
A hybrid reconstruction method for quantitative PAT

Kui Ren∗ Hao Gao† Hongkai Zhao‡

October 24, 2012

Abstract

The objective of quantitative photoacoustic tomography (qPAT) is to reconstruct
the diffusion and absorption properties of a medium from data of absorbed energy
distribution inside the medium. Mathematically, qPAT can be formulated as an in-
verse coefficient problem for the diffusion equation. Past research showed that if the
boundary values of the coefficients are known, then the interior values of the coeffi-
cients can be uniquely and stably reconstructed with two well-chosen data sets. We
propose a hybrid numerical reconstruction procedure for qPAT that uses both interior
energy data and boundary current data. We show that these data allow the unique
reconstruction of the boundary and interior values of the coefficients. The numerical
implementation is based on reformulating the inverse coefficient problem as a nonlin-
ear optimization problem. An explicit reconstruction scheme is utilized to eliminate
the unknown coefficients inside the medium so that we only need to minimize over
the boundary values, which have significantly fewer degrees of freedom. Numerical
simulations with synthetic data are presented to validate the method.

Key words. Quantitative photoacoustic tomography, diffusion equation, inverse problem, interior
data, boundary Cauchy data, hybrid reconstruction algorithm, numerical minimization, vector field
method, diffuse optical tomography.

AMS subject classifications 2010. 49N45, 65M32, 74J25, 92C55.

1 Introduction

Photoacoustic tomography (PAT) is a multi-physics biomedical imaging modality that at-
tempts to combine classical ultrasound imaging techniques with diffuse optical tomography
(DOT) techniques to achieve both high contrast and high resolution in imaging. In PAT,
near infra-red (NIR) light is sent into a biological tissue. The tissue absorbs part of the
incoming light and heats up due to the absorbed energy. The heating then results in
expansions of the tissue and the expansion generates compressive (acoustic) waves. The
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time-dependent acoustic signal arrived on the surface of the tissue are then measured with
acoustic devices. From the knowledge of these acoustic measurements, one is interested
in reconstructing the diffusion, absorption and thermal expansion properties of the tissue;
see [7, 13, 27, 45, 47, 51, 61, 72, 78, 79, 81] for overviews of PAT.

Image reconstruction in PAT is a two-step process. In the first step, one uses the
boundary acoustic signal to reconstruct the absorbed energy distribution inside the tis-
sue. This step has been extensively studied in the past decade. When the acoustic wave
speed is assumed to be constant, the problem reduces to inverting the spherical mean trans-
form [1, 3, 4, 5, 30, 31, 32, 63, 64]. There are many analytical reconstruction formulas in
this case [6, 21, 23, 29, 36, 37, 38, 46, 49, 56, 57, 61, 80, 82, 84]. When the wave speed
varies inside the medium, the reconstruction becomes more complicated; see [2, 39, 40,
43, 62, 70, 73, 71, 74, 75] for the analysis and simulation of this inverse problem. Prob-
lems with limited data, acoustic attenuation and other complications have also been stud-
ied [10, 11, 23, 26, 59, 60, 76, 77, 83]. We assume in this paper that the first step has been
done and thus we are given the data of the absorbed energy map in the domain, up to
the boundary. We are thus interested in the second step of PAT, called quantitative PAT
(qPAT), where we aim at reconstructing the absorption and diffusion properties of the tissue
from this given data [8, 9, 14, 15, 16, 18, 19, 20, 24, 25, 28, 33, 34, 50, 53, 67, 68, 69, 85, 86].

The propagation of NIR photons in biological tissues is often modeled by the diffusion
equation. Let us denote by X ⊂ Rd (d = 2, 3) the tissue of interest, with smooth boundary
∂X, and u(x) the density of photons at position x. Then u(x) solves the following elliptic
boundary value problem:

−∇ ·D∇u+ σu = 0, in X
u+ γn ·D∇u = g, on ∂X

(1)

where D(x) > 0 and σ(x) > 0 are the diffusion and absorption coefficients of the tissue
respectively, γ > 0 is the rescaled extrapolation length and g is the illumination source on
the boundary. The outer unit normal vector of the domain boundary ∂X at x is denoted
by n(x).

The initial pressure field, H(x), that is generated due to the absorbed photon energy
locally at location x ∈ X̄ ≡ X ∪ ∂X is given as

H(x) = σ(x)u(x), x ∈ X̄. (2)

Here we have assumed that all absorbed energies are converted into the pressure field, i.e., the
photoacoustic efficiency, usually called the Grüneisen coefficient, is the constant one. This
assumption is not necessary but only here to simplify the presentation in the follow sections.
The reconstruction method we propose in this work can be extended straightforwardly to
the case when the Grüneisen coefficient is a function of space and is unknown, following the
results in [15, 17, 18].

The objective of qPAT is to reconstruct the coefficients D and σ from the interior data H.
This inverse problem is identical to the problem of diffuse optical tomography except that
the photon current data used in DOT are only available on the boundary of the domain while
in qPAT the absorbed energy data are available in the interior of the domain. It is shown
in [15, 18], based on a slightly modified model, see (3) below, that due to use of interior
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data, the stability of the problem has been significantly improved compared to the optical
tomography problem. In fact, it is shown that with only two data sets, H1 constructed
from illumination g1 and H2 constructed from illumination g2, one can uniquely and stably
reconstruct the two coefficients σ and D, provided that g1 and g2 are selected carefully and
the boundary values D|∂X and σ|∂X are known. Lipschitz type of stability estimates can be
derived for the inverse problem [15, 18, 48].

In [15], an explicit reconstruction method has been developed for qPAT, based on the
simplified model (3). The method is called the vector field method which consists of two main
steps. In the first step, one solves a transport equation with the velocity field constructed
from the two data setsH1 andH2. In the second step, one solves an elliptic equation to obtain
another functional of the two coefficients. It then remains to obtain the two coefficients
from the two functionals that have been recovered. The advantage of the method is that it
decomposes the nonlinear inverse problem essentially into two linear problems that we know
how to solve efficiently and then a coupling procedure that is algebraic. The method is fast
since it is non-iterative even though the inverse problem itself is nonlinear. The drawbacks
of the original vector field method lie in the facts that the method only works when the
diffusion coefficient is known on the boundary of the domain a priori, and that only the
diffusion problem with Dirichlet boundary conditions can be handled.

In this work, we are interested in solving the inverse problem to the diffusion model (1)
with data (2). We assume that the boundary value of the diffusion coefficient, D|∂X , is
unknown and propose to use additional boundary photon current data to reconstruct this
boundary value. The additional boundary current measurements would also allow us to
handle Robin type of boundary conditions. We combine the vector field method with an
optimization based method to solve the whole problem with both interior and boundary
data. The vector field method is used to eliminate the unknowns inside the domain so that
the unknown to be reconstructed only lives on the boundary. This reduces the space of the
optimization variable to a great extent. The method can be viewed as a kind of reduced
space minimization method with efficient ways to perform the reduction. Also by using the
optimization formulation one can naturally incorporate an appropriate regularization term
that may be necessary to deal with ill-posedness, measurement inconsistency and noise for
this inverse problem.

