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Abstract

Fluorescence photoacoustic tomography (fPAT) is a multi-modality biomedical
imaging technique that combines the high-resolution ultrasound imaging with the high-
contrast fluorescence optical tomography. In the first step of fPAT, one utilizes the
photoacoustic effect to recover the total absorbed energy map inside the media with
ultrasound tomography. In the second step, called quantitative fPAT (QfPAT), one
uses interior absorbed energy data to recover either the quantum efficiency or the con-
centration distribution or both of the fluorophores inside the media. The objective
of this work is to derive the mathematical model for QfPAT and to study the corre-
sponding inverse problems. We derive some uniqueness and stability results on these
inverse problems, and propose a few explicit reconstruction algorithms. Numerical
simulations based on synthetic data are presented to verify the theory and algorithms
proposed.
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lems, system of diffusion equations, interior data, quantitative fluorescence photoacoustic tomog-
raphy.
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1 Introduction

Fluorescence optical tomography (FOT) is a molecular imaging technique in which fluo-
rescent biochemical markers are injected into biological objects. The markers will then
accumulate on targeted tissues, for instance cancer tissues, and emit near-infrared light
(at wavelength λm) upon excitation by an external light source (at a different wavelength
which we denote by λx). The objective of FOT is to determine the spatial concentration,
lifetime distribution as well as quantum efficiency of the fluorophores inside the tissues
from measured photon current data on the surface of the tissues. The information on the
concentration, lifetime and quantum efficiency distributions of the fluorophores serve as
diagnostic tools to differentiate healthy and cancerous tissues. We refer interested reader
to [29, 56, 57, 82, 100, 101] for overviews of fluorescence optical tomography.

Besides the rapid advances in experimental design of disease-specific fluorescent markers,
the field of FOT has witnessed tremendous development in image reconstruction techniques.
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Roughly speaking, image reconstructions in FOT are based on three types of measured
data: steady-state (also known as continuous-wave) measurements [39, 43, 42, 55, 62, 71,
72, 102, 106], time-domain measurements [3, 27, 53, 54, 58, 63, 79, 84, 95, 98] and frequency-
domain measurements [10, 24, 66, 67, 77, 86, 92, 94, 103, 119, 122]. In principle, steady-
state measurements do not contain information on fluorescence lifetime while time-domain
and frequency-domain measurements contain both the lifetime and fluorescence distribution
information, even though time-domain data are significantly more difficult to measure in
experiments [123, 132].

The major problem with FOT is the lack of stability [62, 84] of the imaging prob-
lem due to multiple scattering of light in biological tissues. The spatial resolution of
the images reconstructed from experimental data is in general very low, even when mul-
tispectral and temperature-modulated data are used [25, 89]. To stabilize the imaging
problem, several advanced reconstruction techniques have been designed in specific situa-
tions [40, 41, 44, 46, 49, 53, 120], and different types of a priori information have been
proposed to be incorporated in reconstructions algorithms [87, 88].

We propose in this work a new strategy to stabilize the FOT inverse problem: to combine
fluorescence optical tomography with the high-resolution ultrasound tomography using the
fluorescence photoacoustic effect. We call this new approach fluorescence photoacoustic
tomography (fPAT). The physical principle of fPAT is identical to photoacoustic tomography
(PAT) [5, 11, 21, 37, 73, 75, 85, 107, 135, 136, 137, 140] except that in fPAT part of the
ultrasound signal are generated from the fluorescent light. The objective of this work is
to derive the mathematical model for fPAT as well as to present mathematical theory and
reconstruction algorithms on the inverse problems involved. We point out that there have
been several experimental work on using PAT to imaging fluorescent proteins [22, 110, 111,
112, 114, 133, 138], from slightly different perspectives.

The rest of the paper is organized as follows. We review in Section 2 the mathematical
model for classical fluorescence optical tomography and derive the mathematical models for
fPAT. We then study in detail uniqueness and stability issues for some inverse problems in
quantitative fPAT (QfPAT) in Section 3. In Section 4 we present a general reconstruction
algorithm for the numerical solution of the full nonlinear inverse problem of simultaneous
reconstruction of quantum efficiency and fluorescence absorption coefficient (and thus flu-
orescence concentration). We then present some numerical simulations based on synthetic
data in Section 5 to validate the theory and the algorithms we proposed. Concluding remarks
are offered in Section 6.

2 Mathematical formulation

To study fluorescence photoacoustic tomography, we have to model the propagation of both
excitation light and emission light. We denote by Ω ⊂ Rd (d = 2, 3) the tissue we plan
to probe, with smooth boundary ∂Ω, and c the speed of light inside the tissue. It is then
known that the evolution of the density of the excitation photons, ux(x, t), and that of the
emission photons, um(x, t), solve the following system of coupled diffusion equations [3, 10,
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27, 31, 54, 78, 91, 108, 123]:

1

c

∂ux
∂t
−∇ ·Dx(x)∇ux(x, t) + σx(x)ux(x, t) = 0, in Ω× R+

1

c

∂um
∂t
−∇ ·Dm(x)∇um(x, t) + σm(x)um(x, t) = S(x, t), in Ω× R+

ux(x, t) = gx(x, t), um(x, t) = 0, on ∂Ω× R+

ux(x, t) = 0, um(x, t) = 0, on Ω× {0}

(1)

where the subscripts x and m denote the quantities at the excitation and emission wave-
lengths, respectively, and gx(x, t) is the external excitation source. The total absorption
coefficient σx (resp. σm) consists of a contribution σx,i (resp. σm,i) from the intrinsic tissue
chromophores and a contribution σx,f (resp. σm,f ) from the fluorophores of the biochemi-
cal markers. It is generally believed in the FOT community that σm,f is extremely small
compared to the other coefficients so that it can be neglected in practice. We thus have

σx = σx,i + σx,f , σm = σm,i (2)

in the rest of the paper. The fluorescence absorption coefficient σx,f (x) is proportional to
the concentration ρ(x) and the extinction coefficient ε(x) of the fluorophores, i.e. σx,f =
ε(x)ρ(x).

The emission source S(x, t) generated at wavelength λm is mainly related to the fluores-
cence yield of the excitation. It can be expressed as

S(x, t) = ησx,fΠτ (u)(x, t) ≡ ησx,f

∫ t

0

πτ (t− s)ux(x, s)ds ≡ ησx,f

∫ t

0

1

τ
e−

(t−s)
τ ux(x, s)ds (3)

where η(x) is called the quantum efficiency of the tissue. The product of the quantum
efficiency and the fluorophores absorption coefficient, ησx,f , is called the quantum yield. The

decay of the fluorescence follows an exponential law that is given by the kernel πτ (t) =
1

τ
e−

t
τ

, where τ is the lifetime of the excited state. This model of emission source is considered
in [3, 27, 78, 108, 123] and in [10, 31, 54, 91] in the frequency-domain. It is often the model
used to image lifetime of fluorophores.

In the propagation process, both the excitation light and the fluorescence light can be
absorbed by the tissue. The total energy absorbed at location x and time t is [48]

H(x, t) = σx(x)ux(x, t) + σm(x)um(x, t). (4)

The absorbed energy then heats up the tissue to generate thermal expansion. Thermal
expansions leads to a pressure field inside the tissue. This process is called the photoacoustic
effect, or in our case called the fluorescence photoacoustic effect, and the resulted pressure
field then evolves according to the acoustic wave equation [13, 18, 48]:

1

c2
s(x)

∂2p

∂t2
−∆p = Ξ

∂H

∂t
, in Rd × R+

p(x, t) = 0,
∂p

∂t
(x, t) = 0, in Rd × {0}.

