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Abstract

Fluorescence photoacoustic tomography (fPAT) is a molecular imaging modality
that combines photoacoustic tomography (PAT) with fluorescence imaging to obtain
high-resolution imaging of fluorescence distributions inside heterogeneous media. The
objective of this work is to study inverse problems in the quantitative step of fPAT
where we intend to reconstruct physical coefficients in a coupled system of radiative
transport equations using internal data recovered from ultrasound measurements. We
derive uniqueness and stability results on the inverse problems and develop some effi-
cient algorithms for image reconstructions. Numerical simulations based on synthetic
data are presented to validate the theoretical analysis. The results we present here
complement these in [57] on the same problem but in the diffusive regime.

Key words. Photoacoustic tomography (PAT), molecular imaging, fluorescence optical tomog-
raphy, fluorescence PAT (fPAT), radiative transport equation, hybrid inverse problems, numerical
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1 Introduction

Photoacoustic tomography (PAT) [10, 15, 20, 39, 41, 43, 47, 59, 66, 67, 68] is a recent hybrid
imaging modality that attempts to reconstruct high-resolution images of optical properties of
heterogeneous media. In a PAT experiment, we send a short pulse of near-infra-red (NIR)
photons into an optically heterogeneous medium. The photons travel inside the medium
following a radiative transport process. The medium absorbs a portion of the photons
during their propagation process. The absorbed photons lead to the heating of the medium
which then results in a local temperature rise. The medium expanses due to the temperature
rise and then contracts when the rest of the photons leave the medium and the temperature
drops accordingly. The expansion and contraction of the medium induces pressure changes
which then propagate in the form of ultrasound waves. We then measure the ultrasound
signals on the surface of the medium and from these measurements we intend to infer as
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much knowledge as possible on the optical properties, for instance the optical absorption
and scattering coefficients, of the medium.

In recent years, there are great interests in developing PAT for biomedical molecular
imaging [16, 51, 52, 65, 69, 68, 72]. The main objective here is to visualize particular cellular
functions and molecular processes inside biological tissues by using target-specific exogenous
contrasts. To be specific, we consider in this work quantitative PAT for fluorescence opti-
cal imaging where one aims to image distribution of fluorescent biochemical markers inside
heterogeneous media. In a typical imaging process, we first inject fluorescent markers into
the medium to be probed. The markers will travel inside the medium and accumulate on
their targets, for instance cancerous tissues inside the normal tissue. We then send a short
pulse of NIR photons at wavelength λx to the medium to excite the fluorescent markers who
then emit NIR photons at a different wavelength λm. The absorption of both the excita-
tion and the emission photons by the medium will then generate ultrasound waves inside
the medium following the photoacoustic effect just as in a regular PAT process, assuming
that fluorescence takes place instantaneously as excitation light pulse is absorbed [57]. We
then measure the ultrasound signals on the surface of the medium and attempt to recover
information associated with the biochemical markers.

The density distributions for the external light source and the fluorescent light in the
tissues are both described by the radiative transport equation. Let Ω ⊂ Rd (d ≥ 2) be the
domain of interests and Sd−1 be the unit sphere in Rd. We denote by X = Ω × Sd−1 the
phase space and Γ± = {(x,v) ∈ ∂Ω × Sd−1| ± n(x) · v > 0} its boundary sets. We denote
by ux(x,v) and um(x,v) the density of photons at the excitation and emission wavelengths
respectively, at location x, traveling in direction v ∈ Sd−1. Then ux(x,v) and um(x,v) solve
the following coupled system of radiative transport equations

v · ∇ux + (σa,x + σs,x)ux = σs,xKΘ(ux), in X
v · ∇um + (σa,m + σs,m)um = σs,mKΘ(um) + ησa,xf (x)KI(ux)(x), in X

ux(x,v) = gx(x,v), um(x,v) = 0, on Γ−

(1)

where the subscripts x and m denote the quantities at the excitation and the emission
wavelengths, respectively. The coefficients σa,x and σs,x (resp. σa,m and σs,m) are respectively
the absorption and scattering coefficients at wavelength λx (resp. λm). The scattering
operator KΘ and the averaging operator KI are defined respectively as