The rest of the paper is structured as follows. In Section 2 we review briefly an explicit
reconstruction method, the vector field method, for qPAT in diffusive regime. We also
formulate the new inverse problem with hybrid data and generalize the vector field method
to this new problem. In Section 3 we present in detail the hybrid reconstruction method for
the full nonlinear inverse problem. We then present a linearized version of the method in
Section 4. We present some numerical reconstructions with synthetic data in Section 5 to
validate the hybrid method we proposed. Concluding remarks are offered in Section 6.

2 A hybrid reconstruction method

The first uniqueness and stability results regarding the inverse diffusion problem in qPAT was
obtained in [15, 18]. The theory was based on the diffusion model with Dirichlet boundary
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condition:
−∇ ·D∇u+ σu = 0, in X, u = g(x), on ∂X. (3)

The proof of the uniqueness and stability is constructive in the sense that it provides an
explicit reconstruction method for the inverse problem. We now recall briefly this vector
field method. To do that, we denote by W k,p(X) the space of functions whose derivatives of
order less than k are in Lp(X), with W 1,2(X) ≡ H1(X). We assume that:

(A) The domain X is simply-connected with smooth boundary ∂X. The optical coefficients
(D, σ) ∈ W 1,∞(X̄) ×W 2,∞(X̄) and 0 < c0 ≤ D, σ ≤ C0 < ∞ for some positive c0 and C0.
The illumination g(x) is the restriction of a C3(X̄) function on ∂X and g(x) is positive,
g ≥ c̃0 > 0 for some c̃0.

With these assumptions, it follows from standard elliptic theory [35, 54] that both the
equation (1) and the equation (3) admit a unique solution, positive a.e., of class W 3,q(X̄),
1 ≤ q <∞.

2.1 The vector field method

Let H1 and H2 be two sets of measured data set corresponding to the diffusion problem (3)
with the illumination sources g1 and g2 respectively. Then some straightforward algebraic
calculations, subtracting the result of multiplying u2 to the equation for u1 from the result
of multiplying u1 to the equation for u2, show that

−∇ · (Du2
1)∇u2

u1

= 0, in X,
u2

u1

(x) =
g2

g1

(x), on ∂X. (4)

This means that u2

u1
solves a diffusion equation with the diffusion coefficient v2

1 ≡ Du2
1 =

D
σ2H

2
1 . Using the fact that u2

u1
= H2

H1
, we can rewrite (4) slightly to obtain

−∇ · D
σ2
H2

1∇
H2

H1

= 0, in X,
D

σ2
(x) = D|∂X

g2
1

H2
1|∂X

, on ∂X. (5)

This equation is a transport equation for the unknown variable D/σ2, with the known vector

field β ≡ H2
1∇

H2

H1

. If the boundary value of this variable is known, mainly D|∂X is known,

we can then solve this equation to reconstruct D/σ2. The results developed in [15, 18] ensure
that there exists g1 and g2 such that:

(B) The vector field β is of class W 1,∞(X) and does not vanish inside the domain, i.e.,
|β| ≥ β0 > 0 for some positive β0.

This ensures that the transport equation (5) can be uniquely solved. Let us denote by Γ−
and Γ+ respectively the parts of the boundary where the vector field enters and exits the
domain

Γ± = {x ∈ ∂X| ± n(x) · β(x) > 0}. (6)

It is clear that to solve the transport equation, we only need to know the boundary value
on Γ−. We then define µ2(x) ≡ D

σ2 , and re-write the transport equation (5) as

∇ · µ2β = 0, in X, µ2 = D|Γ−
g2

1|Γ−

H2
1|Γ−
≡ µ2

|Γ− , on Γ−. (7)
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Of course, the term
g2

1|Γ−

H2
1|Γ−

, i.e. boundary value of σ2 can be replaced with
g2

2|Γ−

H2
2|Γ−

.

Once µ2 (and thus v2
1 = µ2H2

1 ) is reconstructed from (7), we can rewrite the original
diffusion problem (3) as

−∇ · v2
1∇

1

u1

= H1, in X,
1

u1

=
1

g1

(x), on ∂X. (8)

This is an elliptic equation for 1
u1

. It allows us to solve for 1
u1

stably since g1(x) ≥ c̃0 > 0,

for some c̃0, ∀x ∈ ∂X. The coefficients can then be reconstructed as σ = H1

u1
and D = µ2σ2.

The vector field method is an efficient non-iterative reconstruction strategy. It recon-
structs the two coefficients in (3) uniquely and stably from two well-chosen data sets, as long
as the diffusion boundary value D|∂X is given. However, if D|∂X is not given, the vector field
method can not be used. In fact, if D|∂X is not known, the solution to the inverse problem
is not unique when only two data sets are utilized. This can be seen from the following
construction.

Lemma 2.1. Let (D(x), σ(x)), x ∈ X̄, be a coefficient pair in model (3) that produces the
set of data H ≡ (H1, H2) such that the vector field β constructed from H1 and H2 satisfies
(B). Then there exists a different coefficient pair (D̃(x), σ̃(x)), x ∈ X̄, that produces the
same data set H̃ = H.

Proof. We construct the new pair of coefficient, (D̃(x), σ̃(x)) as follows.

I. Take boundary value (D̃|∂X , σ̃|∂X) 6= (D|∂X , σ|∂X) such that µ̃|∂X 6= µ|∂X ;

II. Solve (7) with boundary value µ̃B (6= µB) and vector field β constructed from H;

III. Solve (8) with ṽ2
1 = µ̃2H2

1 for
1

ũ1

and construct σ̃ = H1/ũ1 and D̃ = µ̃2σ̃2.

By the construction in step III, it is clear that H̃1 = H1. We now show that H̃2 = H2 as

well. Using the fact that H̃1 = H1, we first observe that −∇ · µ̃2H2
1∇

H̃2

H1

= 0. We then

conclude from Step II that −∇ · µ̃2H2
1∇

H2

H1

= 0. Combining these two equations, we obtain

−∇ · µ̃2H2
1∇

H̃2 −H2

H1

= 0, in X,
H̃2 −H2

H1

= 0, on ∂X. (9)

This allows us to conclude that H̃2 = H2.