(5)
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where cs(x) is the speed of ultrasound inside the tissue, and Ξ(x) is the (nondimensional)
Grüneisen coefficient that measures the photoacoustic efficiency of the underlying media [34,
37, 121]. Note that it is assumed here that the boundary of the domain has no effect on the
propagation of the ultrasound, so that the acoustic wave equation is posed in Rd, not Ω.

There are a few time scales in the physical processes we described above. The light
absorption time scale τa ∼ 1

cσx
∼ 1

cσm
, the fluorescence decaying time scale τ , and the

acoustic transport time scale: τcs ∼
diam(Ω)

cs
, diam(Ω) being diameter of the domain Ω. Due

to the fact that the speed of light is significantly larger than the speed of the ultrasound,
c � cs, the light propagation process occurs on a much faster time scale than the acoustic
wave propagation process: τcs � τa ∼ τ . It is argued in [13, 18] with asympototic analysis

that due to this scale separation between the acoustic and optical process, the term Ξ
∂H

∂t
can be replaced with H(x)δ(t) where H(x) is the time average of Ξ(x)H(x, t):

H(x) = Ξ(x)
[
σx(x)ux(x) + σm(x)um(x)

]
. (6)

Here we abuse the notation a bit by introducing ux(x) =
∫
R+
ux(x, t)dt and um(x) =∫

R+
um(x, t)dt.

To derive a closed system of equations for ux(x) and um(x), we integrate the system (1)
with respect to time, and use the initial conditions and the fact that ux(x,∞) = um(x,∞) =
0, to get

−∇ ·Dx(x)∇ux(x) + σx(x)ux(x) = 0, in Ω
−∇ ·Dm(x)∇um(x) + σm(x)um(x) = ησx,f (x)vx(x), in Ω

ux(x) = gx(x), um(x) = 0, on ∂Ω
(7)

where we have introduced an auxiliary variable vx =
∫
R+

Πτ (ux)(x, t) dt.

Using the initial condition for ux(x, t), we can verify through integration by part that∫
R+

∫ t

0

1

c

∂ux
∂s

1

τ
e−

t−s
τ dsdt =

∫
R+

[ 1

cτ
ux(x, s)e

− t−s
τ |t0 −

1

cτ

∫ t

0

1

τ
ux(x, s)e

− t−s
τ ds

]
dt

=
1

cτ
ux(x)− 1

cτ
vx(x). (8)

We now convolve the equation for ux(x, t) in (1) with the kernel πτ (t), integrate over time
and use (8) to obtain an equation that couples ux and vx

−∇·Dx(x)∇vx(x)+(σx(x)− 1

cτ
)vx(x) = − 1

cτ
ux(x), in Ω, vx(x) = gx(x), on ∂Ω. (9)

Here we assumed that we can select g(x, t) such that
∫
R+
gx(x, t) dt =

∫
R+

Πτ (gx)(x, t) dt =

gx(x). This is clearly possible. For instance we can take gx(x, t) = gx(x)δ(t− 0+).
If we subtract the first equation in (7) from (9) and denote by wx = vx − ux, we obtain

the following equation for wx:

−∇ ·Dx(x)∇wx(x) + (σx(x)− 1

cτ
)wx(x) = 0, in Ω, wx(x) = 0, on ∂Ω. (10)
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If q(x) ≡ σx(x) − 1

cτ
> 0 a.e. (which means that the lifetime of the fluorophore is greater

than the absorption time scale
1

cσx
), wx = 0 a.e.. Otherwise, if Ω is such that 0 is not an

eigenvalue of the operator ∇ ·Dx∇− q with homogeneous Dirichlet boundary condition, we
have wx = 0 a.e.. In both cases, we have vx(x) = ux(x) a.e..

We now have the following system of diffusion equations for ux(x) and um(x):

−∇ ·Dx(x)∇ux(x) + σx(x)ux(x) = 0, in Ω
−∇ ·Dm(x)∇um(x) + σm(x)um(x) = ησx,f (x)ux(x), in Ω

ux(x) = gx(x), um(x) = 0, on ∂Ω
(11)

For the convenience of the presentation at times, we denote by Ai,jα,β (α, β ∈ {x,m}) the
diffusion coefficient matrix and aαβ the absorption coefficient matrix. Then we can write
down this system as:

−Di[AijαβDjuβ] + aαβuβ = fα, in Ω, uα = gα, on ∂Ω. (12)

with
Aijαα = Dαδij, Aijαβ = 0 if α 6= β, fα = 0 (13)

(aαβ) =

(
σx 0
−ησx,f σm

)
, gα =

{
gx, α = x
0, α = m

(14)

Note that because (aαβ) is not symmetric, the system (11) is not self-adjoint.
Throughout the paper, we denote by Hk(Ω) the space of functions whose derivatives of

order less than k are in L2(Ω). We assume that:

(A-i) The domain Ω is simply-connected with C2 boundary ∂Ω. The optical coefficients
(Dx, σx,i) ∈ C1(Ω̄) × L∞(Ω), (Dm, σm) ∈ C1(Ω̄) × L∞(Ω), σx,f , η,Ξ ∈ L∞(Ω) and 0 < c0 ≤
Dx, σx,i, Dm, σm, η, σx,f ,Ξ ≤ C0 <∞ for some positive c0 and C0. The illumination gx(x) is
the restriction of a C2(Ω̄) function on ∂Ω and gx(x) is positive, gx ≥ c̃0 > 0 for some c̃0.

With these assumptions, it is straightforward to verify that Aijαβ satisfies the strong
Legendre condition and the system (12) is thus strongly elliptic [81, 93]. In fact, this system
admits a unique solution following standard elliptic theory [47, 52, 81, 93].

Lemma 2.1. Assume that the coefficients and the domain satisfies the regularity assump-
tions in (A-i). Then system (11) admits a unique solution (ux, um), positive a.e., of class
H2(Ω)×H2(Ω).

Proof. We conclude from the first equation in (11) and its boundary condition that there
is a unique solution ux ∈ H2(Ω) [47, 52], positive a.e.. This implies that ησx,fux ∈ L∞(Ω).
We then conclude from the second equation that there is a unique solution um ∈ H2(Ω),
positive a.e. inside Ω.

Remark 2.2. The regularity of solutions of (11) implies that the data function H(x) defined
in (6) lies in L∞(Ω). For the theory in the rest of the paper to work, we can relax slightly
some of the assumptions we made on the coefficients. We will not worry about this technical
detail here.
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3 The inverse problem

We are now ready to formulate the inverse problem in fluorescence photoacoustic tomog-
raphy. That is, to reconstruct the set of parameters Dx, Dm, σx,i, σm,Ξ, η and σx,f in (11)
and (6) from measured acoustic data (for time that is long enough, say, tmax) collected from
different excitations, i.e. the map:

ΛDx,Dm,σx,i,σm,Ξ,η,σx,f : gx(x) 7→ p(x, t)|∂Ω×(0,tmax). (15)

This problem can be solved in two steps in sequence. In the first step, we reconstruct the
initial pressure field H(x) in (6) from acoustic pressure data p(x, t)|∂Ω×(0,tmax). This step has
been thoroughly studied in the past a few years; see for instance [2, 4, 8, 9, 23, 33, 36, 45,
59, 60, 61, 64, 65, 70, 74, 80, 96, 97, 105, 104, 107, 109, 125, 126, 127, 128, 129, 130, 131,
139, 141, 142, 143] and references therein. The second step, which we called quantitative
fPAT (QfPAT), is to reconstruct the coefficients Dx, Dm, σx,i, σm,Ξ, η and σx,f from interior
data H(x) that we obtained from the first step.