KΘ(ux)(x,v) =

∫
Sd−1

Θ(v,v′)ux(x,v
′)dv′, and, KI(ux)(x,v) =

∫
Sd−1

ux(x,v
′)dv′, (2)

with the scattering kernel Θ(v,v′) describing the probability that a photon traveling in
direction v′ gets scattered into direction v.

The total absorption coefficient σa,x consists of a contribution σa,xi from the intrin-
sic tissue chromophores and a contribution σa,xf from the fluorophores of the biochemical
markers: σa,x = σa,xi +σa,xf . The absorption coefficient due to fluorophores, σa,xf is propor-
tional to the concentration ρ(x) and the extinction coefficient ε(x) of the fluorophores, i.e.
σa,xf = ε(x)ρ(x). The coefficient η(x) is the quantum efficiency of the fluorophores. The
coefficients η and σa,xf are the main quantities associated with the biochemical markers.

The energy absorbed by the medium and the markers consists of two parts. The first
part is from the excitation photons. This part can be written as σa,xKI(ux). The second part
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of absorbed energy comes from emission photons. This part can be written as σa,mKI(um).
Therefore, the pressure field generated by the photoacoustic effect can therefore be written
as:

H(x) = Ξ(x)
[(
σa,x(x)− η(x)σa,xf (x)

)
KI(ux)(x) + σa,m(x)KI(um)(x)

]
,

≡ Ξ(x)
(
σηa,xKI(ux)(x) + σa,m(x)KI(um)(x)

)
, (3)

where Ξ is the (nondimensional) Grüneisen coefficient that measures the photoacoustic
efficiency of the underlying medium, and σηa,x is the short notation for σa,xi + (1 − η)σa,xf .
We want to emphasize that when calculating the initial pressure field generated, we have
subtract a portion of the energy, ησa,xfKI(ux), from the total energy absorbed by the medium
and the markers. This is because that portion of energy is used to generate fluorescence,
not the heating in the photoacoustic process.

The initial pressure field generated from the photoacoustic effect, H, evolves in space
and time following the acoustic wave equation [14, 25, 62]:

1

c2(x)

∂2p

∂t2
−∆p = 0, in R+ × Rd

p(0,x) = H,
∂p

∂t
(0,x) = 0, in Rd

(4)

where c(x) is the speed of the ultrasound in the medium. The data that we measure are
the solutions to the wave equation (4) on the surface of the medium, p|(0,tmax)×∂Ω, tmax being
large enough, for various excitation light sources.

Following [57], we call the process of reconstructing information on η and σa,xf from
datum p|(0,tmax)×∂Ω fluorescence PAT (fPAT). This is a molecular imaging modality that
combines PAT with fluorescence optical imaging. We refer interested readers to [57] for
more discussions on the mathematical modeling of fPAT, including detailed derivation and
justification the models (1) (in diffusive regime) and (4), and to [16, 51, 52, 65, 69] for some
experimental and computational results on fPAT. Recent progress on fluorescence optical
imaging itself can be found in [5, 8, 27, 42, 48, 60] and references therein.

