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Abstract

Quantitative photoacoustic tomography (QPAT) is a recent hybrid imaging modal-
ity that couples optical tomography with ultrasound imaging to achieve high resolution
imaging of optical properties of scattering media. Image reconstruction in QPAT is
usually a two-step process. In the first step, the initial pressure field inside the medium,
generated by the photoacoustic effect, is reconstructed using measured acoustic data.
In the second step, this initial ultrasound pressure field datum is used to reconstruct
optical properties of the medium. We propose in this work a one-step inversion al-
gorithm for image reconstruction in QPAT that reconstructs the optical absorption
coefficient directly from measured acoustic data. The algorithm can be used to recover
simultaneously the absorption coefficient and the ultrasound speed of the medium from
multiple acoustic data sets, with appropriate a priori bounds on the unknowns. We
demonstrate, through numerical simulations based on synthetic data, the feasibility of
the proposed reconstruction method.

Key words. Photoacoustic tomography, hybrid inverse problems, image reconstruction, one-step
reconstruction, numerical optimization.

1 Introduction

Photoacoustic tomography (PAT) is a recent multi-physics biomedical imaging modality
that aims at achieving simultaneously high resolution and high contrast in imaging by cou-
pling the high-resolution ultrasound imaging modality with the high-contrast diffuse optical
tomography (DOT) modality. In PAT, near infra-red (NIR) photons are sent into an op-
tically absorbing and scattering medium, for instance a piece of biological tissue, Ω ⊆ Rd

(d ≥ 2), where they diffuse. The density of the photons, denoted by u(x), solves the following
diffusion equation [5, 9]

−∇ ·D(x)∇u(x) + σ(x)u(x) = 0, in Ω
u = g(x), on ∂Ω

(1)
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where D and σ are respectively the diffusion and absorption coefficients of the medium, and
g is the incoming photon source. The medium absorbs a portion of the incoming photons and
heats up due to the absorbed energy. The heating then results in thermal expansion of the
tissue and the expansion generates a pressure field. This process is called the photoacoustic
effect. The pressure field generated by the photoacoustic effect can be written as [9, 21]

H(x) = Γ(x)σ(x)u(x) (2)

where σ(x)u(x) is the total energy absorbed locally at x ∈ Ω and Γ is the Grüneisen
coefficient that describes the efficiency of the photoacoustic effect. This initial pressure field
H then propagates in the form of ultrasound with sound speed c(x) [9, 21, 56]

1

c2(x)

∂2p

∂t2
−∆p = 0, in R+ × Ω

p(0,x) = H(x), in Ω
∂p

∂t
(0,x) = 0, in Ω

p(t,x) = 0, on R+ × ∂Ω

(3)

assuming that the medium has no acoustic attenuation effect. We refer interested readers
to [7, 9, 21] for the derivation and justification of the models (1) and (3).

The time-dependent acoustic signals that arrive on the surface of the medium, ∂p
∂n
|(0,T )×∂Ω,

are then measured with acoustic devices for a sufficiently long time T . From the knowledge
of these acoustic measurements, one is interested in reconstructing the diffusion and absorp-
tion properties of the medium; see [6, 12, 16, 34, 36, 39, 45, 52, 62, 63] for overviews of
photoacoustic tomography.

Image reconstructions in PAT are usually done in a two-step process. In the first step,
one uses the boundary acoustic signal to reconstruct the initial pressure field H in (2),
inside the medium. This step has been extensively studied in the past decade under various
circumstances; see for instance [1, 2, 4, 13, 14, 20, 24, 25, 27, 33, 35, 37, 43, 45, 47, 56, 59] and
references therein. In the second step, usually called the quantitative step, one reconstructs
the diffusion coefficient D(x), the absorption coefficient σ(x), and whenever possible, the
Grüneisen coefficient Γ(x) using the internal datum H(x). This step has recently received
great attention as well; see for instance [3, 7, 9, 10, 15, 17, 22, 38, 40, 42, 46, 49, 51, 54, 67]
and references therein. Uniqueness and stability results for the reconstruction procedures
have been established in different settings.

The above two-step process works perfectly fine in the setting where acoustic measure-
ment can be performed measured everywhere on the boundary ∂Ω and the ultrasound speed
c(x) is known. In this case, the initial pressure field H(x) can be reconstructed relatively
stably in the first step of PAT reconstructions. In the case where acoustic data can only be
measured on part of the boundary, i.e. the so called limited-view setting, the reconstruction
of H in the first step can be fairly unstable (especially in the part of the domain from where
acoustic signals do not travel easily to the measurement locations) [14, 28]. In the case
where the sound speed c(x) is also unknown, which is often the case in real-world applica-
tions, the first step reconstruction is also problematics. In this case, one has to reconstruct
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simultaneously the wave speed c and the initial pressure field H. The reconstruction has
been shown recently by Stefanov and Uhlmann [57], based on a slightly different formulation
of the acoustic problem, to be very unstable.

In practical applications, we almost always measure acoustic data generated from multi-
ple optical illuminations. The two-step process, however, does not take advantage of these
multiple data sets. The reason is that if we change the illumination source g, the initial
pressure field H will also be changed. Therefore, every time we add a new measurement, we
introduce a new unknown H in the first step of the PAT reconstruction.