In this work, we assume that the fist step of fPAT has been done already so that we are
now given the interior data (6). We assume also that:

(A-ii) The coefficients (Dx, σx,i) are reconstructed at the excitation wavelength before the
markers are injected, with a quantitative PAT step as those in [6, 7, 13, 14, 15, 18, 19,
20, 34, 35, 38, 50, 51, 83, 90, 116, 117, 118, 121, 145, 147]. The coefficients (Dm, σm) are
reconstructed at the emission wavelength after the markers are injected (but before the
fluorophores are excited) with another quantitative PAT step. The Grüneisen coefficient Ξ
is known as well, for instance by a multi-spectral quantitative PAT step as in [16].

We observe that σx,f can not be known in advance because markers have to be injected
into the tissue before one can measure σx,f . Once markers are injected, any illumination
at the excitation wavelength would excite the markers and thus the light from emission
wavelength appears in the domain. Our main objective is thus to reconstruct the absorption
coefficient σx,f and the quantum efficiency η in the system (11) from the data H(x) in (6).

3.1 Reconstructing η

We now consider the problem of reconstructing the quantum efficiency η assuming that the
fluorophore absorption coefficient σx,f is known. We observe that this is a linear inverse
problem. Moreover, we have a unique and stable way to reconstruct the unknown as stated
below.

Proposition 3.1. Let H and H̃ be two data sets generated from (11) in the form of (6)
with coefficients (σx,f , η) and (σx,f , η̃) respectively. Then H = H̃ implies η = η̃. Moreover,

c1‖
H − H̃

Ξσm
‖H2(Ω) ≤ ‖(η − η̃)ux‖L2(Ω) ≤ c2‖

H − H̃
Ξσm

‖H2(Ω) (16)

with c1, c2 constants that depend on Ω, Dm, σm and σx,f .
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Proof. Let (ux, um) and (ũx, ũm) be the solution of (11). Then it is straightforward to
see from the first equation that ux = ũx. Together with H = H̃ this implies um = ũm.
The second equation then implies η = η̃. To derive the stability estimate, let us denote by
wx = ux − ũx and wm = um − ũm. It is straightforward to check that wx = 0 and wm solves
the following equation

−∇ ·Dm∇wm + σmwm = (η − η̃)σx,fux, in Ω, wm = 0, on ∂Ω. (17)

We also verify that
wm =

(
H − H̃

)
/(Ξσm). (18)

The equation on the left then follows directly from standard elliptic stability estimate of
equation (17) [47, 52], (18) and the fact that σx,f is bounded from above. From (17) and
the fact that σx,f is bounded from below, we conclude that

|(η − η̃)ux|2 ≤ c̃(|∇ ·Dm∇wm|2 + |σmwm|2) = c̃(|∇ ·Dm∇
σmwm
σm

|2 + |σmwm|2)

≤ ˜̃c(|Dm

σm
∆(σmwm)|2 + |

(
∇Dm

σm
+Dm∇

1

σm

)
· ∇(σmwm)|2 + (1 + |∇ ·Dm∇

1

σm
|2)|σmwm|2).

(19)

The stability result (16) then follows from (19), (18) and the regularity and boundedness
assumptions on the coefficients Dm and σm, Ξ given in (A-i).

This result shows that we can uniquely reconstruct η from one interior data H. In the
reconstruction process, however, we have to differentiate the data twice. We thus lose exactly
two derivatives. Note that the weight ux in the estimate does not depend on the unknown
to be reconstructed. The argument in the proof also provides an explicit reconstruction
algorithm for recovering η. The algorithm works as follows.

Algorithm I: To reconstructing η.

S1. Given σx, solve the first equation in the system (11) (with the boundary condition)
for ux;

S2. Subtract σxux from H/Ξ and divide the result by σm to obtain um;

S3. Reconstruct η as
(
−∇ ·Dm∇um + σmum

)
/
(
σx,fux

)
.

3.2 Reconstructing σx,f

We now study the problem of reconstructing σx,f assuming that η is known. This is a
nonlinear inverse problem.

Linearized case. We first consider a special linearized model that is often used in fluo-
rescence optical tomography, such as in [106]. In this model, it is assumed that σx,f � σxi
(which is indeed the case in practical applications). It is thus reasonable to assume that
the absorption coefficient σx in the first diffusion equation of (11) and in the data (6) is
known and equals σx,i. We are thus only required to reconstruct the coefficient σx,f in the
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source term in the second equation of (11) assuming η is also known. The inverse problem
in this case has exactly the same structure as the problem of reconstructing η as we just
studied. In fact, we can derive a stability estimate that is identical to (16) for σx,f and
using the same reconstruction algorithm for η to reconstruct σx,f . Note that in this model,
the coefficient η and σx,f only appear in the equation as the product ησx,f . It is thus not
possible to reconstruct separately the two coefficients, but only their product.

Nonlinear case. To study the nonlinear problem, we first re-write the PDE system slightly
using the data H. Precisely, we add −σxux−σmum to the left-hand-side of the first equation
and −H/Ξ to the right-hand-side of the first equation, and then add η(σxux + σmum) to
the left-hand-side of the second equation and ηH/Ξ to the right-hand-side of the second
equation. We obtain, after slight re-arrangement, the following system of equations:

−∇ ·Dx(x)∇ux(x)− σmum = −H/Ξ, in Ω
−∇ ·Dm(x)∇um(x) + (η + 1)σmum + ησx,iux(x) = ηH/Ξ, in Ω

ux(x) = gx, um(x) = 0, on ∂Ω
(20)

This is a system of elliptic PDEs with all coefficients known. We can write the system into
the form of (12) with

Aijxx = Dxδij, Aijmm = Dmδij, Aijxm = Aijmx = 0 (21)

(aαβ) =

(
0 −σm

ησx,i (η + 1)σm

)
, fα =

{
−H/Ξ, α = x
ηH/Ξ, α = m

, gα =

{
gx, α = x
0, α = m

.

(22)
We write the corresponding homogeneous boundary value problem as

−Di[AijαβDjuβ] + aαβuβ = 0, in Ω, uα = 0, on ∂Ω, α, β ∈ {x,m}. (23)

We then have the following result on the inverse problem.

Theorem 3.2. Let H and H̃ be two data sets generated from (11) in the form of (6) with
coefficients (σx,f , η) and (σ̃x,f ,η) respectively. Assume that the homogeneous problem (23)
admits 0 as its only solution. Then H = H̃ implies σx,f = σ̃x,f . Moreover,

‖(σx,f − σ̃x,f )ux‖L2(Ω) ≤ c‖H − H̃‖L2(Ω) (24)

with c a constant that depends on Ω, Dx, σx,i, Dm, σm, η and Ξ.