Image reconstruction in fPAT is a two-step process as in regular PAT. In the first step,
we reconstruct H from measured acoustic data. We assume here that this step has been
finished with methods such as those in [4, 7, 17, 18, 24, 30, 31, 34, 37, 40, 50, 62] and we are
given the internal datum (3). Moreover, we assume that: (A-i) the Grüneisen coefficient
Ξ as well as the absorption and scattering coefficients of the medium at the excitation
wavelength, σa,xi and σs,x, have been known from other imaging technologies (for instance
a multi-spectral quantitative PAT step [13, 44]) before the fluorescent biochemical markers
are injected into the medium; and (A-ii) the absorption and scattering coefficients at the
emission wavelength, σa,m and σs,m, are also reconstructed by other imaging methods (for
instance a regular quantitative PAT technique [6, 11, 12, 13, 14, 19, 21, 26, 44, 49, 56, 58, 73]
after the Grüneisen coefficient is known). Therefore, our main objective is only to reconstruct
the quantum efficiency η and the fluorescence absorption coefficient σa,xf (x) in the system (1)
from the datum H in (3). This is the quantitative fPAT (QfPAT) problem.

Let us now remark on a couple of issues regarding the practical relevance of the current
work. First of all, in many practical applications, it is preferable to use contrast agents
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that do not emit photons after absorbing incoming excitation photons. In other words,
the biochemical markers have quantum efficiency η = 0. In this case, the second equation
in (1) drops out of the transport system, and the terms involve η and um all drop out
from the datum (3). We are therefore back to the same mathematical problem as in a
regular quantitative PAT process. The theory of the reconstruction in this case is covered in
Theorem 3.3 of our results. Our results in this paper are in fact more general in the sense that
we can deal with the general case of non-negligible quantum efficiency, that is η > 0. When
η > 0, we have to take into account the impact of the emitted fluorescence photons in the
reconstruction process. Neglecting this impact in the model would certainly introduce errors
in the images reconstructed. The second issue we need to address is the difference between
the work we have here and the theory on the same problem that have been developed in the
diffusive regime [57]. It is generally believed that the radiative transport equation is a more
accurate model than the diffusion equation to describe the propagation of NIR photons in
biological tissues [9, 55], even though it is more complicated to theoretically analyze and
numerically solve. Our analysis in this paper is useful when the diffusion approximation to
the radiative transport equation breaks down, for instance in media of small volumes but
large mean free paths. Optical imaging of small animals [33], for instance, is one of such
biomedical applications for our work here.

The rest of the paper is organized as follows. We first present in Section 2 some general
properties of the inverse problem, especially the continuous dependence of the datum H
on the unknown coefficients. We then consider in Section 3 the reconstruction of a single
coefficient from a single internal data set. We derive some uniqueness and stability results
on the reconstruction. In Section 4 we study the problem of reconstructing two coefficients
simultaneously, mainly in linearized settings. We then present some numerical simulations
based on synthetic data in Section 5 to validate the theory and the reconstruction algorithms
we developed. Concluding remarks are offered in Section 6.

2 General Properties of the Inverse Problems

We review in this section some general properties of the inverse problem of reconstructing
η(x) and/or σa,xf (x) in the transport system (1) from the datum H in (3). We denote
by Lp(X) (resp. Lp(Ω)) the Lebesgue space of real-valued functions whose p-th power
are Lebesgue integrable on X (resp. Ω), and H1

p(X) the space of Lp(X) functions whose
derivative in direction v is in Lp(X), i.e. H1

p(X) = {f(x,v) : f ∈ Lp(X) and v · ∇f ∈
Lp(X)}. We denote by Lp(Γ−) the space of functions that are traces of H1

p(X) functions

on Γ− under the norm ‖f‖Lp(Γ−) = (
∫
∂Ω

∫
Sd−1
x−
|n(x) · v||f |pdvdγ)1/p, dγ being the surface

measure on ∂Ω and Sd−1
x− = {v : v ∈ Sd−1 s.t. − n(x) · v > 0}. It is well-known [2, 22] that

both H1
p(X) and Lp(Γ−) are well-defined. To avoid confusion with H1

p(X), we use W k
2 (Ω)

to denote the usual Hilbert space of L2(Ω) functions whose partial derivatives up to order
k are all in L2(Ω). Besides the assumptions in (A-i)-(A-ii), we assume further that:

(A-iii) The domain Ω is simply-connected with C2 boundary ∂Ω. The known optical coef-
ficients satisfy 0 < c1 ≤ σa,xi, σs,x, σa,m, σs,m,Ξ ≤ c2 < +∞ for some positive constants c1
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and c2. The unknown coefficients, (η, σa,xf ) belongs to the class

A = {(η, σa,xf ) : 0 < c3 ≤ η ≤ c4 < 1, 0 < c5 ≤ σa,xf ≤ c6 < +∞} (5)

for some positive constants c3, c4, c5 and c6. The scattering kernel Θ is symmetric, bounded
and normalized in the sense that

Θ(v,v′) = Θ(v′,v), 0 < c7 ≤ Θ(v,v′) ≤ c8 < +∞, ∀v,v′ ∈ Sd−1,∫
Sd−1

Θ(v,v′)dv′ =

∫
Sd−1

Θ(v′,v)dv′ = 1, ∀v ∈ Sd−1,
(6)

for some positive constants c7 and c8. The illumination gx(x,v) is strictly positive such that
0 < c9 ≤ gx(x,v) for some c9.

With the above settings, it is easy to see, following standard results in [2, 22], that the
system (1) admits a unique solution in the following sense.

Lemma 2.1. Let p ∈ [1,∞] and assume that (A-iii) holds. Then for any given function
gx(x,v) ∈ Lp(Γ−), there exists a unique solution (ux, um) ∈ H1

p(X) × H1
p(X) to the couple

transport system (1). Moreover, the following bound holds:

‖ux‖Lp(X) + ‖um‖Lp(X) ≤ c‖gx‖Lp(Γ−) (7)

with the constant c depending only on Ω and the bounds for the coefficients in assumption
(A-iii).

Proof. When the assumptions are satisfied, it follows directly from standard transport the-
ory in [2, 22] that the first transport equation admits a unique solution ux ∈ H1

p(X) such that
‖ux‖Lp(X) ≤ c̃‖gx‖Lp(Γ−). We then deduce, with the same argument that the second equa-
tion admit a unique solution um ∈ H1

p(X) such that ‖um‖Lp(X) ≤ ĉ‖ησa,xfKI(ux)‖Lp(Ω) ≤
ˆ̂c‖ux‖Lp(X). The bound in (7) then follows from selecting c = c̃(1 + ˆ̂c).

The above lemma ensures that the datum H in (3) is well-defined for any gx(x,v) ∈
Lp(Γ−) (p ∈ [1,∞]) that satisfies the assumptions in (A-iii). Moreover H ∈ Lp(Ω) following
standard results in [22]. The next result shows that the datum H depends continuously on
the unknown coefficients and is differentiable with respect to the coefficients in appropriate
sense.

Proposition 2.2. Let p ∈ [1,∞] and assume that (A-iii) holds. Then for any given function
gx(x,v) ∈ Lp(Γ−), the datum H defined in (3), viewed as the map

H[η, σa,xf ] :
(η, σa,xf ) 7→ Ξ

(
σηa,xKI(ux) + σa,mKI(um)

)
L∞(Ω)× L∞(Ω) 7→ Lp(Ω)

(8)

is Fréchet differentiable at any (η, σa,xf ) ∈ L∞(Ω) × L∞(Ω) in the direction (δη, δσa,xf ) ∈
L∞(Ω)× L∞(Ω) that satisfy (η, σa,xf ) ∈ A and (η + δη, σa,xf + δσa,xf ) ∈ A. The derivative
is given by

H ′[η, σa,xf ](δη, δσa,xf ) = Ξ
(

(−δησa,xf+(1−η)δσa,xf )KI(ux)+σ
η
a,xKI(vx)+σa,mKI(vm)

)
(9)
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where (vx, vm) ∈ H1
p(X)×H1

p(X) is the unique solution to

v · ∇vx + σt,xvx = σs,xKΘ(vx)− δσa,xfux, in X
v · ∇vm + σt,mvm = σs,mKΘ(vm) + ησa,xfKI(vx) + (ηδσa,xf + δησa,xf )KI(ux), in X

vx(x,v) = 0, vm(x,v) = 0 on Γ−
(10)

where σt,x = σa,x + σs,x and σt,m = σa,m + σs,m.