The ultimate objectives of the PAT reconstructions are the coefficients (c,D, σ,Γ). These
coefficients do not change when the illumination is changed. Therefore adding more data
should not introduce more unknowns in the reconstruction. In other words, instead of
reconstructing the unknowns (c,H) and then the coefficients (D, σ,Γ), we should recon-
struct directly from the measured data the coefficients (c,D, σ,Γ), without the intermediate
variable H. This way, one can potentially use data sets from multiple illuminations to help
stabilize the reconstruction, even in the case of partial measurements (for each illumination).

The aim of the current work is exactly to develop one-step reconstruction strategies that
recover the optical coefficients and the wave speed directly from the measured acoustic data.
For simplicity of presentation, we focus only on the absorption coefficient σ and the wave
speed assuming that the diffusion coefficient D and the Grüneisen coefficient Γ are known.
In this case, we have to invert the nonlinear map Λ(c, σ; g) defined through the following
relation:

∂p

∂n
|(0,T )×∂Ω = Λ(c, σ; g). (4)

To the best of our knowledge, there is no uniqueness result on this inverse problem of
reconstructing simultaneously the ultrasound speed and the absorption coefficient, besides
the special case in [33]. The result in [57] indicates that the reconstruction would be unstable
when only one data set, i.e. data collected from only optical illumination, is used. Our main
goal here is to show numerically that using multiple data sets allow us to obtain fairly stable
reconstructions, with appropriate a priori bounds on the unknown coefficients. Rigorous
mathematical study of the stability of our reconstruction approach will be a future work.

To set up the problem, we assume in the rest of the paper that (A-i) the domain Ω is
bounded with smooth boundary ∂Ω, (A-ii) the boundary condition g is the restriction of a
C4 function on ∂Ω, (A-iii) the coefficients c(x) ∈ C4(Ω̄), σ(x) ∈ C4(Ω), D(x) ∈ C3(Ω), and
Γ(x) ∈ C4(Ω), and (A-iv) (c, σ,D,Γ) ∈ Aα ×Aβ ×Aζ ×Aξ with

Aα = {f(x) : 0 < α ≤ f(x) ≤ α <∞, ∀x ∈ Ω}, (5)

α and α being two constants. With the assumptions (A-i)-(A-iv), we conclude from standard
elliptic theory [19, 23] that the diffusion equation (1) admits a unique solution u ∈ C4(Ω).
This implies that Γσu ∈ C4(Ω). Therefore the wave equation (3) admits a unique solution
p ∈ C4((0, T )× Ω) following the theory in [18, 29]. The datum (4) is then well-defined and
can be viewed as a map Λ : C4(Ω̄)× C4(Ω) 7→ H5/2((0, T )× ∂Ω).

The rest of the paper is structured as follows. We first present a one-step inversion
algorithm in the linearized setting in Section 2. We then implement in Section 3 generalize

3



the algorithm for reconstructions in the fully nonlinear setting. We show some numerical
reconstructions based on synthetic data in Section 4 to demonstrate the feasibility of the
algorithm. Concluding remarks are offered in Section 5.

2 Inversion with Born approximation

We denote by J the total number of illumination sources available, and
∂pj
∂n
|(0,T )×∂Ω the

measured datum on the boundary for illumination gj (1 ≤ j ≤ J), in the time interval (0, T ).
Our objective is thus to numerically invert the following nonlinear system to reconstruct
(c, σ):

∂p

∂n
≡


∂p1
∂n
|(0,T )×∂Ω

...
∂pJ
∂n
|(0,T )×∂Ω

 =

 Λ(c, σ; g1)
...

Λ(c, σ; gJ)

 ≡ Λ(c, σ; g). (6)

In this section, we develop a one-step algorithm for the inverse problem in the linearized
setting where we intend to reconstruct perturbations to the coefficients around known back-
grounds. This is useful in some real-world applications where variations of the ultrasound
speed and the absorption coefficient are relatively small (for instance, it is well-known that
ultrasound speed in biological tissues is very similar to that in water with about 15% vari-
ations from tissue to tissue [66]).

2.1 The Born approximation

We denote by c0(x) and σ0(x) respectively the known background ultrasound speed and
absorption coefficient. We assume that the true coefficients are of the forms

c(x) = c0(x) + c̃(x), and σ(x) = σ0(x) + σ̃(x), (7)

where the perturbations c̃ and σ̃ satisfy ‖c̃/c0‖L∞(Ω) � 1 and ‖σ̃/σ0‖L∞(Ω) � 1 respectively.
The perturbations in the coefficients lead to perturbations in the solutions to the diffusion
equation and the wave equation as follows:

uj = u0
j + ũj, and pj(t,x) = p0

j(t,x) + p̃j(t,x) (8)

where the background photon densities u0
j are determined as solutions to

−∇ ·D∇u0
j(x) + σ0(x)u0

j(x) = 0, in Ω
u0
j = gj, on ∂Ω

(9)

and the background acoustic pressure fields p0
j solve the acoustic wave equations:

1

c2
0(x)