Proof. Let (ux, um) and (ũx, ũm) be the solution of the system (12) with H and H̃ respec-
tively. We verify that (ux − ũx, um − ũm) solves

−Di[AijαβDj(uβ − ũβ)] + aαβ(uβ − ũβ) = (fα− f̃α), in Ω, uα− ũα = 0, on ∂Ω. (25)

By the assumption, the homogeneous problem (23) has only trivial solution 0. Fredholm
alternative [81, 93] then ensures that there exists a unique solution to the boundary value
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problem (25). We observe that H = H̃ implies fα = f̃α (α = x,m). This then implies
(ux, um) = (ũx, ũm). Uniqueness of the inverse problem then follows from the fact that

(σx,f − σ̃x,f )ux = (H − H̃)/Ξ− σ̃x(ux − ũx)− σm(um − ũm). (26)

To derive the stability result, we observe that, with the assumptions on the regularity of the
coefficients in (A-i), the following stability estimate holds for the solution of (25) [81, 93]:

‖(ux, um)− (ũx, ũm)‖[L2(Ω)]2 ≤ c̃0‖H − H̃‖L2(Ω). (27)

where c̃ depends on Ω, Dx, σx,i, Dm, σm, η and Ξ. Meanwhile, identity (26) implies, using
the fact that σ̃x and other coefficients are bounded, that,

‖(σx,f − σ̃x,f )ux‖L2(Ω) ≤ c̃1‖H − H̃‖L2(Ω) + c̃2‖(ux, um)− (ũx, ũm)‖[L2(Ω)]2 , (28)

where ˜̃c1 depends on Ξ and ˜̃c2 depend on σx,i and σm. The stability result (24) then follows
from (27) and (28).

The above result provides a reconstruction algorithm for the inverse problem when the
system (20) admits a unique solution.

Algorithm II: To reconstructing σx,f .

S1. Given data H, solve (20) to recover (ux, um);

S2. Reconstruct σx,f as σx,f = (H/Ξ− σmum)/ux − σx,i.
The above uniqueness of the solution to the inverse problem holds when system (20)

is uniquely solvable, i.e., when the homogeneous problem (23) has only trivial solution 0.
Since the differential operator −Di[AijαβDj ·] + aαβ · (with Dirichlet boundary condition) is
strongly elliptic, one expect that its kernel is finite-dimensional. In other words, system (20)
is indeed uniquely solvable most of the times. We now show two cases where we know for
sure that (23) has only trivial solution 0.

Proposition 3.3. The homogeneous elliptic system (23) admits only trivial solution 0 if
one of the following statement is true:
(i) ησx,i − σm = 0;
(ii) (σm, Dm) = κ(σx,i, Dx), κ 6= 0 being a positive constant.

Proof. When (i) holds, aαβ is positive-semidefinite (in the sense that (
aαβ+aβα

2
) is positive

semidefinite). The result then follows from Lax-Milgram theory [28, 52, 93]. When (ii)
holds, we add the two equations in the system together to obtain

−∇ ·Dx∇(ux + κum) + ησx,i(ux + κum) = 0, in Ω, ux + κum = 0, on ∂Ω. (29)

The assumption on the coefficients in (A-i) then implies that ux + κum = 0, and thus
um = −ux/κ. Using this relation in the first equation leads to

−∇ ·Dx∇ux +
σm
κ
ux = 0, in Ω, ux = 0, on ∂Ω. (30)

This in turn proves that ux = 0. Thus um = ux = 0.

Remark 3.4. In most of the engineering literature, it is assumed that case (ii) is true with
κ = 1. In fact, it is more realistic to assume that κ depends on the wavelengths λx and
λm [26, 30, 32, 34, 37, 69, 83, 110, 113, 121, 124, 134, 144, 146]. The result holds as long as
κ does not depend on the spatial variable x.
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3.3 Reconstructing η and σx,f

We now consider the reconstruction of the two parameters η and σx,f simultaneously. We
first observe that even though the inverse problem is linear with respect to η for a fixed σx,f ,
it is nonlinear when both coefficients are to be sought due to the existence of the product
term ησx,f in the elliptic system (11). In practical applications, it is generally assumed that
the parameter σx,f is significantly smaller than σx,i, σx,f � σx,i. It is thus often enough to
consider the inverse problem partially linearized at (η, 0). We observe that we can indeed
linearize the inverse problem at any background.

Lemma 3.5. The data H defined in (6), viewed as the map

H[η, σx,f ] :
(η, σx,f ) 7→ Ξ

(
σxux + σmum

)
L∞(Ω)× L∞(Ω) 7→ L∞(Ω)

(31)

is Fréchet differentiable at any (η, σx,f ) ∈ L∞(Ω)× L∞(Ω) that satisfies the assumptions in
(A-i). The derivative at (η, σx,f ) is given by(

d1H[η, σx,f ](δη)
d2H[η, σx,f ](δσx,f )

)
= Ξ

(
σmwm

δσx,fux + σxvx + σmvm

)
(32)

for (δη, δσx,f ) ∈ L∞(Ω)× L∞(Ω), (vx, vm) the unique solution of

−∇ ·Dx(x)∇vx(x) + σxvx(x) = −δσx,fux, in Ω
−∇ ·Dm(x)∇vm(x) + σmvm(x) = ησx,fvx + ηδσx,fux, in Ω

vx(x) = 0, vm(x) = 0, on ∂Ω
(33)

and wm the unique solution of

−∇ ·Dm(x)∇wm(x) + σmwm(x) = δησx,fux, in Ω, wm = 0, on ∂Ω. (34)

Proof. By the chain rule and the product rule, it is clear from (6) that we only need to show
that (ux, um) is Fréchet differentiable with respect to each coefficient. We prove here the
result with respect to σx,f . Let us denote by (u′x, u

′
m) the solution of (11) with coefficients

σx,f + δσx,f , δσx,f ∈ L∞(Ω) with small norm ‖δσx,f‖L∞(Ω) � 1, and (ũx, ũm)=(u′x − ux,

u′m − um), (˜̃ux, ˜̃um)=(u′x − ux − vx, u′m − um − vm). It is then straightforward to verify that
(ũx, ũm) solves

−∇ ·Dx(x)∇ũx(x) + (σx + δσx,f )ũx(x) = −δσx,fux, in Ω
−∇ ·Dm(x)∇ũm(x) + σmũm(x) = η(σx,f + δσx,f )ũx + ηδσx,fux, in Ω

ũx(x) = 0, ũm(x) = 0, on ∂Ω.
(35)

and (˜̃ux, ˜̃um) solves

−∇ ·Dx(x)∇˜̃ux(x) + σx ˜̃ux(x) = −δσx,f ũx, in Ω

−∇ ·Dm(x)∇˜̃um(x) + σm ˜̃um(x) = η(σx,f + δσx,f )˜̃ux + ηδσx,fvx, in Ω
˜̃ux(x) = 0, ˜̃um(x) = 0, on ∂Ω.

(36)
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We observe, following the same argument in the proof of Lemma 2.1 that (36) admits a
unique solution. Moreover, standard stability results in [47, 52, 81, 93] imply that

‖(˜̃ux, ˜̃um)‖[Hk(Ω)]2 ≤ c̃‖δσx,f‖L∞(Ω)‖(ũx, vx)‖[L2(Ω)]2 , k = 0, 1, 2. (37)

Also, we observe from the first equation in (33) and the first equation in (35) that

‖(ũx, vx)‖[L2(Ω)]2 ≤ ˜̃c‖δσx,f‖L∞(Ω)‖ux‖L2(Ω). (38)

We then deduce that

‖(˜̃ux, ˜̃um)‖[Hk(Ω)]2 ≤ c‖δσx,f‖2
L∞(Ω)‖ux‖L2(Ω), , k = 0, 1, 2 (39)

which then leads to, for k = 0, 1, 2

lim
‖δσx,f‖L∞(Ω)→0

‖(˜̃ux, ˜̃um)‖[Hk(Ω)]2

‖δσx,f‖L∞(Ω)

≡ lim
‖δσx,f‖L∞(Ω)→0

‖(u′x − ux − vx, u′m − um − vm)‖[Hk(Ω)]2

‖δσx,f‖L∞(Ω)

= 0.