Proof. Let η̃ = η + δη, σ̃a,xf = σa,xf + δσa,xf , and define ∆(ησa,xf ) = η̃σ̃a,xf − ησa,xf . We
denote by (ũx, ũm) the solution to (1) with the coefficients (η̃, σ̃a,xf ), and H̃ the corresponding
datum. It is straightforward to verify that (u′x, u

′
m) ≡ (ũx−ux, ũm−um) solves the following

system of transport equations

v · ∇u′x + σt,xu
′
x = σs,xKΘ(u′x)− δσa,xf ũx, in X

v · ∇u′m + σt,mu
′
m = σs,mKΘ(u′m) + ησa,xfKI(u

′
x) + F (x), in X

u′x(x,v) = 0, u′m(x,v) = 0 on Γ−

(11)

with F (x) = ∆(ησa,x)KI(ũx), and (u′′x, u
′′
m) ≡ (u′x− vx, u′m− vm) solves the following system

v · ∇u′′x + σt,xu
′′
x = σs,xKΘ(u′′x)− δσa,xfu′x, in X

v · ∇u′′m + σt,mu
′′
m = σs,mKΘ(u′′m) + ησa,xfKI(u

′′
x) +G(x), in X

u′′x(x,v) = 0, u′′m(x,v) = 0 on Γ−,
(12)

with G(x) = ∆(ησa,xf )KI(u
′
x) + δηδσa,xfKI(ux).

With the assumptions on the coefficients and the illumination source gx, we conclude
that (ux, um) ∈ H1

p(X)×H1
p(X) and (ũx, ũm) ∈ H1

p(X)×H1
p(X) [2, 22]. This implies that

F ∈ Lp(Ω) and

‖F‖Lp(Ω) = ‖(ηδσa,x + δησa,xf + δηδσa,xf )KI(ũx)‖Lp(Ω)

≤ (c̃1‖δη‖L∞(Ω) + c̃2‖δσa,xf‖L∞(Ω) + c̃3‖δη‖L∞(Ω)‖δσa,xf‖L∞(Ω))‖ũx‖Lp(X)

≤ (˜̃c1‖δη‖L∞(Ω) + ˜̃c2‖δσa,xf‖L∞(Ω) + ˜̃c3‖δη‖L∞(Ω)‖δσa,xf‖L∞(Ω))‖gx‖Lp(Γ−), (13)

Following the same argument as in Lemma 2.1 we conclude that (11) admits a unique
solution (u′x, u

′
m) ∈ H1

p(X)×H1
p(X) that satisfies

‖u′x‖Lp(X) ≤ ĉ‖δσa,xf ũx‖Lp(X) ≤ ĉ‖δσa,xf‖L∞(Ω)‖ũx‖Lp(X) ≤ ˆ̂c‖δσa,xf‖L∞(Ω)‖gx‖Lp(Γ−), (14)

and

‖u′m‖Lp(X) ≤ c̄
(
‖ησa,xfKI(u

′
x)‖Lp(Ω) + ‖F‖Lp(Ω)

)
≤ ¯̄c
(
‖u′x‖Lp(X) + ‖F‖Lp(Ω)

)
≤ (c̄1‖δη‖L∞(Ω) + c̄2‖δσa,xf‖L∞(Ω) + c̄3‖δη‖L∞(Ω)‖δσa,xf‖L∞(Ω))‖gx‖Lp(Γ−). (15)

Therefore we have G ∈ Lp(Ω) and the bound

‖G‖Lp(Ω) ≤ ‖(ηδσa,x + δησa,xf + δηδσa,xf )KI(u
′
x)‖Lp(Ω) + ‖δηδσa,xfKI(ux)‖Lp(Ω)

