Gj(,�j ) = 0,

∇�̂�(, �̂) −
Nsrc∑
j=1

[(
λk

j

)T − 1

Kk

GT
j (,�j )

]
∇�̂Gj (,�j ) = 0.

(26)

Suppose that (k, �̂k) is an approximate minimizer of LKk
(, �̂; λ̂k), i.e. an approximate

solution of system (26). Comparing this system with the optimality condition (24), we
conclude that λk

j − (1/Kk)Gj

(
k,�k

j

)
approximates λ∗

j :

λ∗
j ≈ λk

j − (1/Kk)Gj

(
k,�k

j

)
, j = 1, . . . , Nsrc. (27)

This formula can be rearranged to produce an estimate of Gj

(
,�k

j

)
:

Gj

(
k,�k

j

) ≈ Kk

(
λk

j − λ∗
j

)
. (28)

Hence, we deduce that if λk
j is close to the optimal Lagrangian multiplier λ∗

j , and Kk is small
enough, then the pair (k, �̂k) satisfies the corresponding constraint with a high accuracy.
Formula (27) prompts a rule for iterative updating of the Lagrangian multipliers:

λk+1
j = λk

j − (1/Kk)Gj

(
k,�k

j

)
, j = 1, . . . , Nsrc. (29)

We thus arrive at the following augmented Lagrangian algorithm [17, 49].

Augmented Lagrangian method

• Choose positive constants η, ε,K � 1, τ < 1, γ � 1, αε, βε, αη, βη, α∗, β∗, such that
αη < min(1, αε), βη < min(1, βε);

• Choose initial Lagrange multiplier λ0;
• Choose maximum number of iterations kmax;
• Set K0 = K,α0 = min(K0, γ ), ε0 = ε(α0)

αε , η0 = η(α0)
αη ;

• for k = 0, 1, 2, . . . , kmax

1. Find the minimizer (k, �̂k) of LKk
(, �̂; λ̂k) by an iterative method that

− Starts from initial guess (̃k, �̃k);
− Terminates when

∥∥∇(,�̂)LKk
(k, �̂k; λ̂k)

∥∥
l2 � εk is satisfied;

2. if
∑∥∥Gj

(
k,�k

j

)∥∥
l2 � ηk
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− Test convergence:
if

∑∥∥Gj

(
k,�k

j

)∥∥
l2 � η∗ and

∥∥∇(,�̂)LKk
(k, �̂k; λ̂k)

∥∥
l2 � ε∗

stop, (k, �̂k) is the final solution;
end if

− Update Lagrangian multipliers:
λk+1

j = λk
j − (1/Kk)Gj

(
k,�k

j

)
, j = 1, . . . , Nsrc;

Kk+1 = Kk;
αk+1 = Kk+1;
ηk+1 = ηkα

βη

k+1;
εk+1 = εkα

βε

k+1;
else

− Decrease penalty parameters:
λk+1

j = λk
j ;

Kk+1 = τKk;
αk+1 = Kk+1γ ;
ηk+1 = ηα

βη

k+1;
εk+1 = εα

βε

k+1;
end if

3. Set starting point for the next subproblem in Step 1:
(̃k+1, �̃k+1) = (k, �̂k);

• end for

We refer interested readers to [9, 36, 49] for more detailed discussion of the ALM.
To solve the sub-optimization problem in step 1 of the above algorithm, we use a limited-

memory version of the Broyden–Fletcher–Goldfarb–Shanno method (lm-BFGS) [40, 49]. The
lm-BFGS algorithm requires computing of the gradient of the objective function with respect
to  and �̂. Those gradients can be analytically computed through

∇LK(, �̂; λ̂) = ∇R() −
Nsrc∑
j=1

λT
j ∇Gj(,�j ) +

1

K

Nsrc∑
j=1

(Gj (,�j ))
T ∇Gj(,�j ),

(30)

where ∇Gj = (∇a
Gj ,∇s

Gj

)
, and partial derivatives

∂Gj

∂[a]i
≡


∂[Gj ]1

∂[a ]i

∂[Gj ]2

∂[a ]i
...


can be easily computed explicitly using the matrix representation (16) and (17). Gradient
∇�̂LK(, �̂; λ̂) can similarly be found in a closed form.