(40)
Standard elliptic theory on maximum principles allows us to replace the Hk norms and
the L2(Ω) norms in (37)- (40) with the L∞(Ω) norm. This shows that (ux, um) is Fréchet
differentiable with respect to σx,f as a map: L∞(Ω)×L∞(Ω) 7→ Hk(Ω)×Hk(Ω) (k = 0, 1, 2)
(which we will need in Section 4) and as a map: L∞(Ω)× L∞(Ω) 7→ L∞(Ω)× L∞(Ω). This
completes the proof.

To reconstruct both δη and δσx,f , a simple dimension counting implies that we have to
have at least two data sets. We denote by (ux|j, um|j) (1 ≤ j ≤ J , J being the total number
of data sets available) the solution to the background problem with coefficient σx,f , under
excitation gx|j. Then equations for the perturbed quantities take the forms of (33) and (34):

−∇ ·Dx(x)∇vx|j(x) + σxvx|j(x) = −δσx,fux|j, in Ω
−∇ ·Dm(x)∇vm|j(x) + σmvm|j(x) = ησx,fvx|j + ηδσx,fux|j, in Ω
−∇ ·Dm(x)∇wm|j(x) + σmwm|j(x) = δησx,fux|j, in Ω
vx|j(x) = 0, vm|j(x) = 0, wm|j = 0, on ∂Ω.

(41)

The perturbed data sets are given as

1

Ξ
dHj[η, σx,f ](δη, δσx,f ) = σmwm|j + δσx,fux|j + σxvx|j + σmvm|j, 1 ≤ j ≤ J. (42)

The equations in (41), together with those in (42), form a system of linear equations for
(vx|j, vm|j, wm|j) (1 ≤ j ≤ J), δη, and δσx,f . We now analyze the problem in some simplified
settings.

Linearization around (0, 0). Let us first consider the simplified situation where the
background coefficients (η, σx,f ) = (0, 0) and we have one data set. In this setting, the
perturbed data (42) simplified to

1

Ξ
dH[0, 0](δη, δσx,f ) = δσx,fux + σx,ivx (43)

11



and the equations for the perturbation (41) simplified to

−∇ ·Dx(x)∇vx(x) + σx,ivx(x) = −δσx,fux, in Ω, vx = 0, on ∂Ω. (44)

We observe immediately that δη completely disappears from (43) and (44). This means that
we would not be able to reconstruct δη in this setting, no matter how many data sets we
have. However, we can uniquely and stably reconstruct δσx,f with only one data set (J = 1)
as stated in the following result.

Proposition 3.6. Let dH[0, 0] and dH̃[0, 0] be two perturbed data sets in the form of (43),

generated with perturbed coefficients (δη, δσx,f) and (δ̃η, δ̃σx,f) respectively. Then dH[0, 0] =

dH̃[0, 0] implies δσx,f = δ̃σx,f . In addition, we have

‖(δσx,f − δ̃σx,f )ux‖L2(Ω) ≤ c‖dH[0, 0]− dH̃[0, 0]‖L2(Ω) (45)

with c a constant that depends on Ω, Dx, σx,i and Ξ.

Proof. We combine (43) and (44) to obtain

−∇ ·Dx(x)∇vx(x) = −dH[0, 0]/Ξ, in Ω, vx = 0, on ∂Ω. (46)

This equation admits a unique solution vx ∈ H2(Ω). The unknown δσx,f can then be
uniquely reconstructed by inserting vx in the data (43). The data (43) also leads to

‖(δσx,f − δ̃σx,f )ux‖L2(Ω) ≤ c̃1

(
‖dH[0, 0]− dH̃[0, 0]‖L2(Ω) + ‖vx − ṽx‖L2(Ω)

)
, (47)

with c̃1 depending on σx,i and Ξ. The stability result (45) then follows from (47) and the
following stability estimate for the PDE (46)

‖vx − ṽx‖L2(Ω) ≤ c̃2‖dH[0, 0]− dH̃[0, 0]‖L2(Ω), (48)

where c̃2 depends on Ω, Dx and Ξ.

The above result provides the following reconstruction algorithm for recovering δσx,f
around the background (η, σx,f ) = (0, 0).

Algorithm III (A): To reconstructing δσx,f .

S1. Given data dH[0, 0], solve (46) to recover vx;

S2. Reconstruct δσx,f as δσx,f = (dH[0, 0]/Ξ− σx,ivx)/ux.

Linearization around (η 6≡ 0, 0). We now consider a simplified situation where the
background coefficients η 6≡ 0, σx,f = 0. We observe again that δη disappears from the
data (42) and the equations for the perturbations (41). Thus it is not possible to reconstruct
the two perturbed coefficients simultaneously. However, the background coefficient η and the
perturbation δσx,f both appear. We now attempt to reconstruct both of them simultaneously
using two data sets.

12



We denote by GD,σ the Green function for the operator −∇·D∇+σ with homogeneous
Dirichlet boundary condition. Then we can express the perturbed internal data dHj as

1

Ξ
dHj[η, 0](δη, δσx,f ) = σmKm|j(ϑ) + ux|jδσx,f − σx,iKx|j(δσx,f ), 1 ≤ j ≤ 2. (49)

where ϑ = ηδσx,f , and the operators Km|j and Kx|j are respectively defined as,

Km|j(ϑ) =

∫
Ω

GDm,σm(y; x)ux|j(y)ϑ(y)dy, (50)

Kx|j(δσx,f ) =

∫
Ω

GDx,σx,i(y; x)ux|j(y)δσx,f (y)dy. (51)

Note that, as in the previous case, δη completely disappear from (43) and (44). This means
that we would not be able to reconstruct δη in this setting, no matter how many data sets
we have.

Since the background solutions ux|j (1 ≤ j ≤ 2) are bounded, classical elliptic theory [47,
52, 81] then implies thatKx|j andKm|j are compact linear (and thus bounded) operators from
L2(Ω) to H2

0(Ω) with the assumptions on the coefficients in (A-i). Thanks to the compact

emeddie bauerbedding of H2
0(Ω) in L2(Ω) [1, 148], the map

1

Ξ
dHj[η, 0] : L2(Ω) × L2(Ω) 7→

L2(Ω) is compact. Let us define the matrix operator K : L2(Ω)× L2(Ω) 7→ L2(Ω)× L2(Ω)

K =

(
σmKm|1 ux|1I − σx,iKx|1
σmKm|2 ux|2I − σx,iKx|2

)
(52)

and denote by N (K) the null space of K, then the following results follows immediately
from (49).