≤ (c′1‖δη‖L∞(Ω) + c′2‖δσa,xf‖L∞(Ω) + c′3‖δη‖L∞(Ω)‖δσa,xf‖L∞(Ω))‖u′x‖Lp(X)

+ ‖δη‖L∞(Ω)‖δσa,xf‖L∞(Ω))‖ux‖Lp(X)

≤ (c′′1‖δη‖L∞(Ω) + c′2‖δσa,xf‖L∞(Ω) + c′3‖δη‖L∞(Ω)‖δσa,xf‖L∞(Ω))‖δσa,xf‖L∞(Ω)‖gx‖Lp(Γ−).
(16)
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We then deduce, in the same manner as above, that (12) admits a unique solution (u′′x, u
′′
m)

that satisfies

‖u′′x‖Lp(X) ≤ ĉ‖δσa,xfu′x‖Lp(Ω) ≤ ĉ‖δσa,xf‖L∞(Ω)‖u′x‖Lp(X) ≤ ĉˆ̂c‖δσa,xf‖2
L∞(Ω)‖gx‖Lp(Γ−), (17)

and

‖u′′m‖Lp(X) ≤ ‖ησa,xfKI(u
′′
x)‖Lp(Ω) + ‖G‖Lp(Ω) ≤ ċ‖u′′x‖Lp(X) + ‖G‖Lp(Ω)

≤ (ċ1‖δη‖L∞(Ω) + ċ2‖δσa,xf‖L∞(Ω) + ċ3‖δη‖L∞(Ω)‖δσa,xf‖L∞(Ω))‖δσa,xf‖L∞(Ω)‖gx‖Lp(Γ−).
(18)

The estimates (17) and (18) show that (ux, um) is Fréchet differentiable with respect to η and
σa,xf as a map: L∞(Ω)×L∞(Ω) 7→ Lp(Ω)×Lp(Ω) (p ∈ [1,∞]). Note that ux is independent
of η, so its derivative with respect to η is zero, as can be seen from (17).

The differentiability of H with respect to (η, σa,xf ) then follows from the chain rule and
the fact that σηa,x is differentiable with respect to (η, σa,xf ). Alternatively, it can also be seen
easily from the bounds (14), (17), (18) and the following algebraic calculation:

H[η̃, σ̃a,xf ]−H[η, σa,xf ]−H ′[η, σa,xf ](δη, δσa,xf )

= Ξ
[
σηa,xKI(u

′′
x) + σa,mKI(u

′′
m) + (δσa,xf −∆(ησa,x)KI(u

′
x)− δηδσa,xfKI(ux)

]
. (19)

This completes the proof.

We will study Born approximation, i.e. linearization, of the inverse problem of QfPAT
in Section 4. The above result justifies the linearization process. To compute the partial
derivative with respect to η (resp. σa,xf ), denoted by H ′η[η, σa,xf ] (resp. H ′σ[η, σa,xf ]), we
simply set δσa,xf = 0 (resp. δη = 0) in (9) and (10). It is straightforward to check that

H ′η[η, σa,xf ](δη)

Ξσa,xfKI(ux)
= −δη +

σa,m
σa,xfKI(ux)

KI(vm), (20)

with vm ∈ H1
p(X) the unique solution to

v · ∇vm + σt,mvm = σs,mKΘ(vm) + δησa,xfKI(ux), in X
vm(x,v) = 0, on Γ−,

(21)

and

H ′σ[η, σa,xf ](δσa,xf )

Ξ(1− η)KI(ux)
= δσa,xf +

σηa,x
(1− η)KI(ux)

KI(vx) +
σa,m

(1− η)KI(ux)
KI(vm), (22)

with (vx, vm) ∈ H1
p(X)×H1

p(X) the unique solution to

v · ∇vx + σt,xvx = σs,xKΘ(vx)− δσa,xfux, in X
v · ∇vm + σt,mvm = σs,mKΘ(vm) + ησa,xfKI(vx) + ηδσa,xfKI(ux), in X

vx(x,v) = 0, vm(x,v) = 0 on Γ−.
(23)