3.2. Interpretation and discussion

As follows from the estimate (28), the constraints Gj(,�j ) = 0, j = 1, . . . , Nsrc are in
general not satisfied with (k, �̂k) on every iteration of the ALM. This means that �k

j is not
the exact solution of the RTE with the optical properties k = (

k
a,

k
s

)
and source Sj , which

is quite different from the unconstrained optimization approach (4), in which �k
j is the solution

of the RTE with the optical properties
(
k

a,
k
s

)
on every step k of an iterative minimization

algorithm such as the quasi-Newton method. To outline the difference between the two
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Figure 1. A simple illustration of the iteration process of unconstrained (�) and constrained
(◦) optimization approaches to optical tomographic imaging. Iterates (σ k, ψk) are generated
by an unconstrained optimization approach; iterates (k, �k) are generated by a constrained
optimization algorithm.

methods we give a simple geometrical interpretation of the unconstrained and constrained
optimization approaches. The equations Gj(,�j ) = 0, j = 1, . . . , Nsrc define a set C
of the space R

N × R
N × (R2LN)Nsrc . On every iteration of the unconstrained optimization

method vectors (k, �̂k) are forced to belong to the set C by construction. Satisfying this
condition exactly requires solving forward problems for different right-hand sides on every
iteration of the algorithm. In the constrained optimization approach, however, conditions
Gj(,�j ) = 0, j = 1, . . . , Nsrc will be satisfied only in the limit when k → ∞. At a
specific iteration k < ∞, (k, �̂k) does not have to belong to the set C, see figure 1. This
property provides a higher degree of freedom in choosing a new iteration, and thus can lead
to computationally less intensive algorithms.

An advantageous property of the augmented Lagrangian method for optical tomographic
imaging is that it does not have significantly larger memory requirements than unconstrained
optimization methods. Since the discretized transport operator T is the same for all sources
Sj , j = 1, . . . , Nsrc, one needs to store only one T as in the unconstrained optimization cases.
Actually, the only extra storage needed are the several source, radiance vectors and Lagrangian
multipliers, Sj ,�j and λj . This storage is much smaller than the storage of T.

We also remark that the augmented Lagrangian method proposed above can be easily
parallelized. First, in the sub-optimization problem, step 1, the gradient of the augmented
Lagrangian function has an analytical form (30), which involves only the summation of local
matrix–vector and vector–vector products. The computation of this gradient can thus be done
on separate processors and then collected. A trivial example is to send those terms with
different subscript j to different processors. Second, the update of Lagrangian multipliers in
step 2 of the method can also be sent to parallel processors.

4. Numerical studies

4.1. The test problem set-up

To illustrate the performance of the ALM we consider three types of media and measurement
geometries. In the first problem, we reconstruct the absorption coefficient in a cylinder with
a smaller cylindrical inhomogeneity, in which the absorption coefficient is twice as high as in
the background (see figure 2 for the geometrical set-up). In the second problem, which uses
the same overall geometry, we reconstruct the spatial distribution of the scattering coefficient
in a moderately anisotropic medium. In these two problems all sources and detectors are
located on the circle defined by 
 = {(x, y, z) : x2 + y2 = 1, z = 1}. Finally, we show an
example in which we simultaneously reconstruct the absorption and scattering coefficients
in a highly anisotropic medium (figure 10, table 1). In this case, all sources and detectors
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H

r

(a) (b)

Figure 2. The test problems set-up. Cylinder height: H = 2 cm, radius r = 1 cm; the radius
of the embedded small cylinder r = 0.25 cm. (a) Source–detector layout with 8 sources (�),
64 detectors (◦). (b) Finite-volume mesh with 6727 tetrahedrons.

Table 1. Parameters used in three different problems.