∂2p0
j

∂t2
−∆p0

j = 0, in (0, T )× Ω

p0
j(0,x) = Γσ0u

0
j(x), in Ω

∂p0
j

∂t
(0,x) = 0, in Ω

p0
j(t,x) = 0, on (0, T )× ∂Ω

(10)
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We check that the perturbations ũj and p̃j solve respectively, after neglecting higher-order
terms, the diffusion equation:

−∇ ·D∇ũj(x) + σ0(x)ũj(x) = −σ̃u0
j , in Ω

ũj = 0, on ∂Ω
(11)

and the wave equation:

1

c2
0(x)

∂2p̃j
∂t2
−∆p̃j =

2

c3
0

∂2p0
j

∂t2
c̃(x), in (0, T )× Ω

p̃j(0,x) = Γ(σ̃u0
j + σ0ũj), in Ω

∂p̃j
∂t

(0,x) = 0, in Ω

p̃j(t,x) = 0, on (0, T )× ∂Ω

(12)

Let us now introduce the linear operators Λj
c(c0, σ0) and Λj

σ(c0, σ0) through:

∂p̃cj
∂n
|(0,T )×∂Ω = Λj

c(c0, σ0)c̃, and
∂p̃σj
∂n
|(0,T )×∂Ω = Λj

σ(c0, σ0)σ̃, (13)

with p̃cj and p̃σj respectively the solutions to

1

c2
0(x)

∂2p̃cj
∂t2
−∆p̃cj =

2

c3
0

∂2p0
j

∂t2
c̃(x), in (0, T )× Ω

p̃cj(0,x) = 0, in Ω
∂p̃cj
∂t

(0,x) = 0, in Ω

p̃cj(t,x) = 0, on (0, T )× ∂Ω

(14)

and
1

c2
0(x)

∂2p̃σj
∂t2
−∆p̃σj = 0, in (0, T )× Ω

p̃σj (0,x) = Γ(σ̃u0
j + σ0ũj), in Ω

∂p̃σj
∂t

(0,x) = 0, in Ω

p̃σj (t,x) = 0, on (0, T )× ∂Ω

(15)

We can then write the perturbation of the datum as

∂p̃j
∂n

(t,x)|(0,T )×∂Ω = Λj
c(c0, σ0)c̃+ Λj

σ(c0, σ0)σ̃. (16)

We then collect data for all J sources to get a system of equations for the unknowns:

Λc,σ(c0, σ0)

(
c̃
σ̃

)
=
∂p̃

∂n
(17)

with

Λc,σ(c0, σ0) =

 Λ1
c(c0, σ0) Λ1

σ(c0, σ0)
...

...
ΛJ
c (c0, σ0) ΛJ

σ(c0, σ0)

 ,
∂p̃

∂n
=


∂p̃1
∂n
...

∂p̃J
∂n

 . (18)
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This is the Born approximation of the original nonlinear problem (6). The approximation
can be justified as stated in the following lemma.

Lemma 2.1. Let Ω, D, Γ and gj satisfy the assumptions in (A-i)-(A-iv). Then the datum
generated from gj, viewed as the map:

Λ(c, σ; gj) :
(c, σ) 7→ ∂pj

∂n
|(0,T )×∂Ω

C4(Ω̄)× C4(Ω) 7→ H1/2((0, T )× ∂Ω)
(19)

is Fréchet differentiable at any (c0, σ0) ∈ C4(Ω̄) × C4(Ω) that satisfies the assumption in
(A-iv). The derivative at (c0, σ0) in the direction (c̃, σ̃) ∈ C4(Ω̄) × C4(Ω) (such that c0 + c̃
and σ0 + σ̃ satisfy (A-iv)) is (Λj

c(c0, σ0)c̃,Λj
σ(c0, σ0)σ̃) as defined in (13).

The lemma can be proven using standard arguments such as those in [11, 18, 29, 48].
We provide a sketch of the proof in the Appendix. Note that even though Λ(c, σ; gj) is
well-defined as a map Λ(c, σ; gj) : C4(Ω̄)×C4(Ω) 7→ H5/2((0, T )× ∂Ω), we can only prove its
differentiability as a map Λ(c, σ; gj) : C4(Ω̄)× C4(Ω) 7→ H1/2((0, T )× ∂Ω).

We now need to invert (16) (or (17) when multiple data sets are available) to reconstruct

the perturbation (c̃, σ̃). It is well-known that with a single measurement
∂p̃j
∂n

(t,x)|(0,T )×∂Ω,

one could reconstruct one of c̃ and H̃j = Γ(σ̃u0
j +σ0ũj) (thus σ̃ since H̃j uniquely determines

σ̃ [8, 9]) assuming that the other is known [29, 58, 64, 65]. In a slightly different setting,

Stefanov and Uhlmann [57] showed that even if a single measurement
∂p̃j
∂n

(t,x)|(0,T )×∂Ω is

enough to reconstruct the pair (c̃, H̃j) (and thus (c̃, σ̃)) uniquely, the reconstruction would
be extremely unstable [57, Theorem 1]. Our hope here is that, without introducing new
unknowns (since we reconstruct σ̃ directly, not H̃j), by using multiple data sets we can
improve the stability of the reconstruction, assuming that uniqueness can be achieved.