The following result is a standard application of the averaging lemma [22, 28, 45]. It will
be useful in Section 4.
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Lemma 2.3. Assume that (A-iii) holds. Let gx(x,v) ∈ L∞(Γ−) be such that KI(ux) ≥ c > 0

for some constant c. Then the rescaled linearized data
H′σ [η,σa,xf ](δσa,xf )

Ξ(1−η)KI(ux)
, viewed as the linear

operator

H ′σ[η, σa,xf ](δσa,xf )

ΞKI(ux)
:
δσa,xf 7→ (1− η)δσa,xf +

σηa,x
KI(ux)

KI(vx) + σa,m
KI(ux)

KI(vm)

L2(Ω) 7→ L2(Ω)
(24)

is Fredholm. The same is true for
H′η [η,σa,xf ](δη)

ΞKI(ux)
if the background coefficient σa,xf ≥ c̃ > 0

for some c̃.

Proof. Let us denote by Sz (z ∈ {x,m}) the solution operator of the transport equation
with coefficients σa,z, σs,z and vacuum boundary condition, i.e. wz = Sz(f) with wz the
solution to:

v · ∇wz + σt,zwx − σs,zKΘ(wz) = f, in X, wz = 0 on Γ−.

We can then write KI(vx) and KI(vm) in (24) respectively as

KI(vx) = −Λx(δσa,xf ), and, KI(vm) = −Λmx(δσa,xf ) + Λm(ηδσa,xf ) (25)

where the operators Λx, Λm and Λmx are defined as

Λx(δσa,xf ) ≡ KI

(
Sx(uxδσa,xf )

)
, Λm(δσa,xf ) = KI

(
Sm(KI(ux)δσa,xf )

)
, (26)

Λmx(δσa,xf ) ≡ KI

(
Sm(ησa,xfKI(Sx(uxδσa,xf ))

)
. (27)

Following the averaging lemma [22, 28, 45] and the compact embedding of W
1/2
2 (Ω) to L2(Ω),

we conclude KI : L2(X) → L2(Ω) is compact. Due to boundedness of ux (and therefore
KI(ux)), η and σa,xf , both Sx and Sm are compact as operators from L2(Ω) to L2(X) with
the assumptions on the coefficients in (A-i) [22, 45]. Hence, Λx, Λm, and Λmx are all

compact operators on L2(Ω). Therefore
H′σ [η,σa,xf ](δσa,xf )

ΞKI(ux)
as an operator can be represented

as (1− η)I + K with K compact. Therefore it is Fredholm. The same argument works for
H′η [η,σa,xf ](δη)

ΞKI(ux)
.

3 Reconstructing of a Single Coefficient

In this section, we consider the reconstruction of one of the two coefficients of interests,
assuming the other is known. We start with the reconstruction of the quantum efficiency.

3.1 The reconstruction of η

Assume now that the fluorescence absorption coefficient σa,xf is known and we are interested
in reconstructing only η. This is a linear inverse source problem. We can derive the following
stability result on the reconstruction.
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Theorem 3.1. Let p ∈ [1,∞] and the source gx ∈ Lp(Γ−) be such that the transport solution
ux to (1) satisfies KI(ux) ≥ c̃ > 0 for any (η, σa,xf ) ∈ A. Let H and H̃ be two data sets
generated with coefficients (η, σa,xf ) and (η̃, σa,xf ) respectively. Then H = H̃ a.e. implies
η = η̃ a.e.. Moreover, the following stability estimate holds,

c‖H − H̃‖Lp(Ω) ≤ ‖(η − η̃)σa,xfKI(ux)‖Lp(Ω) ≤ C‖H − H̃‖Lp(Ω) (28)

where the constants c and C depend on Ω and the coefficients σa,xi, σa,m, σs,x, σs,m, and Ξ.