Problem 1 Problem 2 Problem 3

Anisotropy factor g 0.0 0.5 0.9
Background µa (cm−1) 0.1 0.1 0.5
Inhomogeneity µa (cm−1) 0.2 0.1 1.0
Background µs (cm−1) 10.0 10.0 10.0
Inhomogeneity µs (cm−1) 10.0 15.0 15.0
Number of sources 8 8 24
Number of detectors 64 64 24
Modulation frequency ω (MHz) 400 400 400
Number of finite volumes 6747 6747 13 867
Number of ordinates 8 48 80

are located on two circles defined by 
1 = {(x, y, z) : x2 + y2 = 1.52, z1 = 2.2} and

2 = {(x, y, z) : x2 + y2 = 1.52, z2 = 3.5}. Similar measurement configurations are
commonly used in our and other laboratories [38, 44, 47, 69], for example, for optical
measurements in finger joints, or small animal studies. For the discrete ordinate method, we
use the level symmetric discrete ordinate arrangement and the corresponding weight set from
[46]. All reconstructions were performed on a Linux workstation with a 700 MHz Pentium
XEON processor.

4.1.1. Synthetic measurements. As measurements we use synthetic data, which are obtained
by implementing a forward solver to the problem with exact optical properties. An algorithm
for the forward problem solution in frequency domain is presented in [56]. To avoid a
cancellation of numerical errors when the same model is used for the inverse problem and for
generation of the synthetic data, which is often referred to as an ‘inverse crime’ [16], these data
were generated using a much finer mesh (64 280 finite volumes) and 48 discrete ordinates.

Along with the ‘exact’ synthetic measurements we consider synthetic measurements with
added interval Gaussian noise. If Ms,d is a synthetic measurements corresponding to the
source s and detector d, then instead of Ms,d we use M̃s,d = Ms,d + νs,dN (0, 1)I[−1,1], where
N (0, 1) a standard normal distribution, and I[−1,1] is an interval indicator function that is equal
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to 1 on the interval [−1, 1] and zero otherwise. Parameter νs,d is the standard deviation of the
added noise. The signal-to-noise ratio χ is then defined as

χ = 10 log10
Msd

νsd

. (31)

In our experiments, the signal-to-noise ratio χ is the same for all source–detector pairs and is
equal to 20 dB or 15 dB, which are typical values for OT systems [40].

4.1.2. The initial guess. In all three problems considered in the paper we use homogeneous
distributions as initial guesses µ0

a and µ0
s for the absorption and scattering coefficients. Solution

of the forward problem with these optical properties provides us with the initial guess for the
radiance ψ . We solve the forward problems with different sources only once to ensure that
the ALM starts from the point in the space of ‘optical properties—radiance’ pairs that belongs
to the set C (figure 1).

4.1.3. The stopping criterion. The stopping criterion for the reconstruction algorithm is
given by

|E(�̂k+1) − E(�̂k)| < ε,

with ε = 10−6, and the error function E(�̂) being the first term in (18), in other words,

E(�̂) = 1

2

Nsrc∑
j=1

Nd
j∑

d=1

|Pd�j − Mjd |2
|Mjd |2 .

Therefore the algorithm is stopped when the error function E(�̂k) does not decrease anymore.

4.1.4. Reconstruction error measurement. To evaluate the quality of reconstruction we use
the correlation coefficient ρ(µe, µr) and the deviation factor δ(µe, µr) [40] that are defined
as

ρ(µe, µr) =
∑N

i=1

(
µe

i − µe
)(

µr
i − µr

)
(N − 1)σ (µe)σ (µr)

, δ(µe, µr) =
√∑N

i=1

(
µe

i − µr
i

)2/
N

σ(µe)
, (32)

where µ and σ(µ) are the mean value and the standard deviation of distribution µ, respectively,
µe

i is the value of the exact optical property in ith volume as given by the problem set-up,
and µr

i is the corresponding value reconstructed by the algorithm. The larger the correlation
coefficient the closer the shape of µr resembles the shape of µe. If the images are identical
then ρ(µe, µr) = 1. The smaller δ(µe, µr) the smaller is the absolute difference between µe

and µr . In the ideal case δ(µe, µr) = 0.
Note that, since it is possible to obtain reasonably good reconstructions only in the vicinity

of the planes where sources and detectors are located (figure 2(a)), we compute ρ
(
µe

a, µ
r
a

)
and

δ
(
µe

a, µ
r
a

)
only in this plane.