Note that in Lemma 2.1 we did not use the knowledge that σ is known on the boundary
of the domain through the relation σ = H/u since u = g on the boundary. When this fact
is used, Lemma 2.1 implies that we could construct two sets of diffusion coefficients that
produce the same data set H.
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2.2 QPAT with hybrid data

The above result shows that we need additional data to uniquely reconstruct the two coeffi-
cients in qPAT if we do not have a priori knowledge on the boundary values of the coefficient.
Ideally, we would only need new data that allow us to reconstruct these boundary values.
The new data that we introduce here are the boundary photon current data:

J(x) = −n ·D∇u, x ∈ ∂X. (10)

With the new data, we now have both H and J to solve the inverse problem. We assume
that the data H in (2) and data J in (10) are compatible in the sense that:∫

X

H(x)dx +

∫
∂X

J(x)dS(x) = 0. (11)

This compatibility condition is obtained by integrating the diffusion equation in the domain
X. We can then show that with data {H,J} = {(H1, H2), (J1, J2)}, we can uniquely recon-
struct the two coefficient pair (D, σ), including its boundary value. The following result is
a straightforward generalization of Theorem 2.4 in [15].

Theorem 2.2. Let (D, σ) and (D̃, σ̃) be two pairs of coefficients that satisfy the assumptions
in (A). Let (H,J) and (H̃, J̃) be the corresponding data sets produced by the coefficient pairs
from the equation (3). Suppose that the vector fields β and β̃ constructed respectively from
H and H̃, entering the domain on Γ− and exiting on Γ+, satisfy (B). Then

(H,J) = (H̃, J̃) implies (D, σ) = (D̃, σ̃). (12)

Moreover, the following stability estimates hold:

‖µ− µ̃‖L2(Γ−∪Γ+;dξ) ≤ C
(
‖H− H̃‖(H1(∂X))2 + ‖J− J̃‖(L2(∂X))2

)
, (13)

‖µ− µ̃‖L2(X) ≤ C̃
(
‖H− H̃‖(H1(X))2 + ‖H− H̃‖(H1(Γ−∪Γ+;dζ))2‖H− H̃‖(H1(∂X))2

+‖H− H̃‖(H1(Γ−∪Γ+;dζ))2‖J− J̃‖(L2(∂X))2

) 1
2

(14)

where C and C̃ are two constants. The measures dξ and dζ on Γ− ∪ Γ+ are defined as
dξ(x) = |n(x) · βn(x) · β̃|2dS(x) and dζ(x) = |n(x) · βn(x) · β̃|−2dS(x).

Proof. We first reconstruct the coefficients on Γ− ∪ Γ+, the part of the boundary where the
vector field β is not parallel to the boundary. We observe that

n ·β|∂X = n ·
[
H2

1∇
H2

H1

]
|∂X = n ·

[
H2

1∇
u2

u1

]
|∂X =

H2
1|∂X

u2
1|∂X

(
u1|∂X [n ·∇u2]|∂X−u2|∂X [n ·∇u1]|∂X

)
.

(15)

We now replace [n · ∇u1]|∂X by −J1|∂X

D|∂X
and [n · ∇u2]|∂X by −J2|∂X

D|∂X
in (15) to obtain

n · β|∂X =
H2

1|∂X

D|∂Xu2
1|∂X

(
g2|∂XJ1|∂X − g1|∂XJ2|∂X

)
=

1

µ2
|∂X

(
g2|∂XJ1|∂X − g1|∂XJ2|∂X

)
. (16)
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On Γ− ∪ Γ+, n · β 6= 0, so the above formula leads to

µ2
|Γ−∪Γ+

=
1

n · β|Γ−∪Γ+

(
g2|Γ−∪Γ+J1|Γ−∪Γ+ − g1|Γ−∪Γ+J2|Γ−∪Γ+

)
. (17)

This formula allows us to reconstruct µ2 uniquely on Γ− (and Γ+). The uniqueness result (12)
then follows from uniqueness of solutions to the transport equation (7) and the diffusion
equation (8).

The stability estimate (13) follows straightforwardly from the reconstruction formula (17).
To simplify the notation, let ν|Γ−∪Γ+ = µ2

|Γ−∪Γ+
, A =

(
g2|Γ−∪Γ+J1|Γ−∪Γ+ − g1|Γ−∪Γ+J2|Γ−∪Γ+

)
.

We first observe that A is bounded. We then have

|n · β|Γ−∪Γ+n · β̃|Γ−∪Γ+ ||ν|Γ−∪Γ+ − ν̃|Γ−∪Γ+|

= |n · β̃|Γ−∪Γ+A− n · β|Γ−∪Γ+Ã| ≤ C1

(
|A− Ã|+ |n · (β|Γ−∪Γ+ − β̃|Γ−∪Γ+)|

)
≤ C̃1

(
|J1|Γ−∪Γ+ − J̃1|Γ−∪Γ+|+ |J2|Γ−∪Γ+ − J̃2|Γ−∪Γ+ |+ |β||Γ−∪Γ+ − β̃||Γ−∪Γ+|

)
. (18)

We now check that

β − β̃ = (H1 − H̃1)∇H2 + H̃1(∇H2 −∇H̃2) + (H̃2 −H2)∇H1 + H̃2(∇H̃1 −∇H1). (19)

Based on the fact that H, H̃ ∈ W 2,∞(X)×W 2,∞(X̄), we conclude that

‖β − β̃‖L2(X) ≤ C2‖H− H̃‖(H1(X))2 , and ‖β − β̃‖L2(∂X) ≤ C̃2‖H− H̃‖(H1(∂X))2 . (20)

The stability estimate (13) is a direct consequence of (18), (20) and the fact that Γ−∪Γ+ ⊂
∂X.

To derive the stability estimate (14), we follow the steps in [15]. We verify that

0 = ∇ · (νβ − ν̃β̃) = ∇ · (ν − ν̃
ν

)(νβ) +∇ · ν̃(β − β̃). (21)

Let ϕ(x) : R → R+ be a function that is twice differentiable, then we check, using the fact
that νβ and ν̃β̃ are divergence-free vector fields and (21), that

∇ · ϕ(
ν − ν̃
ν

)(νβ) + ϕ′(
ν − ν̃
ν

)∇ · ν̃(β − β̃) = 0. (22)

Let ζ ∈ H1(X) be a test function. We multiply the above equation by ζ and integrate by
part to obtain∫

∂X

n · βζϕνdS(x)−
∫
X

ϕνβ · ∇ζdx +

∫
∂X

n · (β − β̃)ζϕ′ν̃dS(x)

−
∫
X

ϕ′ν̃(β − β̃) · ∇ζdx−
∫
X

ζϕ′′ν̃(β − β̃) · ∇ν − ν̃
ν

dx = 0. (23)
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where the arguments for ϕ, ϕ′ and ϕ′′ are all
ν − ν̃
ν

. Taking ζ =
H2

H1

, we obtain, after some

re-arrangements,∫
X

ϕνH2
1 |∇

H2

H1

|2dx =

∫
∂X

(
n ·H2

1∇
H2

H1

)H2

H1

ϕνdS(x) +

∫
∂X

n · (β − β̃)
H2

H1

ϕ′ν̃dS(x)

−
∫
X

ϕ′ν̃(β − β̃) · ∇H2

H1

dx−
∫
X

H2

H1

ϕ′′ν̃(β − β̃) · ∇ν − ν̃
ν

dx.