Theorem 3.7. Let dH = (dH1[η, 0], dH2[η, 0]) and dH̃ = (dH̃1[η, 0], dH̃2[η, 0]) be two per-

turbed data sets generated with perturbed coefficients (ϑ, δσx,f) and (ϑ̃, δ̃σx,f) respectively.
Then we have

c1‖dH− dH̃‖(L2(Ω))2 ≤ ‖(ϑ, δσx,f )− (ϑ̃, δ̃σx,f )‖(L2(Ω))2/N (K) ≤ c2‖dH− dH̃‖(L2(Ω))2 . (53)

Remark 3.8. We notice that as long as we can choose excitations gx|j such that ux|j ≥ c0 > 0
inside Ω for some c0, the operators ux|jI −σx,iKx|j will be invertible, and σmKm|j are always
invertible. To make K invertible, in which case N (K) = {(0, 0)} and we have uniqueness of
reconstructing (ϑ, δσx,f ) (and thus (η, δσx,f )), we have to be able to select two excitations gx|1
and gx|2 such that the operator K−1

m|1(
ux|1
σm
− σx,i

σm
Kx|1)−K−1

m|2(
ux|2
σm
− σx,i

σm
Kx|1) (or equivalently

(ux|1−σx,iKx|1)−1Km|1−(ux|2−σx,iKx|2)−1Km|2) is invertible. We do not have a more explicit
characterization of this injectivity condition at the moment. Note that the result we have
here is based on the availability of two data sets dH1[η, 0] and dH2[η, 0]. When we have
access to more data sets, it might be possible to establish the injectivity of the map (42)
following, for instance, the techniques in [12, 76]. We leave this issue to future studies.

Remark 3.9. It turns out that the problem linearized around (0, σx,f 6≡ 0) has exactly the
same structure as the case we just analyzed if we define the variable ϑ as ϑ = σx,fδη.
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Linearization around a general background. We now consider the linearization around
arbitrary background coefficients (η 6≡ 0, σx,f 6≡ 0) with overdetermined data sets (J > 2).
Let us introduce two more linear integral operators

Kη
m|j(δσx,f ) =

∫
Ω

η(y)GDm,σm(y; x)ux|j(y)δσx,f (y)dy, (54)

Kmx|j(δσx,f ) =

∫
Ω

η(y)σx,f (y)GDm,σm(y; x)Kx|j(δσx,f )(y)dy. (55)

Both Kη
m|j and Kmx|j are compact linear (and thus bounded) operators from L2(Ω) to H2

0(Ω)

with the assumptions on the coefficients in (A-i). We can now express the perturbed per-
turbed data dHj[η, σx,f ] as, 1 ≤ j ≤ J ,

1

Ξ
dHj[η, σx,f ](δη, δσx,f ) =

σmKm|j(ϑ) + ux|jδσx,f − σxKx|j(δσx,f ) + σmK
η
m|j(δσx,f )− σmKmx|j(δσx,f ) (56)

where ϑ = σx,fδη.
We solve this overdetermined system of equations in the regularized (linear) least-square

sense. That is, we look for a pair (ϑ, δσx,f ) that minimizes

J∑
j=1

‖dHj[η, σx,f ]

Ξ
− K̄m|j(ϑ)− K̄x|j(δσx,f )‖2

L2(Ω) + β(‖∇ϑ‖2
[L2(Ω)]d + ‖∇δσx,f‖2

[L2(Ω)]d) (57)

where short notations K̄m|j = σmKm|j and K̄x|j = ux|jI − σxKx|j + σmK
η
m|j − σmKmx|j are

employed, and the regularization term, with strength parameter β, is used to deal with noise
in the data. Classical least-square theory then gives the solution as

(
ϑ

δσx,f

)
=


J∑
j=1

K̄∗m|jK̄m|j + βL
J∑
j=1

K̄∗m|jK̄x|j

J∑
j=1

K̄∗x|jK̄m|j

J∑
j=1

K̄∗x|jK̄x|j + βL


−1

J∑
j=1

K̄∗m|j
dHj

Ξ

J∑
j=1

K̄∗x|j
dHj

Ξ

 (58)

where the operator A∗ is the adjoint of A, and the operator L is defined as L(φ) = −∆φ+
(n ·∇φ)|∂Ω. The following algorithm can be implemented to reconstruct the pair (δη, δσx,f ).

Algorithms III (B): To reconstruct (δη, δσx,f).

S1. Find minimizer of (57) by using a minimization algorithm or formula (58);

S2. Reconstruct δη = ϑ/σx,f .

Remark 3.10. Note that here it is assumed that the inverse of the (regularized) normal
operator in (58) is well-defined. This is clearly not guaranteed with the form of regularization
taken here. Numerically we observe that this always the case when excitations gx|j, 1 ≤ j ≤ J
are chosen sufficiently different. In fact, with data collected from 4 or more excitations, we
never observe the failure of the invertibility, even in the case β = 0. The theoretical analysis
of the issue following the techniques in [12, 76] is undergoing.
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4 Reconstruction algorithm

We now present a numerical procedure to reconstruct (η, σx,f ) by solving the full nonlinear
inverse problem. The procedure is based on Newton’s method for nonlinear least-square
problems. We intend to minimize

F [η, σx,f ] =
1

2

J∑
j=1

‖Hj[η, σx,f ]−H∗j ‖2
L2(Ω) +

β

2
(‖∇η‖2

[L2(Ω)]d + ‖∇σx,f‖2
[L2(Ω)]d) (59)

where Hj[η, σx,f ] is the functional defined in (6) for gx|j while H∗j is the corresponding interior
data obtained from acoustic inversion.

We solve the minimization problem with the Newton’s method which minimizes the
functional (59) through an iterative process. Suppose we know the parameters at iteration
` ≥ 0, (η`, σ`x,f ), Newton’s method update the parameters by

(η`+1, σ`+1
x,f ) = (η`, σ`x,f ) + α`(δη`, δσ`x,f ) (60)

where (δη`, δσ`x,f ) is the direction of the update, and α` is the step length in that direction.
The direction of the update is obtained by solving the following system, often known as the
Karush-Kuhn-Tucker (KKT) condition [99]:

d1(d1F [η`, σ`x,f ](η̂))(δη`) + d2(d1F [η`, σ`x,f ](η̂))(δσ`x,f ) = −d1F [η`, σ`x,f ](η̂)
d1(d2F [η`, σ`x,f ](σ̂x,f ))(δη

`) + d2(d2F [η`, σ`x,f ](σ̂x,f ))(δσ
`
x,f ) = −d2F [η`, σ`x,f ](σ̂x,f )

(61)

with (η̂, σ̂x,f ) a pair of test functions. Using the same argument as in Lemma 3.5, it can
be shown that the map H : (η, σx,f ) 7→ H = Ξ(σux + σmum) has second order Fréchet
derivatives, which then, together with the chain rule, implies that F has the second order
Fréchet derivatives needed in (61). These derivatives are presented in the Appendix without
giving detailed calculations. In the numerical implementation, we calculate the derivatives
directly from the discretized version of the objective functional and the systems of PDEs
involved.

The step length α` is obtained through a simple bisection line search process that ensure
the Wolfe conditions [99, 115]. That is, we look for an α` that solves:

min
α`>0
F [η` + α`δη`, σ`x,f + α`δσ`x,f ], (62)

and satisfies:

F [η`+1, σ`+1
x,f ] ≤ F [η`, σ`x,f ] + c1α

`
[
d1F [η`, σ`x,f ](δη

`) + d2F [η`, σ`x,f ](δσ
`
x,f )
]

d1F [η`+1, σ`+1
x,f ](δη`) + d2F [η`+1, σ`+1

x,f ](δσ`x,f ) ≥ c2

[
d1F [η`, σ`x,f ](δη

`) + d2F [η`, σ`x,f ](δσ
`
x,f )
]

with the constants c1 = 10−4 and c2 = 0.1.
We now have the following Newton’s method.