4.1.5. Unconstrained optimization code. To compare our constrained optimization algorithm
with the unconstrained optimization approach we use a recently presented algorithm by Ren
et al [57]. Like the algorithm presented in this paper, this code solves the inverse problem
for the frequency-domain radiative transport equation using the discrete ordinate method and
the finite-volume method for angular and spatial approximation, respectively. However, the
unconstrained optimization code is based on minimization of the objective function (4) only
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Table 2. Quality of reconstruction of the absorption coefficient for different reconstruction
methods, different noise levels, and different regularization parameters. The parameter β is
given in units of [10−10].

Method ALM ALM ALM ALM ALM lm-BFGS

Signal-to-noise ratio χ (dB) 15 20 20 20 ∞ ∞
Regularization parameter β 200 10 200 500 200 –
Iterations to convergence 512 422 367 315 248 60
CPU time 9.1 h 7.9 h 6.4 h 5.5 h 3.9 h 103.2 h
Correlation ρ

(
µe

a, µ
r
a

)
0.63 0.53 0.68 0.71 0.76 0.79

Deviation δ
(
µe

a, µ
r
a

)
0.85 0.97 0.79 0.81 0.69 0.64

with respect to optical properties µa and µs using the limited-memory quasi-Newton (lm-
BFGS) method, and the adjoint differentiation approach to compute a gradient of the objective
function with respect to the optical properties. This code utilizes a GMRES iterative method
with the ILU pre-conditioner to solve the forward and adjoint algebraic systems arising after
discretization of the RTE [56].

4.2. Reconstruction of the absorption coefficient

The constrained and unconstrained algorithms were used to perform reconstructions for various
combinations of different noise levels and regularization parameters. The results with respect
to the correlation coefficient, deviation factor, CPU time, number of iterations to convergence
are summarized in table 2, and the corresponding convergence history (the error function
E(�k) versus the iteration number k) of the iterative methods is shown in figure 3.

4.2.1. Comparison of constrained and unconstrained optimization. We first compare the
performance of our newly developed constrained optimization code with the unconstrained
optimization code presented in section 4.1.5. Figures 4(a) and (b) show the reconstruction
of the absorber obtained with that unconstrained optimization code using noise-free data
(χ = ∞). It took approximately 103.2 h of CPU time to complete 60 lm-BFGS iterations
(table 2, figure 3(a)). The correlation coefficient is ρ

(
µe

a, µ
r
a

) = 0.79 and the deviation
factor is δ

(
µe

a, µ
r
a

) = 0.64. Figures 4(c) and (d) display the images obtained with the
augmented Lagrangian method, using the same spatial and angular discretization and the
same finite-volume mesh. A comparable image quality is achieved in only 3.9 h (248 ALM
iterations), which is almost 27 times faster. This acceleration factor is essentially determined
by the number of matrix–vector multiplications with the matrix T defined in (16) and (17),
required to complete the reconstruction. For example, for the absorption reconstruction
problem considered in this section, on every ALM iteration one has to make on average
1.5 × 103 multiplications with the matrix T for each source. The unconstrained optimization
code makes approximately 1.5 × 105 matrix–vector multiplications for each source on every
iteration of the lm-BFGS method. Since 60 lm-BFGS iterations are needed to get figures 4(a)
and (b), while 248 ALM iterations are required for figures 4(c) and (d), the overall number
of matrix–vector multiplications used by the ALM code is approximately 24 times less than
in the unconstrained minimization code, which accords well with the observed CPU time
differences.

We also explored if relaxing the accuracy requirements for the forward and adjoint
solutions in the unconstrained optimization code can yield similar acceleration. We observed
a moderate (up to 25%) acceleration of the reconstruction in the cases where appropriate
accuracy requirements were chosen. Here an appropriate accuracy requirement means a
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Figure 3. Convergence history of E(�k)/E(�0) for µa reconstruction (in log10 scale). (a) The
lm-BFGS unconstrained optimization method [57], with no noise. (b) The augmented Lagrangian
method, χ = ∞ (no noise), and χ = 15 dB; (c) The augmented Lagrangian method, χ = 20 dB
and different regularization parameters. All the values of β are given in units of [10−10].