We observe that the first and the third terms on the right can be bounded by the second
and the fourth terms respectively due to the extra differentiation of ϕ in the later terms.
Now let ϕ(x) = |x|p and taking into account the fact that ∇ν−ν̃

ν
is bounded a.e., we arrive

at

‖ν − ν̃‖pLp(X) ≤ C3

(∫
Γ−∪Γ+

|(β − β̃)||ν − ν̃|p−1dS(x) +

∫
X

|β − β̃||ν − ν̃|p−2dx
)

= C3

(∫
Γ−∪Γ+

( |(β − β̃)|
1

p−1

|n · βn · β̃|
)p−1(|n · βn · β̃||ν − ν̃|

)p−1
dS(x) +

∫
X

|β − β̃||ν − ν̃|p−2dx
)

where we have replaced the integral on ∂X by the integral on Γ− ∪ Γ+ since n · (β − β̃) = 0
on ∂X\(Γ− ∪ Γ+). Applying Hölder’s inequality to the right-hand-side terms leads to

‖ν − ν̃‖pLp(X) ≤ C̃3

(
‖ |β − β̃|

1
p−1

|n · βn · β̃|
‖p−1

L
p

p−1 (Γ−∪Γ+)
‖(n · βn · β̃)(ν − ν̃)‖p−1

Lp(Γ−∪Γ+)

+ ‖β − β̃‖
L

p
p−1 (X)

‖ν − ν̃‖p−2
Lp(X)

)
. (24)

On the other hand, relation (19) and the fact that H, H̃ ∈ W 2,∞(X) ×W 2,∞(X̄) implies
that

‖β − β̃‖L2(Γ−∪Γ+;dζ) ≤ C̃2‖H− H̃‖(H1(Γ−∪Γ+;dζ))2 . (25)

We then take p = 2 in (24) and combine the result with (13), (20), (25) and and use the
fact that µ is bounded (by the assumptions in (A)) to obtain the estimate (14).

Using interpolation theory, slightly more general stability estimates can be obtained with
more careful analysis as in [15].

We can now state the following result in Theorem 2.2 to the original model (1) that we
are interested.

Corollary 2.3. Let (D, σ) be a pair of coefficients in the equation (1) that satisfy the
assumptions in (A), and (H,J) be the corresponding data. Assume further that the vector
field β constructed from H satisfies (B). Then (D, σ) is uniquely determined by (H,J).
Moreover, the stability estimates (13) and (14) hold.

Proof. To reconstruct µ2
|Γ− , we start again from (15). After replacing u1|Γ− by g1|Γ−+γJ1|Γ− ,

u2|Γ− by g2|Γ−+γJ2|Γ− , [n·∇u1]|Γ− by −J1|Γ−
D|Γ−

, [n·∇u2]|Γ− by −J2|Γ−
D|Γ−

and some simple algebraic

calculations, we obtain again (17) for the reconstruction of µ2
|Γ− . The rest of the proof is

identical to the proof of Theorem 2.2.
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The fact that there exists an illumination pair (g1, g2) such that the vector field β con-
structed from the data (H1, H2) generated with this illumination pair does not vanish, i.e.,
|β| ≥ β0 > 0, is not changed by the introduction of the Robin boundary condition in (1). In
fact, we can easily verify as before that u2

u1
solves the following elliptic equation:

−∇ ·Du2
1∇

u2

u1

= 0, in X,
u2

u1

+
γ

g1u1

n ·Du2
1∇

u2

u1

=
g2

g1

, on ∂X. (26)

Due to the regularity and positivity assumptions on the coefficients, standard elliptic theory
shows that the solutions u1 and u2 are positive a.e.. This means that u2

u1
solves (26) with

again positive coefficients Du2
1 and γ̃ =

γ

g1u1

. The theory developed in [18] and [15, 55] thus

guarantees that there exists g2

g1
such that |∇u2

u1
| > 0. For instance, in two-dimensional case,

if g2

g1
has exactly one maximum and one minimum (i.e. it is “almost two-to-one” [55]), then

|∇u2

u1
| ≥ α0 > 0 for some positive α0.

2.3 The generalized vector field method

We are now ready to generalize the vector field method to the diffusion model (1) with
data (2) and (10).

Step I. In the first step, solve the transport equation (5) for µ2. The boundary value of µ2

is constructed according to (17):

∇ · µ2β = 0, in X,

µ2 =
1

n · β|Γ−

(
g2|Γ−J1|Γ− − g1|Γ−J2|Γ−

)
, on Γ−.

(27)

Step II. In the second step of the vector field method, we solve a modified version of the
diffusion problem (8):

−∇ · v2
1∇

1

u1

= H1, in X,
1

u1

=
1

g1 + γJ1

, on ∂X (28)

where as before, v2
1 = µ2H2

1 = (
√
Du1)2. This elliptic equation is well-posed as long as

g1 + γJ1 6= 0. In practice, due to the noise presented in the data J1, we might run into the
situation that g1 + γJ1 = 0. Thus we might run into problems when solving (28). We thus
regularize the problem as follows

1

u1

(x) =


1

g1 + γJ1

, g1 + γJ1 6= 0

1

g1 + γJ1 + ε
, g1 + γJ1 = 0

(29)

where ε is a small regularization constant.

Step ĨI. There is an alternative reconstruction strategy for the second step of the generalized
vector field method. To derive the strategy, let us assume that the diffusion coefficient

9



is regular enough, say D(x) ∈ W 2,∞(X). We can then perform the Liouville transform
v1 =

√
Du1 to obtain the following identity

q ≡ ∆
√
D√
D

+
1

µ
√
D

= −∆v1

v1

. (30)

The quantity v1 is already reconstructed from the first step of the vector field method. We

can thus compute
∆v1

v1

to obtain q. This is equivalent to say that we can reconstruct the

quantity q from the first step of the vector field method. The above identity can be slightly
rewritten to obtain the following elliptic equation for

√
D:

∆
√
D − q

√
D +

1

µ
= 0, in X,

√
D =

√
D|∂X , on ∂X. (31)

With
√
D|∂X reconstructed already (since µ|∂X and σ|∂X are reconstructed already), we can

solve this elliptic PDE for
√
D. Note that this reconstruction strategy contains regularization

effects. If the true diffusion coefficient D contains discontinuities, for instance, then these
discontinuities would have been regularized in the reconstruction since (31) would not allow
discontinuous solutions. Moreover, to compute q = −∆v1√

v1
, we have to compute ∆v1. Since

v1 might not be smooth enough, we would have to regularize it as well. To do that, we

convolve v1 with a Gaussian kernel ϕ to get Φ(v1) =

∫
X

ϕ(x − y)v1(y)dy. We control the

strength of the regularization by adjusting the variance of the Gaussian kernel. We then
compute q as q = −∆Φ(v1)

v1
.