2.2 Reconstruction based on Born approximation

To invert the linear system (17), we use the technique of Landweber iteration [32]. The
iteration takes the form:(

c̃k+1

σ̃k+1

)
= (I− τΛ∗c,σ(c0, σ0)Λc,σ(c0, σ0))

(
c̃k
σ̃k

)
+ τΛ∗c,σ(c0, σ0)

∂p̃

∂n
, k ≥ 0, (20)

with a reasonable given initial guess. The parameter τ , 0 < τ < 2/Σ2 with Σ being the
largest singular value of Λc,σ(c0, σ0), is a positive algorithmic parameter that we select by
trial and error since we do not have good estimates on the singular values of Λc,σ(c0, σ0).
The components of the adjoint operator Λ∗c,σ(c0, σ0)

Λ∗c,σ(c0, σ0) =

(
Λ1∗
c (c0, σ0) · · · ΛJ∗

c (c0, σ0)
Λ1∗
σ (c0, σ0) · · · ΛJ∗

σ (c0, σ0)

)
, (21)

are given as follows. The adjoint operator Λj∗
c (c0, σ0), in the sense of

〈Λj
c(c0, σ0)c̃, yj〉L2((0,T )×∂Ω) = 〈c̃,Λj∗

c (c0, σ0)yj〉L2(Ω), ∀yj ∈ L2((0, T )× ∂Ω),
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is given as

Λj∗
c (c0, σ0)yj =

∫ T

0

2

c3
0

∂2p0
j

∂t2
(t,x)q̃j(t,x)dt (22)

with q̃j the solution to the following adjoint wave equation:

1

c2
0(x)

∂2q̃j
∂t2
−∆q̃j = 0, in (0, T )× Ω

q̃j(T,x) = 0, in Ω
∂q̃j
∂t

(T,x) = 0, in Ω

q̃j(t,x) = −yj, on (0, T )× ∂Ω

(23)

The adjoint operator Λj∗
σ (c0, σ0), in the sense of

〈Λj
σ(c0, σ0)σ̃, zj〉L2((0,T )×∂Ω) = 〈σ̃,Λj∗

σ (c0, σ0)zj〉L2(Ω), ∀zj ∈ L2((0, T )× ∂Ω),

is given as

Λj∗
σ zj = −(

1

c2
0

Γ
∂q̃j
∂t

(0,x) + ṽj)u
0
j , (24)

where q̃j is now the solution to (23) with yj replaced by zj and ṽj is the solution to the
adjoint diffusion equation:

−∇ ·D∇ṽj(x) + σ0(x)ṽj(x) = − 1

c2
0

Γσ0
∂q̃j
∂t

(0,x), in Ω

ṽj = 0, on ∂Ω
(25)

Note that even though we split the components for c and σ in the datum in the form
of (16) for the convenience of presentation, we do not need to solve two wave equations, (14)
and (15), to compute the datum. Instead we need only to solve one wave equation, i.e (12).
Therefore, in each iteration of the Landweber algorithm, we need to solve J forward wave

equations and J forward diffusion equations to evaluate fk ≡ Λc,σ(c0, σ0)

(
c̃k
σ̃k

)
and then J

adjoint wave equations and J adjoint diffusion equations to evaluate Λ∗c,σ(c0, σ0)fk. The last
term in the iteration does not change during the iteration, so it needs only to be computed
once before the iteration starts.

3 One-step nonlinear reconstruction

To solve the full nonlinear inverse problem, we take an optimal control approach. We look
for the solution to the inverse problem as(

cmin

σmin

)
= arg min

(c,σ)∈Aα×Aβ
F (c, σ), (26)

with the objective functional F given as:

F (c, σ) =
1

2
‖Λ(c, σ; g)− ∂p

∂n

#

‖2
[L2((0,T )×∂Ω)]J , (27)
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where ∂p
∂n

#
is the collection of measured acoustic data.

We implemented the Levenberg-Marquardt method [31, 44] to solve the minimization
problem. The method is characterized with the following iteration:(

ck+1

σk+1

)
=

(
ck
σk

)
− (Λ∗c,σ(ck, σk)Λc,σ(ck, σk) + µkI)−1Λ∗c,σ(ck, σk)zk, k ≥ 0, (28)

where µk is an algorithm parameter, zk is the residual at step k:

zk = Λ(ck, σk; g)− ∂p

∂n

#

,

and Λc,σ(ck, σk) is the Fréchet derivative of Λ at (ck, σk). In our implementation, we take the
Levenberg-Marquardt parameter µk as a small constant, although we are aware that there
are principles in the literature to guide the selection of this parameter in a more “optimal”
way; see for instance [31, 44].

The Levenberg-Marquardt algorithm (28) requires the inverse of the operator (Λ∗c,σΛc,σ+
µkI) at each iteration. In our implementation, we do not form the operator (which in discrete
case is a matrix) explicitly and then invert it, since this would require large computer
memory to store the matrix. Instead, we use a matrix-free approach to save memory in
the following way. For any function (which in discrete case is a vector) y, to compute
z = (Λ∗c,σΛc,σ + µkI)−1y, we solve the following equation:

(Λ∗c,σΛc,σ + µkI)z = y. (29)

This is a symmetric positive definite problem which we solve with a standard conjugate
gradient method [50]. The conjugate gradient method does not require the explicit form
of the operator (Λ∗c,σΛc,σ + µkI), but only its action on given functions (vectors in discrete
case). For any given z, we solve J forward wave equations and J forward diffusion equations
to evaluate f ≡ Λc,σ(ck, σk)z and then J adjoint wave equations and J adjoint diffusion
equations to evaluate Λ∗c,σ(ck, σk)f .