stopping criterion for the forward GMRES solver such that it still ensures convergence of the
reconstruction algorithm. For example, we usually stop the GMRES solver when the relative
residual is smaller than 10−13. If we stop the GMRES when the relative residual is smaller
than 10−7 in the first several quasi-Newton steps, the reconstruction still converges to very
similar results, and the computational time is reduced by approximately 25%. However, if we
further relax the accuracy requirements our minimization algorithm no longer converges to the
right solution. The reason for this, in our opinion, is because we use the adjoint differentiation
method to compute the gradient of the objective function with respect to optical parameters.
This gradient is calculated using the solution of the forward and adjoint problems. In the cases
where the forward and adjoint solutions are not accurate enough, the approximate gradient
can be computed only approximately which results in poor convergence of the minimization
algorithm, or no convergence at all.

Note that the reconstructions of the absorption coefficient obtained by different methods
(ALM versus lm-BFGS) do not coincide completely. But this fact is expected and can be easily
explained. Indeed, ALM and lm-BFGS generate iterates

(
k

a,�
k
j

)
and

(
σ k

a , ψk
j

)
, respectively,

(k is the number of iteration) that do not have to be the same (figure 1), but converge to each
other only in the limit as k → ∞. In the lm-BFGS method for the unconstrained optimization
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Figure 4. Cross sections of the reconstructed absorption coefficient in the planes y = 0 (a), (c), (e)
and z = 1 (b), (d), (f) with the quasi-Newton lm-BFGS method for the unconstrained optimization
[57] and the ALM for problem 1 with different noise levels. The target optical properties are
µa = 0.2 cm−1 in the inclusion, µa = 0.1 cm−1 in the background. (a), (b) correspond to the
reconstruction with the unconstrained minimization approach; (c), (d) correspond to the ALM
reconstruction with noise-free data; (e), (f) correspond to the ALM reconstruction with 15 dB
added noise.

the intensity ψk
j is a solution of the forward problem (RTE) with µa = σ k

a , on each iteration
k, by construction, whereas this property does not have to hold for the augmented Lagrangian
method.

4.2.2. Impact of noise level. Next we test the impact of noise in the synthetic measurement
data on the reconstruction results. An example of a reconstruction performed with data with
a signal-to-noise ratio χ = 15 dB is shown in figures 4(e) and (f) next to the images obtained
with noise-free data (figures 4(c) and (d)). As expected the quality of reconstruction decreases
with a decreased signal-to-noise ratio. The correlation coefficient drops from 0.76 in the case
of noise-free data to 0.63, while the deviation factor increases from 0.69 to 0.85 (table 2). Note
that as the noise level increases (and χ decreases), the number of necessary ALM iterations
and CPU time increases. The results for χ = 20 dB (the fourth column in table 2) are in
between the values for 15 dB and noise-free data (χ = ∞). However, even for χ = 25 dB
which is a very reasonable noise level for currently available instrumentation, the 9.1 h CPU
time is still over 11 times faster than the time it takes to complete unconstrained optimization
with noise-free data. Only if the signal-to-noise ratio drops below 10 dB, does the augmented
Lagrangian method fail to converge to any solution.

4.2.3. Impact of the regularization parameter. In the next series of numerical experiments
we test the performance of the ALM for different values of the regularization parameter β

(see equation (18), section 3). In these experiments 20 dB Gaussian noise is added and the
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Figure 5. Cross sections of the reconstructed absorption coefficient in the planes y = 0 (a), (c), (e)
and z = 1 (b), (d), (f) with the ALM for problem 1 with different regularization parameters. The
target optical properties are µa = 0.2 cm−1 in the inclusion, µa = 0.1 cm−1 in the background.
(a), (b) correspond to the ALM reconstruction with β = 10 × 10−10; (c), (d) correspond to the
ALM reconstruction with β = 200 × 10−10; (e), (f) correspond to the ALM reconstruction with
β = 500 × 10−10.

parameter β is equal to 10, 200 and 500 × 10−10. As we can see, when the regularization
parameter is small (figure 5(a) and (b) and table 2), the impact of noise is more significant,
whereas for a large regularization parameter the absolute value of the absorption coefficient
in the centre of the inhomogeneity is found less accurately (figures 5(e) and (f )). This is
reflected in the deviation factor δ