3 The full nonlinear reconstruction algorithm

Provided that the denominator n · β|Γ− 6= 0 in (27) and the denominator g1|Γ− + γJ1|Γ− 6= 0
in (28), the generalized vector field method can be applied to solve the inverse problem
to get unique and stable reconstructions of the diffusion and absorption coefficients, inside
the domain and on the boundary. In practical situations, however, both denominators can
vanish on part of the boundary due to the presence of measurement noise. In this type of
situations, regularization strategies such as those mentioned in the previous section have to
be employed in order to use the vector field method.

We now present an optimization-based iterative method to deal with this complication.
We intend to use the efficient vector field method in the new iterative method whenever it
could be used. Our idea is to separate the unknown coefficients in the interior of the domain
from their values on the boundary of the domain. As we have seen from the previous section,
in each iteration, once the values on the boundary are updated, we can have the vector field
reconstruction method to update the interior values, by solving only a transport equation
and a diffusion equation. The benefit of this hybrid reconstruction lies in the fact that
it reduces the number of unknowns in the system so that we only need to deal with this
reduced system.

To set up the optimization algorithm, let us denote by DI = D|X (resp. σI = σ|X) and
DB = D|∂X (resp. σB = σ|∂X) the value of the diffusion (absorption) coefficient on the

10



interior and boundary of the domain respectively. To make a connection with the vector
field method, we now work on the coefficient pair (µ,D) instead of (σ,D). We denote by µI
and µB the interior and boundary values of µ respectively. We are now ready to write down
the interior and boundary data abstractly into the following form

H|X = σIuI =
1

µI

√
DIuI ≡ H|X(µI , µB, DI , DB),

H|∂X = σBuB =
1

µB

√
DBuB ≡ H|∂X(µI , µB, DI , DB),

J = −n ·DB∇u ≡ J(µI , µB, DI , DB).

(32)

Our method is to eliminate the variables µI and DI because they are determined uniquely by
the value of µB and DB according to the vector field method. Let F be the map (µI , DI) =
F(µB, DB), and G be the map n · ∇u = G(µB, DB), then we can write the data as

H|X(µB, DB) = H|X(F(µB, DB), µB, DB),
H|∂X(µB, DB) = H|∂X(F(µB, DB), µB, DB),
J(µB, DB) = J(G(µB, DB), µB, DB).

(33)

We have thus built the (implicit) map from the unknown (µB, DB) to our given data
(H|X , H|∂X , J). The objective now is to invert this map to recover (µB, DB).

In practice, we have data (H|X , H|∂X , J) constructed from K ≥ 2 different illuminations.
We also have to deal with data that contain noise or inconsistency in the measurements. It
is thus natural to solve the nonlinear system with some proper regularization term. Here
we simply use least-square. Other choices can be done in the same way. Denote by Π the
space of admissible coefficients (µB, DB), then we solve the following nonlinear least-square
minimization problem

min
(µB ,DB)∈Π

O(µB, DB). (34)

where the objective functional O : Π→ R is defined as

min
µB ,DB

O(µB, DB) =
1

2

K−1∑
k=1

Ôk(µB, DB) +
1

2

K∑
k=1

Õk(µB, DB) + τR(µB, DB) (35)

with the components of objective functional given by

Ôk(µB, DB) = ‖Hk|X(Fk(µB, DB), µB, DB)−H∗k|X‖2
L2(X) + ‖Hk|∂X −H∗k|∂X‖2

L2(∂X), (36)

Õk(µB, DB) = ‖Jk(Gk(µB, DB), µB, DB)− J∗k‖2
L2(∂X). (37)

The regularization term R, with strength τ , is used to regularize the unknowns when noisy
data are utilized. Note that the summation in the first term in the objective functional (35)
is over K− 1, not K, terms. This is due to the fact that we can only construct K− 1 vector
fields out of K sets of data H. We denote by βk = H2

k∇HK

Hk
the k-th vector field.

We solve the minimization problem by a quasi-Newton method with the BFGS updat-
ing rule on the Hessian operator [22, 44, 58, 66, 65]. This method requires the Fréchet
derivatives of the functional O with respect to the unknowns µB and DB. These deriva-
tives can be computed using the adjoint state method and the chain rule. Let us denote by

11



DµB
O(µB, DB) (resp. DDB

O(µB, DB)), or simply DµB
O (resp. DDB

O), the partial Fréchet
derivative of O with respect to µB (resp. DB) evaluated at (µB, DB). Then the chain rule
implies that DµB

O(µB, DB)µ̂B, µ̂B being the perturbation to µB, can be computed as

DµB
Oµ̂B =

1

2

K−1∑
k=1

[
DµB
Ôkµ̂B +DFk

Ôk ◦ DµB
Fkµ̂B

]
+

1

2

K∑
k=1

[
DµB
Õkµ̂B +DGÕk ◦ DµB

GD̂B

]
+ τDµB

Rµ̂B. (38)

To obtain explicit expression for this quantity, let us introduce wk, the solution of the
following adjoint, with respect to (28), equation:

−∇ · µ2H2
k∇wk = ∇ · 2µH2

k∇
1

uk
, in X, wk = 0, on ∂X, (39)

and w̃k, the solution of the following adjoint, with respect to (27), equation:

− 2µβk · ∇w̃k = −
√
DI

µI
uk
(
ukwk +

1

µI

)
(Hk −H∗k), in X, w̃k(x) = 0, on Γk+ (40)

with Γk+ being the part of the boundary where the k-th vector field, βk, exits the domain.
We can then show by straightforward calculations that

DµB
Oµ̂B =

K−1∑
k=1

〈−(gk + γJ∗k )
√
DB

µ2
B

µ̂B, Hk|∂X −H∗k|∂X〉L2(∂X) − 〈2n · βµw̃k, µ̂B〉L2(Γk
−)

+
K∑
k=1

〈DB(gk + γJk)
2n · ∇wkµ̂B, Jk − J∗k 〉L2(∂X) + τDµB

Rµ̂B. (41)

where 〈·, ·〉L2(X ) denotes the inner product in L2(X ).
The derivative with respect to DB can be computed in the same manner. In fact, we

can show that

DDB
OD̂B =

K−1∑
k=1

〈(gk + γJk)