To impose the bound constraints on the coefficients, that is c ∈ Aα (i.e. α ≤ c(x) ≤ α)
and σ ∈ Aβ (i.e. β ≤ σ(x) ≤ β), we implement the algorithm for the new variables υ(x)
and η(x) that are related respectively to c(x) and σ(x) through the relations:

c(x) =
α + α

2
+
α− α

2
tanh υ(x), σ(x) =

β + β

2
+
β − β

2
tanh η(x), (30)

The Fréchet derivatives of Λ with respect to the new variables at (υ0, η0) in the direction
(υ̃, η̃) can be computed using the chain rule straightforwardly as

Λυ(υ0)υ̃ = Λc(c(υ0))[
α− α

2
sech2 υ0(x)υ̃], Λη(η0)η̃ = Λσ(σ(η0))[

β − β
2

sech2 η0(x)η̃].

(31)
Note that we have chosen different bounds for c (i.e α and α) and σ (i.e. β and β) since in
practice the two functions have different ranges of values.
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4 Numerical experiments

We now present some numerical experiments to check the performance of the reconstruction
algorithm. To simplify the presentation, we non-dimensionalize the problem so that all the
numbers presented below have no dimensions. We consider the problem in the square domain
Ω = [0 2]× [0 2] with constant diffusion coefficient D = 0.02 and Grüneisen coefficient Γ = 1.

In our implementation, we discretize the forward and adjoint diffusion equations, for
instance (1) and (25), with a first-order finite element method. We discretize the forward
and adjoint wave equations, for instance (3) and (23), with a standard second-order finite
difference scheme on a uniform grid. The finite element discretization of the diffusion equa-
tions is performed on a triangle mesh that shares the same nodes as the uniform grid for
the wave equation. This way we do not need to interpolate between the two types of grids
when using quantities from the diffusion solution in the wave equations or vice versa.

We will perform numerical reconstructions in both the nonlinear and the linearized set-
tings. To generate synthetic data for the nonlinear inversions, we solve the diffusion equa-
tion (1) and the wave equation (3) with the true absorption coefficient and ultrasound speed,
and then compute the data using (4). When adding multiplicative random noise to the da-
tum ∂p

∂n
we perform the transformation ∂p

∂n
→ ∂p

∂n
× (1 + κ

100
· rand) where rand is a uniform

random variable with mean 0 and variance 1 (and thus range [−
√

3,
√

3]). We use κ to
measure the level of noise in the data. The values of κ will be given in the simulations we
present below. For the linearized inversions, we construct synthetic data directly using the
linearized model (16) for a given perturbation of the coefficients, (c̃, σ̃). This means that
the data for the linearized inversions are exact. These data do not contain information on
the accuracy of the linearized problem as an approximation to the true nonlinear problem.
The linearized inversion simulations we show below will only provide information about the
invertability and stability of the linearized inverse problem.

We measure the quality of the reconstruction with the maximal relative error. For
parameter p, the error is defined as ‖(pr− pt)/pt‖L∞ where pt is the true coefficient while pr

is the reconstructed coefficient.

Numerical experiment 1. The first numerical experiment is devoted to the reconstruc-
tion of the absorption coefficient assuming that the ultrasound speed is known. The true
absorption coefficient is taken as

σ(x) =

{
0.15, x ∈ [0.5 1.5]× [0.5 1.5]
0.10, x ∈ Ω\[0.5 1.5]× [0.5 1.5].

(32)

We performed nonlinear reconstructions with the Levenberg-Marquardt algorithm using
three types of data: (i) noise-free data (κ = 0.0), (ii) noisy data with κ = 0.5, and (iii) noisy
data with κ = 1.0. The data are collected from eight different optical illuminations that
are line sources supported on each sides of the domain with spatially varying strengths such
as those used in [8]. The results of the reconstructions are shown in Fig. 1. The maximal
relative errors in the reconstructions are 0.15, 0.28 and 0.64 respectively. The quality of the
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reconstructions is very similar to those published in the literature [3, 15, 17, 22, 38, 40, 42,
46, 49, 51, 54, 67]. We observe in our numerical experiments that the reconstructions in this
case are very robust to changes in initial guesses. Moreover, we impose very loose bounds
on the absorption coefficient in the reconstructions: β = 0 ≤ σ ≤ 1.0 = β. Our experience
is that this bound is not necessary at all when σ is the only unknown to be reconstructed.

Figure 1: Reconstructions of the absorption coefficient with known ultrasound speed. Left
to right: true σ(x) given in (32), σ reconstructed from noise-free data, σ reconstructed from
noisy data with κ = 0.5, and σ reconstructed from noisy data with κ = 1.0.