(
µe

a, µ
r
a

)
which first drops from 0.97 (in the case of a small

value of the regularization parameter (β = 10 × 10−10) to 0.79 (β = 200 × 10−10), but then
increases slightly to 0.81 for β = 500 × 10−10 (see columns 3–5 in table 2). This suggests
that there is an optimal value of β between 10 and 500 × 10−10, for which δ

(
µe

a, µ
r
a

)
becomes

smallest. On the other hand, the correlation factor ρ
(
µe

a, µ
r
a

)
keeps increasing (improving) as

β increases. It is notable that for a rather large range of values of β ‘reasonable’ reconstruction
results can be obtained. In the cases considered in this study, values of β up to 2000 × 10−10

allowed perturbation to be located, even though with incorrect absolute values. It appears that
for each particular application (e.g., breast, brain or joint imaging), some preliminary studies
should be performed to find optimal regularization parameters.

4.3. Reconstruction of the scattering coefficient

In the second example, we show the reconstruction of the scattering coefficient with an
anisotropic factor g = 0.5. We use synthetic measurements with χ = 20 dB and β =
500 × 10−10. A large number of discrete ordinates are necessary to capture anisotropy effects
as compared to the case of problem 1 where isotropic scattering is assumed. This leads to a
total number of 5181 696 constraints in the constrained optimization formulation. The results
of the reconstruction are presented in figure 6 and the convergence history is given in figure 7(a)
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Figure 6. Cross sections of the reconstructed scattering coefficient in the planes y = 0 (a), (c), (e)
and z = 1 (b), (d), (f) with the augmented Lagrangian method for problem 2. The target optical
properties are µs = 15 cm−1 in the inclusion, µs = 10 cm−1 in the background. (a), (b) correspond
to the reconstruction after 50 iterations of the ALM; (c), (d) correspond to the reconstruction after
200 iterations of the ALM; (e), (f) correspond to the reconstruction at convergence (498 iterations).

Table 3. Quality of reconstruction of the scattering coefficient as a function of the ALM iteration
step.

Iteration number 50 200 498

Signal-to-noise ratio χ (dB) 20 20 20
Correlation ρ

(
µe

s , µ
r
s

) −0.12 0.42 0.67
Deviation δ

(
µe

s , µ
r
s

)
1.12 0.97 0.81

and table 3. We observe that the reconstruction algorithm converges slower than for µa , which
is consistent with the results presented in [57]. Note that the error function E(�) can actually
increase on some iterations. This can be best explained by the fact that the ALM tries to
minimize the augmented Lagrangian function LK(, �̂; λ̂), not only the error function E(�).
The acceleration rate we obtained as compared to the unconstrained optimization method in
[57] is approximately 18.

4.3.1. Impact of the initial guess. We use reconstructions of the scattering coefficient to
illustrate convergence of the ALM from different initial guesses µ0

s (χ = ∞). In the first
example, the initial guess for the scattering coefficient is equal to the background value(
µ0

s = 10 cm−1
)
, in the second it is 10% higher

(
µ0

s = 11 cm−1
)
, and in the third it is

20% higher than the background value
(
µ0

s = 12 cm−1
)
. The results of reconstruction are

presented in figure 8 and table 4. It can be seen that the correlation factor depends weakly
on the initial guess. It only drops by approximately 10% from 0.69 to 0.62, when the initial
guess is increased from 10 to 12 cm−1. This just expresses the fact that the location and
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Figure 7. Convergence history of E(�k)/E(�0) for µs reconstruction (in log10 scale). (a) The
augmented Lagrangian method, χ = 20 dB and β = 500 × 10−10; (b) the augmented Lagrangian
method with different initial guesses, χ = ∞ dB and β = 300 × 10−10; (c) the lm-BFGS
unconstrained optimization method [57], with no noise.

Table 4. Quality of reconstruction of the scattering coefficient as a function of the initial guess.