2µB
√
DB

D̂B, Hk|∂X −H∗k|∂X〉L2(∂X)

+
K∑
k=1

〈−n · ∇ukD̂B, Jk − J∗k 〉L2(∂X) + τDDB
RD̂B. (42)

We are ready to introduce the BFGS quasi-Newton method [42, 58] for the hybrid recon-
struction strategy. We denote by η the column vector that contains the discretized values of
the unknowns (µB, DB)t, g the discretized version the Fréchet derivatives (DµB

O,DDB
O),

and H the inverse Hessian matrix. Assume that we have the inverse Hessian matrix at
iteration j, then the BFGS quasi-Newton method updates the inverse Hessian matrix for
iteration j + 1 according to the rule:

Hj = W t
j−1Hj−1Wj−1 + ρj−1sj−1s

t
j−1 (43)
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with Wj−1 = I − ρj−1yj−1s
t
j−1, sj−1 = ηj − ηj−1, yj−1 = gj − gj−1, and ρj−1 = 1

yt
j−1sj−1

, I

being the identity matrix. The whole algorithm now proceeds as follows.

Hybrid Quasi-Newton Algorithm.

S1. Set j = 0, initial guess η0 = (µ0
B, D

0
B), H0 = I;

S2. Solve the equations (27), (28), (39) and (40) with ηj for 1 ≤ k ≤ K − 1; calculate the
Fréchet derivative gj according to (41) and (42);

S3. If j ≥ 1, update the inverse Hessian matrix according to (43);

S4. Update the unknown ηj+1 = ηj +αHjgj, with α determined by a line search algorithm;

S5. If stopping criteria satisfied, stop; otherwise, set j = j + 1 and go to S2;

We refer interested readers to [42, 58] for more details on the BFGS algorithms, and to
reference [44, 66] for applications of those algorithms to optical tomographic problems. The
implementation we employed here is adapted from the code that we developed in [66]. We
observe in numerical simulations, see those presented in Section 5 that the algorithm con-
verges very fast and it converges for initial guesses that are very far from the true coefficients.
This is not surprising since the inverse problem in qPAT is well-posed as we see from the
previous section.

4 The linearized reconstruction algorithm

We now consider the linearization of the nonlinear inverse problem by Born approximation.
We assume again that we have data for K illumination sources {gk}Kk=1 and we denote by
uk the solution to the diffusion problem with coefficients (D, σ) and source gk.

We linearize around some known, but not necessarily constant, background optical prop-
erties D0(x) > 0 and σ0(x) > 0. To be more precise, we assume

D(x) = D0(x) + D̃(x), σ(x) = σ0(x) + σ̃(x), x ∈ X̄ (44)

where the perturbations are small in the sense that ‖ σ̃(x)

σ0

‖L∞ � 1 and ‖D̃(x)

D0

‖L∞ � 1.

The corresponding perturbation to the quantity µ and µ2 are thus given, to the first order,
by

µ =

√
D0

σ0

−
√
D0

σ2
0

σ̃ +
1

2

1√
D0σ0

D̃ ≡ µ0 + µ̃, and µ2 = µ2
0 + 2µ0µ̃ (45)

respectively. These can be verified by simple Taylor expansions.
Let us denote by Uk(x) the solution to the diffusion problem with the known background

coefficients (D0, σ0) and source gk. Then (44) implies that the solution uk of the diffusion
problem with coefficients (D, σ) can be formally written as

uk(x,v) = Uk(x) + ũk(x), (46)
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with ũk(x) the perturbation in the solution caused by the perturbations in the coefficients.
The perturbations in (44) and (46) imply that the interior data Hk|X and the boundary

data Hk|∂X and Jk are now given respectively, to the first order, by

Hk|X(x) = σ0|XUk|X +
σ0|X

2D0|X
Uk|XD̃|X −

σ0|X

µ0|X
Uk|X µ̃|X + σ0|X ũk|X , (47)

Hk|∂X(x) = σ0|∂XUk|∂X +
σ0|∂X

2D0|∂X
Uk|∂XD̃|∂X −

σ0|∂X

µ0|∂X
Uk|∂X µ̃|∂X , (48)

Jk(x) = −D0n · ∇Uk − D̃n · ∇Uk −D0n · ∇ũk (49)

where we have replaced

√
D0

µ0

by σ0.

It is straightforward to verify, using the transport equation (27), that the equation sat-
isfied by the perturbation µ̃, for vector field βk, 1 ≤ k ≤ K − 1, is

∇ · 2µ0µ̃βk = 0, in X, µ̃ = µ̃B, on Γk−. (50)

and the equation satisfied by the perturbation ũk(x), to the first order, is

−∇ · µ2
0H

2
k∇

ũk
U2
k

= ∇ · 2µ0µ̃
H2
k

U2
k

∇Uk, in X,
ũk
U2
k

= 0, on ∂X. (51)

It can then be shown, using the fact that uk is Fréchet differentiable, that the terms omitted
are indeed high order terms; see for instance [41, Lemma 4.5.1].

Let us denote by Gt
k the solution of the adjoint transport problem

− 2µ0βk · ∇Gt
k(x; y) = δ(x− y), in X, Gt

k(x; y) = 0, on Γk+ (52)

with δ(x− y) being the usual Dirac delta function. Then the solution of (50) is given by

µ̃(x) = −
∫

Γk
−

2µ0(y)Gt
k(y; x)µ̃B(y)dS(y), x ∈ X. (53)

We now introduce the volume and boundary Green’s functions Gv
k(x; y) and Gb

k(x; y)
for the diffusion problem with background optical properties, the solutions of the diffusion
equations

−∇ · µ2
0H

2
k∇Gv

k(x; y) = δ(x− y), in X, Gv
k(x; y) = 0, on ∂X. (54)

and
−∇ · µ2

0H
2
k∇Gb

k(x; y) = 0, in X, Gb
k(x; y) = δ(x− y), on ∂X. (55)

respectively. Then we can now show, using (51), (54), (55) and some simple integration by
parts, that

ũk
U2
k

(x) = −
∫
X

2µ0(y)
H2
k

U2
k

∇Uk · ∇Gv
k(y; x)µ̃(y)dy, x ∈ X (56)

and

−D0n ·∇ũk = 2µ0µ̃
H2
k

U2
k

n ·∇Uk−
∫
X

2µ0(y)
H2
k

U2
k

∇Uk(y) ·∇Gb
k(y; x)µ̃(y)dy, x ∈ ∂X. (57)
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Combining (56) and (57) with (47) and (49), we can show that

H̃k|X ≡ Hk|X − σ0|XUk|X = Mk|X µ̃I + σ0|XU
2
k|XL v

k µ̃I + Nk|XD̃I , (58)