Numerical experiment 2. In the second numerical experiment, we reconstruct the ul-
trasound speed c(x) assuming that the absorption coefficient is known. We consider the
problem with the true ultrasound speed

c(x) = 1.0 + 0.2× exp(−|x− (1, 1)|2

2× 0.52
), x ∈ Ω. (33)

We again performed reconstructions with the three types of data (i)-(iii). The results are
shown in Fig. 2. We imposed the bound α = 0.8 ≤ c ≤ 1.3 = α on the unknown. The max-
imal relative errors in the reconstructions are respectively 0.16, 0.30 and 0.57. The initial
guess for all the reconstructions shown is c = 0.9, although we observe in our numerical ex-
periments that most constant initial guesses within the bounds lead to almost identical final
reconstructions. The data used in the reconstructions are again collected from 8 different
optical illuminations. Even though we have more blurring in the reconstructed images, the
overall quality of the reconstructions is reasonable, considering that we do not need very
strict bounds on the unknown to get these reconstructions.

Numerical experiment 3. In this experiment, we reconstruct, under the Born approx-
imation, the sound speed c and the absorption coefficient σ as shown in the first column
of Fig. 3. The background of the linearization is (c0, σ0) = (1.0, 0.1). We again use data
collected from eight different illuminations. Shown are the reconstructions from noise-free
data (κ = 0.0, column II), the reconstructions from noisy data with κ = 0.5 (column III)
and the reconstructions from noisy data with κ = 1.0 (column IV). The maximal relative
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Figure 2: Reconstructions of the ultrasound speed with known absorption coefficient. Left to
right: true c(x) given in (33), c reconstructed from noise-free data (κ = 0.0), c reconstructed
from noisy data with κ = 0.5, and c reconstructed from noisy data with κ = 1.0.

errors in the reconstructions are (0.40, 0.90), (0.80, 1.20), and (1.05, 2.02) respectively. We
started all the Landweber iterations with initial condition (c̃, σ̃) = (0, 0). Let us empha-

Figure 3: Linearized reconstructions of the coefficients c (top) and σ (bottom). Shown from
left to right are: the true (c, σ), the reconstructions from noise-free data, the reconstructions
from noisy data with κ = 0.5, the reconstructions from noisy data with κ = 1.0.

size again that the synthetic data used in this experiment are constructed directly from the
linearized model (16). Therefore, the data are exact (besides the artificial noise added to
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them) in the sense that the error in the approximation to the true nonlinear problem is
completely neglected. What we are interested in studying is the stability of the linearized
inverse problem, not the accuracy of the Born approximation. This is why we can consider
fairly large perturbations to the background here.

Numerical experiment 4. We repeat the reconstructions in the previous experiment (i.e.
Numerical experiment 3) in the nonlinear setting with the Levenberg-Marquardt algorithm.
The results are shown in Fig. 4. The maximal relative errors in the reconstructions are
(0.42, 0.69), (0.61, 1.02), and (0.89, 1.87) respectively for data with noise level κ = 0.0,
κ = 0.5 and κ = 1.0. In all the reconstructions, we use the initial guess of (c, σ) = (0.9, 0.09)
and the Levenberg-Marquardt algorithm is stopped after 80 iterations. We impose the
bounds α = 0.7 ≤ c ≤ 1.3 = α, β = 0.07 ≤ σ ≤ 0.15 = β.

Figure 4: Same as Fig. 3 except that the reconstructions are performed in the nonlinear
setting using the Levenberg-Marquardt algorithm.

Numerical experiment 5. In the last numerical experiment, we reconstruct the sound
speed c and the absorption coefficient σ as shown in the first column of Fig. 5. We again use
data collected from eight different illuminations. Shown are the reconstructions from noise-
free data (κ = 0.0, column II), the reconstructions from noisy data with κ = 0.5 (column III)
and the reconstructions from noisy data with κ = 1.0 (column IV). The maximal relative
errors in the reconstructions are (0.97, 0.56), (1.17, 0.88), and (1.41, 0.99) respectively. The
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Levenberg-Marquardt algorithm is stopped at iteration 100 in all the reconstructions in
this case and the initial guess for all the reconstructions is (c, σ) = (1.0, 0.09). We impose
stricter bound on c in this case to have the algorithm converges to reasonable solutions:
α = 0.85 ≤ c ≤ 1.2 = α, β = 0.1 ≤ σ ≤ 0.2 = β. Note that the bounds on the absorption
coefficient coincide with the bounds on the true σ value. If the constant initial guess is
beyond the bounds, the algorithm usually does not converge.

Figure 5: Nonlinear reconstructions of the coefficients c (top) and σ (bottom). Shown from
left to right are: the true (c, σ), the reconstructions from noise-free data (κ = 0.0), the
reconstructions from noisy data with κ = 0.5, the reconstructions from noisy data with
κ = 1.0.