Algorithms IV: To reconstruct (η, σx,f).

S1. Set ` = 0 and the initial guess (η0, σ0
x,f );
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S2. Solve sequentially the equations (11), (65) and (66) for 1 ≤ j ≤ J , and form the
first-order derivatives (67) and (68);

S3. Solve the equations (69), (70), (71), (73), (75) and (77) for 1 ≤ j ≤ J , and form the
second-order derivatives (72), (74), (76) and (78).

S4. Solve the system (61) for (δη`, δσ`x,f ), and form ;

S5. Perform the line search to determine α`;

S6. Update the coefficients according to (60);

S7. If stopping criteria satisfied, stop; otherwise, set ` = `+ 1 and go to S2.

5 Numerical experiments

We now present some numerical simulations based on synthetic data to validate the results
we obtained in the previous section. For the simplicity of simulations, we restrict ourselves to
two-dimensional settings even though the theoretical results are independent of dimension.
All the PDEs involved are discretized with a first-order finite element method on triangular
meshes. The domain of the reconstruction is the square Ω = (0, 1)× (0, 1). The background
coefficients are taken as

Dx(x) = Dm(x) = 0.03+0.01 sin(πy), σx,i(x) = σm(x) = 0.3+0.1 sin(πx) sin(πy). (63)

To check the impact of the background coefficients on the reconstructions, we performed the
same type of reconstructions on different backgrounds. We did not observe any substantial
difference between reconstructions at different backgrounds. Thus in the rest of the section
we only present results that are obtained with the background coefficients given in (63).

The synthetic data are generated by solving the diffusion problem (11) for known quan-
tum efficiency η and absorption coefficient σx,f . To reduce the degree of “inverse crimes” [68],
we use two different sets of finite element meshes when generating the synthetic data and
when performing the numerical reconstructions. In general, the meshes for generating data
are roughly twice as fine as the meshes used in the inversion, in terms of the numbers of
nodes in the meshes. The results we show below are interpolated on uniform grids using
the MATLAB interpolation function griddata. We performed reconstructions using both
noiseless and noisy synthetic data. For the noisy data, we added additive random noise
to the data by simply multiplying each datum by (1 + γ × 10−2 random) with random a
uniformly distributed random variable taking values in [−1, 1], γ being the noise level in
percentage. In each case below, we perform reconstructions using three types of data:

• Type (i): noiseless data (γ = 0);

• Type (ii): data containing 2% random noise (γ = 2);

• Type (iii): data containing 8% random noise (γ = 8).

We emphasize that data in (i) still contain noise that come from interpolating from the
forward meshes to the inversion meshes. We use the relative L2 error to measure the quality
of the reconstructions. This error is defined as the L2 norm of the difference between
the reconstructed coefficient and the true coefficient, divided by the L2 norm of the true
coefficient and then multiplied by 100.
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Figure 1: Reconstructions of a smooth (top row) and a piecewise constant (bottom row)
quantum efficiency. Shown from left to right are: true η, reconstructions with data (i),
reconstructions with data (ii), and reconstructions with data (iii).

Experiment 1. In the first set of numerical experiments, we study the reconstruction of
the quantum efficiency η assuming that σx,f is known. The reconstructions are done with
Algorithm I. We show in the top row of Fig. 1 the reconstructions of a smooth η. Shown, from
left to right, are true η, reconstruction with noiseless data (i), reconstruction with noisy data
(ii), and reconstruction with noisy data (iii). The relative L2 error in the reconstructions are
0.84%, 1.82%, and 6.23% for reconstructions with data types (i), ii) and (iii) respectively.
On the bottom row of Fig. 1, we show the same reconstructions for a piecewise constant
η. The quality of the reconstructions is similar to that in the smooth coefficient case. The
relative L2 error are 1.11%, 1.98%, 6.87%, respectively. In all those reconstructions, we have
preprocessed the data by a 5-point averaging filtering process. Otherwise, the noise in the
data are amplified too much by the differentiation operation in the reconstruction algorithm.
We did not try more advanced de-noising techniques, but that is an important aspect that
deserves further investigation.

Experiment 2. In the second set of numerical experiments, we consider the reconstruction
of the fluorescence absorption coefficient σx,f assuming that η is known. We show in Fig. 2
the reconstructions of two different σx,f . The reconstructions are done with Algorithm II.
Shown, from left to right, are the true η and reconstructions with data of type (i), (ii) and (iii)
respectively. The relative L2 error for reconstructions in the top row are 0.74%, 1.68%, and
5.46% respectively, and those for the reconstructions in the bottom row are 0.82%, 1.57%,
and 5.24% respectively. Even though this inverse problem is nonlinear, each reconstruction
costs only one forward solution of the elliptic system (20). Thus the reconstructions are very
fast. Note that, unlike in Experiment 1, no pre-smoothing of the data is needed in this case.
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Figure 2: Reconstruction of two different fluorescence absorption coefficients. Shown from
left to right are the true σx,f , and the reconstructions with data (i), (ii) and (iii) respectively.

Experiment 3. We now attempt to reconstruct the two coefficients η and σx,f simul-
taneously. We first consider reconstructions in the linearized setting using Algorithm III.
The background coefficients are (η0, σ0

x,f ) = (0.1, 0.0). In Fig. 3 we show reconstructions of
perturbed coefficients that are very large. In this specific setting, we completely neglect the
error in the data that are caused by linearization. This is done by generating the perturbed
data using directly the linearized model (42), not the nonlinear model (6). Our aim here
is to test the stability of the reconstruction, not the accuracy of the linearization. The
reconstructions are done with two data sets that are constructed from excitations

gx|1(x) =

{
1, x ∈ ∂ΩL ∪ ∂ΩB

2, x ∈ ∂ΩR ∪ ∂ΩT
and gx|2(x) =


1, x ∈ ∂ΩR

2, x ∈ ∂ΩT

4, x ∈ ∂ΩL ∪ ∂ΩB

(64)

where ∂ΩL, ∂ΩB, ∂ΩR, and ∂ΩT are the left, bottom, right, and top sides of the boundary
respectively. The relative L2 error in the three reconstructions are (1.34%, 1.47%), (1.66%,
1.82), and (7.12%, 6.77%) respectively.

Experiment 4. In the last set of numerical experiments, we show reconstructions of the
two coefficients using nonlinear minimization algorithm described in Algorithm IV. In Fig. 4
we show results reconstructed using data with different noise-levels using four data sets. We
observe that the algorithm converges from almost all initial guesses we tested, many very
far from the true coefficients. In the results shown in Fig. 4, the regularization parameter
is taken as β = 10−7, 10−5, 10−4 respectively in the three reconstructions. These values are
obtained by a few trials. Larger β results in smoother reconstructions. However, we did not
tune this parameter systematically to obtain the best results. The relative L2 error in the
three reconstructions are (1.41%, 1.22%), (1.86%, 1.79), and (8.01%, 6.94%) respectively.
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Figure 3: Reconstruction of η (top, superposed on η0) and δσx,f (bottom, superposed on
σ0
x,f ). Shown from left to right are the true coefficient, and the reconstructions with data

type (i), (ii) and (iii) respectively. Synthetic data used in these reconstructions are generated
from the linearized model (42).

Figure 4: Simultaneous reconstruction of η (top) and σx,f (bottom) with the Newton’s
method implemented in Algorithm IV. Shown from left to right are the true coefficient, the
reconstructions with data of type (i), (ii) and (iii) respectively.