H̃k|∂X ≡ Hk|∂X − σ0|∂XUk|∂X = Mk|∂X µ̃B + Nk|∂XD̃B, (59)

J̃k ≡ Jk +D0n · ∇Uk = L b
k µ̃I + Pkµ̃B + QkD̃B (60)

where to simplify the presentation, we have defined the operators:

Mk|X µ̃I = −
σ0|XUk
µ0|X

µ̃I , Nk|XD̃I =
σ0|XUk
2D0|X

D̃I (61)

Mk|∂X µ̃B = −
σ0|∂X(gk + γJ∗k )

µ0|∂X
µ̃B, Nk|∂XD̃B =

σ0|∂X(gk + γJ∗k )

2
√
D0|∂X

D̃B (62)

Pkµ̃B = 2µ0|∂X
H2
k|∂X

U2
k|∂X

n · ∇Ukµ̃B, QkD̃B = −n · ∇UkD̃B (63)

L t
k µ̃B = −

∫
Γk
−

2µ0(y)Gt
k(y; x)µ̃B(y)dy (64)

L z
k µ̃I = −

∫
X

2µ0µ̃I(x)
H2
k

U2
k

∇Uk(y) · ∇Gz
k(y; x)dy, z ∈ {v, b}. (65)

Equations (53), (58), (59) and (60) are linear integral equations for the variables (µ̃I , D̃I ,
µ̃B, D̃B). The kernels for the operators are known since they only involve the solutions of
the diffusion equation and the Green functions with background optical properties µ0 and
D0. It remains to solve these integral equations to reconstruct the unknowns (µ̃I , D̃I , µ̃B,
D̃B), and then the real coefficients.

Let us arrange the linear maps into the following system of equations for the unknowns
I 0 L t

k 0
Mk|X + σ0|XU

2
k|XL v

k Nk|X 0 0

L b
k 0 Pk Qk

0 0 Mk|∂X Nk|∂X




µ̃I
D̃I

µ̃B
D̃B

 =


0

H̃k |X
J

H̃k |∂X

 (66)

Then we can perform a Gauss elimination to eliminate the unknowns (µI , DI) to obtain

[( Pk Qk

Mk|∂X Nk|∂X

)
−
(

L b
k 0

0 0

)(
I 0

Mk|X + σ0|XU
2
k|XL v

k Nk|X

)−1(
L b
k 0

0 0

)]( µB
DB

)
=

(
0

H̃k|X

)
−
(

L b
k 0

0 0

)(
I 0

Mk|X + σ0|XU
2
k|XL v

k Nk|X

)−1(
J

H̃k|∂X

)
(67)

where, following a straightforward block Gauss elimination, we have(
I 0

Mk|X + σ0|XU
2
k|XL v

k Nk|X

)−1

=

(
I 0

N −1
k|X
(
Mk|X + σ0|XU

2
k|XL v

k

)
N −1
k|X

)
. (68)
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This indicates that in order to formulate the reduced system of equations for the unknown
(µB, DB), we only need to invert Nk|X which can be done analytically since Nk|X is a diagonal
matrix after discretization.

The system (67) is the linear system of equations that we intend to solve for the unknowns
(µB, DB). We collect this system for K different data sets to get an over-determined system
and then solve the system in regularized linear least-square form.

5 Numerical experiments

We now present some numerical simulations based on the algorithms we have presented in
the previous sections. The data used are synthetic data that are created by solving the
diffusion problem (1) on a triangular mesh that is different from the Cartesian mesh we
used in solving the inverse problem. The data are then interpolated to the inversion mesh
using the MATLAB interpolation function tri2grid. It is clear that data created this way
contain noise inherited from the interpolation algorithm, even though the interpolation error
is very small (since forward solutions are computed on very fine meshes). In the presentation
below, we will call this type of data the “clean data” or “noiseless” data. We reserve the
term “noisy data” for those data to which we added additional additive noise (uniformly
distributed). The level of noise will be specified later.

To simplify the computation, we present only two-dimensional simulations. The domain
we take is the square X = (0, 2)× (0, 2). We cover the domain, together with its boundary,
by a fine finite element mesh of 40257 nodes and 79872 triangle elements. The results that
are shown below, however, are the original results interpolated on a 81 × 81 grid for the
convenience of plotting in MATLAB. In the presentation below, we would use both x and
(x, y) to denote a point in R2.

Experiment 1. In the first numerical example, we show the reconstruction of the coef-
ficients (D, σ) from four sets of internal and boundary data. The illuminations are taken
such that they are positive everywhere on the boundary. Let us denote by ∂Xb, ∂Xr, ∂Xt

and ∂Xl the bottom, right, top and left parts of the boundary respectively. Then the four
illuminations are give as

g1(x) =

{
2, x ∈ ∂Xb

1, otherwise
, g2(x) =

{
3, x ∈ ∂Xr

1, otherwise
, g3(x) =

{
4, x ∈ ∂Xt

1, otherwise

and g4(x) = 1, x ∈ ∂X. The coefficients are given by

D(x) = 0.03 + 0.01 sin(πy), σ(x) = 0.2 + 0.1 sin(2πx) sin(2πy). (69)

We performed two sets of reconstructions using noiseless and noisy synthetic data respec-
tively. For the noisy data, we added 5% additive random noise to the data by simply
multiplying each datum by (1 + 0.05 random) with random a uniformly distributed random
variable taking values in [−1, 1].

The results of the reconstructions are shown in Fig. 1. The relative error, i.e. the
difference between the reconstructed coefficient and the true coefficient divided by the true
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Figure 1: Reconstruction of smooth diffusion and absorption coefficients in Experiment 1.
Shown are real coefficients (top left), reconstructions with noiseless (top right) and noisy
(bottom left) data, and the relative difference between noisy reconstruction and the true
coefficients (bottom right).

coefficient, in the reconstructions is shown in the bottom right plots of Fig. 1 for the case
of noisy data. To look at the result of the reconstructions on the boundary values of the
coefficients, we plot in Fig. 2 the reconstruction of the coefficients on the boundary of the
domain. We show in Fig. 2 also the three vector fields βk (k = 1, 2, 3) constructed from the
four noiseless data sets. Γk−, the part of the boundary where βk starts, covers 3/4 of the
boundary. Γ1

− ∪ Γ2
− ∪ Γ3

−, however, covers the whole boundary of the domain. That is the
reason why boundary values are recovered on the whole boundary.