We observe from all the simulations presented in this section that the one-step recon-
struction strategy performs reasonably well in either the linearized or the nonlinear case,
with a priori bounds imposed on the unknowns. Tuning algorithmic parameters, such as
the τ in the Landweber iteration and the µk in the Levenberg-Marquardt algorithm, the
maximal number of iterations allowed for the iterative algorithms, and the initial guesses
etc, can certainly improve the quality of the reconstructions slightly as we observed in some
of the simulations we performed. We did not pursue in that direction. The use of data from
even more illuminations would certainly help at least to reduce the average noise level in the
data. We did not pursue in that direction either. The simulations we present here provide
us a rough idea about the quality of the reconstructions that we could get.
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5 Concluding remarks

There have been several works in recent years on the simultaneous reconstruction of the
ultrasound speed and the optical properties [30, 33, 41, 53, 57, 60, 61, 68] in QPAT. Every
method proposed attempts to follow the two-step philosophy, that is to first reconstruct
ultrasound speed and the initial pressure field and then reconstruct the optical properties. In
some cases, additional ultrasound measurements are taken to supplement the photoacoustic
measurements [41]. We proposed here a reconstruction strategy that combines the two-step
reconstruction process into a one-step process to reconstruct directly the sound speed and the
optical properties without reconstructing the initial pressure field, which is an intermediate
variable.

The main advantage of our method is that it allows the use of data sets from multiple
illuminations which can stabilize the reconstruction when the ultrasound speed is treated as
a unknown. When the intermediate variable, the initial pressure field, is to be reconstructed
as in [30, 33, 53, 57, 60, 61, 68], it changes with illuminations. Therefore adding data from
more illuminations simply adds more unknowns in the reconstruction process. While in our
case, adding more data sets does not add more unknowns since (c, σ) do not change with
illuminations.

The results in [8, 9, 29, 58, 64, 65] show that one can reconstruct uniquely and stably
either the ultrasound speed or the optical absorption coefficient if the other one is known. We
are not aware of any uniqueness result on the simultaneous reconstruction of both coefficients
besides in special cases such as these in [33]. Numerical simulations with synthetic data in
Section 4 show that the simultaneous reconstruction is in fact relatively stable when multiple
data sets are used, with appropriate a priori bounds imposed on the unknowns. This does
not contradict the theoretical results in [57] on the instability of the problem with a single
measurement. We are currently conducting theoretical studies on the stability property of
our method. Results will be reported elsewhere.

Let us finish this paper with two additional remarks. First, there have been similar one-
step algorithms in the literature [26, 55] that reconstruct directly optical properties from
photoacoustic data. These algorithms are different from the one we proposed here since they
all treat the ultrasound speed as known. Second, in our formulation, we have assumed that
both the diffusion coefficient D and the Grüneisen coefficient Γ are known. We can easily
modify the algorithm to include D or Γ as a unknown in the reconstructions as well. Note
that it has been proved [8] that one can not reconstruct simultaneously D, σ and Γ with
mono-wavelength optical illuminations. Therefore, it is not desired to reconstruct (c,D, σ,Γ)
in the one-step algorithm. However, one can indeed attempt to reconstruct simultaneously
c, σ and Γ, for instance.

Acknowledgments

We would like to thank the anonymous referees for their useful comments, especially for
pointing out the references [26, 55], that help us improve the quality of this paper. This

14



work is partially supported by the National Science Foundation through grant DMS-1321018,
and the University of Texas through a Moncrief Grand Challenge Faculty Award.

Appendix: Fréchet differentiability of Λ(c, σ; gj)

We provide a brief proof of the differentiability of Λ(c, σ; gj) as stated in Lemma 2.1. To
simplify the presentation, we will use the short notation ω = 1

c2
, and therefore ω0 = 1

c20
,

ω̃ = −2c̃
c30

. We will show differentiability of Λ(ω, σ; gj) with respect to (ω, σ).

Proof of Lemma 2.1. We first prove the differentiability with respect to ω (and thus c). Let
pj(ω0 + ω̃, σ0) and pj(ω0, σ0) ≡ p0

j be the solution to the wave equation with coefficients

(ω0 + ω̃, σ0) and (ω0, σ0) respectively. Define p̂j = pj(ω0 + ω̃, σ0) − pj(ω0, σ0) and ˆ̂pj =
pj(ω0 + ω̃, σ0)− pj(ω0, σ0)− p̃ωj , where p̃ωj is the solution to (14) with −2c̃

c30
replaced by ω̃. We

then verify that p̂j solves

(ω0 + ω̃)
∂2p̂j
∂t2
−∆p̂j = −ω̃

∂2p0
j

∂t2
, in (0, T )× Ω

p̂j(0,x) = 0, in Ω
∂p̂j
∂t

(0,x) = 0, in Ω

p̂j(t,x) = 0, on (0, T )× ∂Ω

(34)

and ˆ̂pj solves

ω0
∂2 ˆ̂pj
∂t2
−∆ˆ̂pj = −ω̃ ∂

2p̂j
∂t2

, in (0, T )× Ω

ˆ̂pj(0,x) = 0, in Ω

∂ ˆ̂pj
∂t

(0,x) = 0, in Ω

ˆ̂pj(t,x) = 0, on (0, T )× ∂Ω.