Initial guess µ0
s (cm−1) 10 11 12

Number of ALM iterations 327 549 741
to convergence

Correlation ρ
(
µe

s , µ
r
s

)
0.69 0.66 0.62

Deviation δ
(
µe

s , µ
r
s

)
0.76 1.20 1.34

shape of the inhomogeneity is still rather accurately reconstructed. The absolute values of
the optical properties in the image are strongly affected by the initial guess, which is obvious
in the images as well as in the values of the deviation factor δ

(
µe

s, µ
r
s

)
which increases from

0.74 to 1.34 when the initial guess is µ0
s = 12 cm−1 instead of µ0

s = 10 cm−1. Similar results
were observed for the case of absorption reconstruction. Overall we found that the ALM will
produce images with ρ(µe, µr) > 0.5 as long as the initial guess is not more than 40% higher
than the actual background value.
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Figure 8. Cross sections of the reconstructed scattering coefficient in the planes y = 0 (a), (c),
(e) and z = 1 (b), (d), (f) with the augmented Lagrangian method for problem 2 with different
initial guesses. The target optical properties are µs = 15 cm−1 in the inclusion, µs = 10 cm−1 in
the background. (a), (b) correspond to the initial guess µ0

s = 10 cm−1; (c), (d) correspond to the
initial guess µ0

s = 11 cm−1; (e), (f) correspond to the initial guess µ0
s = 12 cm−1.

Table 5. Quality of reconstruction of the scattering coefficient as a function of the mesh size.

Number of finite volumes 6747 10 062 15 612 19 489

Correlation ρ
(
µe

s , µ
r
s

)
0.69 0.72 0.75 0.75

Deviation δ
(
µe

s , µ
r
s

)
0.76 0.75 0.73 0.74

4.3.2. Impact of mesh size. Finally, we compare the reconstructions obtained with different
finite-volume meshes, using noise-free synthetic measurement data. Images are displayed in
figure 9, while the corresponding ρ

(
µe

s, µ
r
s

)
and δ

(
µe

s, µ
r
s

)
are shown in table 5. The images

show almost no visible differences. Indeed, refining the mesh from 6747 tetrahedrons to
15 615 leads only to slight improvements in the correlation coefficient ρ

(
µe

s, µ
r
s

)
(from 0.69

to 0.75) and the deviation factor δ
(
µe

s, µ
r
s

)
(from 0.76 to 0.73). Further mesh refinement does

not improve these image quality parameters. This shows that when the mesh is fine enough so
that the average distance between the mesh points is of the order of the scattering mean free
path (1/µs), the discretization is sufficient to capture most pertinent effects.

4.4. Simultaneous reconstruction of absorption and scattering coefficients

As a last example we present a simultaneous reconstruction of both the absorption and
scattering coefficients in highly anisotropic scattering media, with g = 0.9. In this case, we set
the regularization parameter β to 700 × 10−10. The synthetic measurements for this problem
were generated using 80 ordinates and a finite-volume mesh with 23 793 tetrahedrons and
20 dB noise was added to the measurements.
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Figure 9. Cross sections of the reconstructed scattering coefficient in the planes y = 0 (a), (c),
(e) and z = 1 (b), (d), (f ) with the augmented Lagrangian method for problem 2 with different
meshes. The target optical properties are µs = 15 cm−1 in the inclusion, µs = 10 cm−1 in the
background. (a), (b) correspond to the mesh with 10 062 tetrahedrons; (c), (d) correspond to the
mesh with 15 612 tetrahedrons; (e), (f) correspond to the mesh with 19 489 tetrahedrons.

H

r

(a) (b)

Figure 10. Test problem 3 set-up. Cylinder height: H = 5 cm, radius r = 1.5 cm; the radius
of the embedded small cylinder r = 0.5 cm. (a) Source–detector layout with 24 sources (�),
24 detectors (◦). (b) Finite-volume mesh with 13 867 tetrahedrons.

Target optical properties represent media with a relatively high absorption and a low
scattering, for which the diffusion theory fails to describe the light propagation accurately.
The cross sections of the reconstructed absorption and scattering coefficients are presented
in figure 11, and the corresponding values of ρ

(
µe

a, µ
r
a

)
, ρ

(
µe

s, µ
r
s

)
and δ

(
µe

a, µ
r
a

)
, δ

(
µe

s, µ
r
s

)
are given in table 6. As for problems 1 and 2, the parameters ρ(µe, µr) and δ(µe, µr) are
computed only in the planes z = 2.2 and z = 3.5, in which sources and detectors are located.