Experiment 2. We now repeat the numerical Experiment 1 by using illuminations that
are only non-zero on one side of the domain. More precisely,

g1 =

{
1, x ∈ ∂Xb

0, x /∈ ∂Xb
, g2 =

{
2, x ∈ ∂Xr

0, x /∈ ∂Xr
, g3 =

{
3, x ∈ ∂Xt

0, x /∈ ∂Xt
, g4 =

{
4, x ∈ ∂Xl

0, x /∈ ∂Xl

The results of the reconstruction are shown in Fig. 3. We observe that the quality of the
reconstructions is very similar to that of the reconstructions in Experiment 1 as can be seen
from the relative errors in the reconstructions shown in the bottom right plots of Fig. 3,
even though the vector fields constructed in this case are a little bit different from those in
Experiment 1.

Experiment 3. In this numerical example, we attempt to reconstruct coefficients with
discontinuities. To simplify the implementation, we only consider piecewise constant co-
efficients. The true coefficients are taken as suppositions of constant backgrounds with
inclusions, as shown in the top left plots of Fig. 4. Reconstructions with both noiseless and
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Figure 2: Top row: three vector fields; Bottom row: reconstructions of boundary values of
D and σ on each part of the boundary.

noisy data are performed. The results have similar quality as those in the smooth coefficient
cases in Experiment 1 and Experiment 2. The relative errors (in the noisy data case) are
shown in the bottom right plots of Fig. 4. It is very clear that the error in the reconstruction
is larger on the discontinuities then in the rest of the domain. This is mainly due to the
regularization effect of our algorithm.

Experiment 4. We have seen from previous numerical simulations that the reconstruc-
tions of both smooth and piecewise constant coefficients are very accurate. The results are
similar to those presented in [15, 17]. The results are all reconstructed with illuminations
on all sides of the boundary. In this simulation, we present some reconstructions with data
collected only on one side of the boundary. We still use four illuminations. They are given
as

g1(x) =

{
1 + y, x ∈ ∂XL

0, otherwise
, g2(x) =

{
3− y, x ∈ ∂XL

0, otherwise

g3(x) =

{
1 + sin

πy

2
, x ∈ ∂XL

0, otherwise
, g4(x) =

{
1, x ∈ ∂XL

0, otherwise

The three vector fields constructed from the four sources are shown in Fig. 5 while the recon-
structed coefficients are shown in Fig. 6. We do not observe significant differences between
these reconstructions and those in the previous numerical experiments, as can be seen from
the plots of the relative errors in the reconstructions. We also performed reconstructions
with the linearization method, around the background coefficients. The results, not shown,
are almost identical to the ones obtained with the nonlinear reconstructions, up to error
caused by noise.
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Figure 3: Reconstruction of smooth diffusion and absorption coefficients in Experiment
2. Shown are real coefficients (top left), reconstructions with noiseless data (top right),
reconstructions with noisy data (bottom left) and the relative difference between noisy re-
construction and the true coefficients (bottom right).

Experiment 5. We conclude this section by showing a numerical verification of the non-
uniqueness result shown in Lemma 2.1. We do this by constructing two pairs of coefficients
(D, σ) and (D̃, σ̃) that produces the same data H ≡ (H1, H2) = H̃ ≡ (H̃1, H̃2). To do that,
we take a coefficient pair (D, σ) (including the boundary value) and construct (H1, H2) from
this coefficient pair. We then follow the steps I-III in the proof of Lemma 2.1. We show in
Fig. 7 two sets of coefficients (D, σ) (top left plots) and (D̃, σ̃) (top right plots) that lead
to the same data sets H = (H1, H2) (bottom left plots). The two illuminations used in
this case are the functions g1 and g2 defined in Experiment 1. We remark again that this
non-uniqueness result does not contradict the uniqueness result in [15] because it is assumed
there that the boundary values of the coefficients are known while here we assume that these
boundary values are not known. This does not violate the uniqueness result in Theorem 2.2
either since we require the current data (10) in the Theorem 2.2. Indeed, we observe that
the boundary data sets J = (J1, J2) and J̃ = (J̃1, J̃2) are sufficiently different. We plot in

the bottom right of Fig. 7 the relative differences between the currents, J1−J̃1

J1
(solid), on the

bottom boundary of the domain and J2−J̃2

J2
(dashed) on the right boundary of the domain.

6 Conclusion and remarks

We present in this work a numerical reconstruction procedure for an inverse coefficient
problem in quantitative photoacoustic tomography, aiming at reconstructing the absorption
and diffusion coefficients in the diffusion equation. In order to recover the boundary values of
the coefficients, we propose to combine boundary current data with interior absorbed energy
distribution data, the later recovered from boundary acoustic measurements in photoacoustic
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Figure 4: Same as Fig. 1 expect that the coefficients are now piecewise constant.

Figure 5: The three vector fields constructed from interior data collected for the illuminations
in given in Experiment 4.

tomography. We formulate the inverse problem as a nonlinear optimization problem, and
then reduce the space of unknowns such that the boundary value of the diffusion coefficient
is the only variable in the minimization problem.

Our numerical method combines a nonlinear minimization technique with an explicit
reconstruction procedure that is proposed in [15, 17, 18]. We iteratively update the boundary
value of the diffusion coefficient until the data generated by the model with such boundary
value match the measured data. In each iteration, we solve the problem using the explicit
vector field method to match the interior data. Compared to the explicit reconstruction
in [15, 17, 18], our approach allows us to replace the a priori knowledge on the boundary
values of the unknown coefficients with a few boundary current data sets which are more
readily available in practice. Numerical simulations with synthetic data are presented to
validate the method.

The method we propose in this paper can be generalized straightforwardly to the case
when the Grüneisen coefficient is also treated as an unknown in the inverse problem. The
non-dimensional Grüneisen coefficient Ξ measures the portion of the absorbed photon energy
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Figure 6: Reconstruction of diffusion and absorption coefficients in Experiment 4 with il-
luminations only on the left side of the boundary. Shown are real coefficients (top left),
reconstructions with noiseless data (top right), reconstructions with noisy data (bottom left)
and the difference between noisy reconstruction and the true coefficients (bottom right).

that is converted into the initial pressure field. With this coefficient, the data H becomes
H = Ξσu. The theory presented in [15] shows that one can not reconstruct all three
coefficients uniquely simultaneously. If one of the coefficients is known, then the other two
can be reconstructed uniquely. Similar statements hold if we introduce Ξ here. When multi-
spectral data are available, we can generalize our method as in [17] to reconstruct all three
coefficients (D,σ, Ξ).

The idea of combining interior data and boundary Cauchy data seems to emerge recently
in engineering community. In [52], the authors constructed an integrated diffuse optical
tomography and photoacoustic tomography system and validated the approach with exper-
imental phantom studies. This is the setting where the method we proposed in this work
could be useful since diffuse optical tomography [12] provides exactly data of the type (10).
In our method, however, we do not require the full diffuse optical tomography measure-
ments, i.e. the operator Λ : g(x) 7→ J(x). We only need the same number of boundary data
sets as that of the interior data sets.
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