6 Concluding remarks

We proposed in this work a hybrid imaging modality, fluorescence photoacoustic tomography
(fPAT), that combines classical ultrasound imaging with fluorescence optical tomography to
improve the resolution of the classical fluorescence optical tomography. We presented a set
of mathematical models for this hybrid imaging modality which can be viewed as a variant
of the usual photoacoustic tomography (PAT) modality.

We studied some inverse problems in the second step of fPAT. We showed that one
can uniquely and stably reconstruct either the quantum efficiency η or the fluorescence
absorption coefficient σx,f with one interior data obtained from acoustic inversion in the first
step of fPAT. In the linearized setting, we showed that one can reconstruct simultaneously
the coefficient σx,f and the coefficient η when two “well-selected” data sets are available.
Numerical simulations with synthetic data confirm these theoretical results.
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There are still many open questions to be addressed. For instance, in the linearized prob-
lem of reconstructing (δη,δσx,f ), we have to assume that there are two excitation patterns
that can generate ux|1 and ux|2 such that the operator K−1

m|1(
ux|1
σm
− σx,i

σm
Kx|1) − K−1

m|2(
ux|2
σm
−

σx,i
σm
Kx|1) mentioned in Theorem 3.7 is invertible. This will guarantee the injectivity of the

map (42). It might be possible to establish prove rigorously the injectivity (42) with redun-
dant data (i.e. J > 2 large) following the ellipticity theory presented in [12, 76] and using
the techniques of complex geometric optics solutions to construct the corresponding illumi-
nation patterns as in [17, 18]. Meanwhile, redundant data might also be used to improve the
stability result in Proposition 3.1 so that differentiation of data can be (partially) avoided in
the inversion process. On the nonlinear inverse problem of simultaneous reconstruction of η
and σx,f , even though the numerical simulations in Section 5 suggest that we can perform
stable reconstructions, we do not have a mathematical theory for this case yet. We plan to
investigate on these issues in a future work.
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Appendix: Fréchet Derivatives of F [η, σx,f ]

We collect here the results on the computation of first- and second-order Fréchet derivatives
of the objective functional (59) without going through detailed calculations.

To compute the first-order derivatives, let us introduce the adjoint variables (vx|j, vm|j)
that solve the following system of equation:

−∇ ·Dx∇vx|j + σxvx|j = ησx,fvm|j + (Hj −H∗j )Ξσx, in Ω
−∇ ·Dm∇vm|j + σmvm|j = (Hj −H∗j )Ξσm, in Ω

vx|j = 0, vm|j = 0, on ∂Ω
(65)

and the adjoint variable wm|j that solves the following equation:

−∇ ·Dm∇wm|j + σmwm|j = (Hj −H∗j )Ξσm, in Ω, wm|j = 0, on ∂Ω. (66)

We then compute the first-order derivative d1F [η, σx,f ](η̂) as:

d1F [η, σx,f ](η̂) = 〈
J∑
j=1

σx,fux|jwm|j − β∆η, η̂〉L2(Ω) + β〈n · ∇η, η̂〉L2(∂Ω), (67)

and the first-order derivative d2F [η, σx,f ](σ̂x,f ) as:

d2F [η, σx,f ](σ̂x,f ) = 〈
J∑
j=1

ux|j
(
ηvm|j − vx|j + (Hj −H∗j )Ξ

)
− β∆σx,f , σ̂x,f〉L2(Ω)

+ β〈n · ∇σx,f , σ̂x,f〉L2(∂Ω). (68)
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Let us further introduce the variables (v̄x,j, v̄m|j) as the solution to the system:

−∇ ·Dx∇v̄x|j + σxv̄x|j = −σ̃x,fux|j, in Ω
−∇ ·Dm∇v̄m|j + σmv̄m|j = ησx,f v̄x|j + σ̃x,fηux|j, in Ω

v̄x|j = 0, v̄m|j = 0, on ∂Ω
(69)

and the variable w̄m|j as the solution to the equation:

−∇ ·Dm∇w̄m|j + σmw̄m|j = η̃σx,fux|j, in Ω, w̄m|j = 0, on ∂Ω. (70)

To compute d1(d1F [η, σx,f ](η̂))(η̃), we define φm|j as the solution of the adjoint equation:

−∇ ·Dm∇φm|j + σmφm|j = (Ξσm)2w̄m|j, in Ω, φm|j = 0, on ∂Ω (71)

We can then compute the derivative as

d1(d1F [η, σx,f ](η̂))(η̃) = 〈
J∑
j=1

σx,fux|jφm|j − β∆η̃, η̂〉L2(Ω) + 〈n · ∇η̃, η̂〉L2(∂Ω). (72)

To compute d2(d1F [η, σx,f ](η̂))(σ̃x,f ), we introduce ϕx|j as the solution to the adjoint
equation:

−∇ ·Dm∇ϕm|j + σmϕm|j = XjΞσm, in Ω, ϕm|j = 0, on ∂Ω (73)

where Xj = Ξ(σ̃x,fux|j + σxv̄x|j + σmv̄m|j). We can then show that

d2(d1F [η, σx,f ](η̂))(σ̃x,f ) = 〈
J∑
j=1

σx,f v̄x|jwm|j + σ̃x,fux|jwm|j + σx,fux|jϕm|j, η̂〉L2(Ω). (74)

To compute d1(d2F [η, σx,f ](σ̂x,f ))(η̃), we introduce the variables (ϕ̄x|j, ϕ̄m|j) as the solu-
tion of system:

−∇ ·Dx∇ϕ̄x|j + σxϕ̄x|j = ησx,f ϕ̄m|j + η̃σx,fwm|j + Ξσmw̄m|jΞσx, in Ω
−∇ ·Dm∇ϕ̄m|j + σmϕ̄m|j = (Ξσm)2w̄m|j, in Ω

ϕ̄x|j = 0, ϕ̄m|j = 0, on ∂Ω
(75)

We then verify that

d1(d2F [η, σx,f ](σ̂x,f ))(η̃) = 〈
J∑
j=1

ux|j
[
η̃wm|j + Ξσmw̄m|jΞ− ϕ̄x|j + ηϕ̄m|j

]
, σ̂x,f〉L2(Ω). (76)

To compute d2(d2F [η, σx,f ](σ̂x,f ))(σ̃x,f ), we introduce (φ̄x|j, φ̄m|j) as the solution to the
system:

−∇ ·Dx∇φ̄x|j + σxφ̄x|j = ησx,f φ̄m|j + Yj +XjΞσx, in Ω
−∇ ·Dm∇φ̄m|j + σmφ̄m|j = XjΞσm, in Ω

φ̄x|j = 0, φ̄m|j = 0, on ∂Ω
(77)

where Yj = σ̃x,f
(
(Hj −H∗j )Ξ− vx|j + ηvm|j

)
. We can then compute the derivative as

d2(d2F [η, σx,f ](σ̂x,f ))(σ̃x,f ) = −β〈∆σ̃x,f , σ̂x,f〉L2(Ω) + β〈n · ∇σ̃x,f , σ̂x,f〉L2(∂Ω)+

〈
J∑
j=1

(Hj −H∗j )Ξv̄x|j − v̄x|jvx|j + ηv̄x|jvm|j +XjΞux|j +
(
ηφ̄m|j − φ̄x|j

)
ux|j, σ̂x,f〉L2(Ω). (78)
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