Optical tomography as a PDE-constrained optimization problem 1527

–1.5 1.5
–1.5

1.5

–1.5 1.5
–1.5

1.5

–1.5 1.5
0

5

0.45

0.5

0.55

0.6

0.65

0.7

–1.5 1.5
–1.5

1.5

–1.5 1.5
–1.5

1.5

–1.5 1.5
0

5

9.5

10

10.5

11

11.5

12

(a) (b)

Figure 11. Cross sections of the reconstructed absorption and scattering coefficient in the planes
y = 0, z = 2.2 and z = 3.5 with the augmented Lagrangian method for problem 3. The target
optical properties are µa = 1.0 cm−1, µs = 15 cm−1 in the inclusion, µa = 0.5 cm−1, µs =
10 cm−1 in the background. (a) Reconstruction of µa at convergence (712 iterations), left-
top: cross section z = 3.5, left-bottom: cross section z = 2.2, right: cross section y = 0.
(b) Reconstruction of µs at convergence (712 iterations).

Table 6. Quality of reconstruction of the absorption and scattering coefficients as a function of the
ALM iteration step.

Iteration number 50 300 712

Correlation ρ
(
µe

a, µ
r
a

) −0.33 0.20 0.29
Deviation δ

(
µe

a, µ
r
a

)
1.14 0.99 0.96

Correlation ρ
(
µe

s , µ
r
s

) −0.32 0.07 0.39
Deviation δ

(
µe

s , µ
r
s

)
1.20 1.01 0.95

5. Summary and conclusion

In this work, we present a novel approach to solving the inverse problems encountered in optical
tomography. We have implemented a PDE-constrained optimization method that uses a finite-
volume method for the discretization of the frequency-domain radiative transport equation
(RTE). The finite-volume discretization gives rise to an algebraic nonlinear programming
problem that is solved using the iterative augmented Lagrangian method. By simultaneously
updating both radiance and optical properties, the method solves the forward and inverse
problems in optical tomography all at once. In this way, the computing time is greatly reduced
as compared to traditional unconstrained optimization methods, during which one has to
repeatedly solve the forward problem many times. We tested and quantified the performance
of the algorithm for various combinations of mesh sizes, noise, regularization parameters,
initial guesses, optical properties and measurement geometries. Besides the speed of the code,
we compared image qualities by defining a correlation coefficient ρ as well as a deviation
factor δ.

In the cases that involve image reconstruction from synthetic measurement data we observe
10–30-fold decrease in computing time for the constrained optimization code compared to
the unconstrained optimization code. The regularization parameter β has some influence on
the computing time, but with reasonable values of β which in our case are of order 10–103 ×
10−10, the computational time changes less than 20%. In general, reconstruction of both
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absorption and scattering together took longer than reconstructions of only the scattering
coefficient or only the absorption coefficient. As expected the correlation coefficients (ρ)
and deviation factors (δ) worsen as the signal-to-noise ratio decreases. Similarly δ decrease
substantially as the (homogeneous) initial guess is not chosen close to the optical properties
of the actual background medium. Interestingly ρ is only weakly affected by the initial guess.
As long as the optical properties are chosen within 50% of the actual background medium ρ

changes by only 10–20%. Finally ρ and δ do not change once the mesh is fine enough so that the
average size of finite volumes becomes less than the average scattering mean free path (1/µs).

Another positive aspect of the augmented Lagrangian method is that it maintains storage
requirements that are comparable to requirements encountered in unconstrained optimization
methods. The augmented Lagrangian also provides the flexibility of being easily implemented
on parallel processors.

Finally, it should be noted that the constrained optimization method introduced in this
work does not require that the forward model is the frequency-domain RTE. For example, one
can also implement similar codes with the diffusion equation as the forward model of light
propagation in tissues or with a system of two RTEs as the forward model as in the case of
fluorescence tomography [42].
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