(35)

With the assumptions in the lemma, we conclude from standard elliptic theory [19, 23]
that the diffusion equation (9) admits a unique solution u0

j ∈ C4(Ω). This implies that
Γσ0u

0
j ∈ C4(Ω). Therefore the wave equation (10) admits a unique solution p0

j ≡ pj(ω0, σ0) ∈
C4((0, T ) × Ω) following theory in [18, 29]. Moreover,

∂2p0j
∂t2
∈ C2((0, T ) × Ω) and we have

from (34) that p̂j ∈ C3((0, T )× Ω) and

‖p̂j‖H3((0,T )×Ω) ≤ C1‖ω̃
∂2p0

j

∂t2
‖H2((0,T )×Ω) ≤ C1‖

∂2p0
j

∂t2
‖H2((0,T )×Ω)‖ω̃‖H4(Ω)

≤ C1‖p0
j‖H4((0,T )×Ω)‖ω̃‖H4(Ω) ≤ C2‖Γσ0u

0
j‖H4(Ω)‖ω̃‖H4(Ω). (36)

Similarly, we have from (35) that

‖ ˆ̂pj‖H2((0,T )×Ω) ≤ C̃1‖ω̃
∂2p̂j
∂t2
‖H1((0,T )×Ω) ≤ C̃1‖

∂2p̂j
∂t2
‖H1((0,T )×Ω)‖ω̃‖H4(Ω)

≤ C̃1‖p̂j‖H3((0,T )×Ω)‖ω̃‖H4(Ω). (37)
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We now combine the trace theorem, (36) and (37) to get

‖∂
ˆ̂pj
∂n
‖H1/2((0,T )×∂Ω) ≤ C̃2‖Γσ0u

0
j‖H4(Ω)‖ω̃‖2

H4(Ω). (38)

This shows the differentiability with respect to ω.

To prove its differentiability with respect to σ, we observe that Λ(c, σ; gj) = Λ(c,Hj(σ); gj)
is linear with respect to Hj. Therefore, Λ is differentiable with respect to Hj ∈ C4(Ω) with

the derivative at (c0, H
0
j ) in the direction H̃j given as ΛHj(c0, H

0
j )H̃j =

∂pHj
∂n
|(0,T )×∂Ω where

pHj solves

1

c2
0

∂2pHj
∂t2

−∆pHj = 0, in (0, T )× Ω

pHj (0,x) = H̃j, in Ω
∂pHj
∂t

(0,x) = 0, in Ω

pHj (t,x) = 0, on (0, T )× ∂Ω.

(39)

We now recall that Hj(σ) : C4(Ω) → C4(Ω) is Fréchet differentiable with the derivative at
σ0 in direction σ̃ given as Hjσ(σ0)σ̃ = Γ(σ̃u0

j + σ0ũj) where ũj solves (11). The chain rule
of differentiation then concludes that Λ is differentiable with respect to σ at σ0 and the
derivative is Λj

σ(c0, σ0)σ̃ = ΛHj(c0, σ0)Hjσ(σ0)σ̃.

References

[1] M. Agranovsky, P. Kuchment, and L. Kunyansky, On reconstruction formulas and
algorithms for the TAT and PAT tomography, in Photoacoustic Imaging and Spectroscopy,
L. V. Wang, ed., CRC Press, 2009, pp. 89–101.

[2] M. Agranovsky and E. T. Quinto, Injectivity sets for the Radon transform over circles
and complete systems of radial functions, J. Funct. Anal., 139 (1996), pp. 383–414.

[3] H. Ammari, E. Bossy, V. Jugnon, and H. Kang, Mathematical modelling in photo-
acoustic imaging of small absorbers, SIAM Rev., 52 (2010), pp. 677–695.

[4] H. Ammari, E. Bretin, V. Jugnon, and A. Wahab, Photo-acoustic imaging for attenu-
ating acoustic media, Lecture Notes in Mathematics, 2035 (2011), pp. 53–80.

[5] S. R. Arridge and J. C. Schotland, Optical tomography: forward and inverse problems,
Inverse Problems, 25 (2009). 123010.

[6] G. Bal, Hybrid inverse problems and internal information, in Inside Out: Inverse Problems
and Applications, G. Uhlmann, ed., Mathematical Sciences Research Institute Publications,
Cambridge University Press, 2012.

[7] G. Bal, A. Jollivet, and V. Jugnon, Inverse transport theory of photoacoustics, Inverse
Problems, 26 (2010). 025011.

16



[8] G. Bal and K. Ren, Multi-source quantitative PAT in diffusive regime, Inverse Problems,
27 (2011). 075003.

[9] G. Bal and G. Uhlmann, Inverse diffusion theory of photoacoustics, Inverse Problems, 26
(2010). 085010.

[10] , Reconstructions of coefficients in scalar second-order elliptic equations from knowledge
of their solutions, Comm. Pure Appl. Math., 66 (2013), pp. 1629–1652.

[11] G. Bao and W. W. Symes, On the sensitivity of hyperbolic equation to the coefficient,
Comm. in P.D.E., 21 (1996), pp. 395–422.

[12] P. Beard, Biomedical photoacoustic imaging, Interface Focus, 1 (2011), pp. 602–631.

[13] P. Burgholzer, G. J. Matt, M. Haltmeier, and G. Paltauf, Exact and approximative
imaging methods for photoacoustic tomography using an arbitrary detection surface, Phys. Rev.
E, 75 (2007). 046706.

[14] B. T. Cox, S. R. Arridge, and P. C. Beard, Photoacoustic tomography with a limited-
aperture planar sensor and a reverberant cavity, Inverse Problems, 23 (2007), pp. S95–S112.
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