Proof. Let (ux, um) and (ũx, ũm) be solutions to the coupled transport system (1) with
coefficients (η, σa,xf ) and (η̃, σa,xf ) respectively. We notice immediately that ux = ũx. Define
wm = um − ũm. We then verify that

(H − H̃)/Ξ = −(η − η̃)σa,xfKI(ux) + σa,mKI(wm) (29)

This leads to the bound

‖H − H̃‖Lp(Ω) ≤ c1‖(η − η̃)σa,xfKI(ux)‖Lp(Ω) + c2(σa,m)‖KI(wm)‖Lp(Ω). (30)

and the bound

‖(η − η̃)σa,xfKI(ux)‖Lp(Ω) ≤ c̃1(Ξ)‖H − H̃‖Lp(Ω) + c̃2(σa,m)‖KI(wm)‖Lp(Ω), (31)

We check also that wm solves the transport equation

v · ∇wm + (σa,m + σs,m)wm = σs,mKΘ(wm) + (η − η̃)σa,xfKI(ux), in X
wm(x,v) = 0, on Γ−.

(32)

It then follows from classical results in transport theory [2, 22] that this equation admits a
unique solution wm ∈ H1

p(X) that satisfies the following stability estimate

‖wm‖Lp(X) ≤ c3(Ω, σa,m, σs,m,Ξ)‖(η − η̃)σa,xfKI(ux)‖Lp(Ω). (33)

The left bound in (28) then follows from (30) and (33).
To derive the right bound in (28), we replace the last term in the transport equation (32)

with σa,mKI(wm)− (H − H̃)/Ξ to get

v · ∇wm + (σa,m + σs,m)wm = σa,mKI(wm) + σs,mKΘ(wm)− H−H̃
Ξ
, in X

wm(x,v) = 0, on Γ−.
(34)

We define Θ̃(x,v,v′) = σa,m
σa,m+σs,m

+ σs,m
σa,m+σs,m

Θ. It is straightforward to verify that Θ̃ is

symmetric and normalized in the sense of (6). We can then rewrite the above transport
equation as

v · ∇wm + (σa,m + σs,m)wm = (σa,m + σs,m)KΘ̃(wm)− H−H̃
Ξ
, in X

wm(x,v) = 0, on Γ−.
(35)

This is a transport equation for a conservative medium. Due to the fact that Ω is bounded,
classical results in transport theory (see for instance [22, Theorem 1 on page 337]) then
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concludes that the equation admits a unique solution wm ∈ H1
p(X). Moreover, we have the

stability estimate
‖wm‖Lp(X) ≤ c4(Ω, σa,m, σs,m,Ξ)‖H − H̃‖Lp(Ω) (36)

The right bound in (28) then follows from (31) and (36). The uniqueness of the reconstruc-
tion then follows from the fact that H = H̃ implies wm = 0 from (35), which then implies
η = η̃ from (29).

Note that the bound in (28) is weighted in the sense that it is on (η − η̃)KI(ux) not
directly on (η − η̃). This means that if KI(ux) is too small, it is very hard to reconstruct
accurately η.

The proof of the above stability result is constructive in the sense that it provides an
explicit reconstruction procedure for the recovery of η. We now summarize the procedure
in the following algorithm.

Reconstruction Algorithm I.

S1. Given σa,xf , solve the first transport equation in (1) with the boundary condition gx
for ux;

S2. Evaluate the function q(x) = σa,xKI(ux)− H
Ξ

;

S3. Solve the following transport equation for um:

v · ∇um + (σa,m + σs,m)um = (σa,m + σs,m)KΘ̃(um) + q(x), in X
um(x,v) = 0, on Γ−.

(37)

S4. Reconstruct η as −
(H

Ξ
− σa,xKI(ux)− σa,mKI(um)

)
/(σa,xfKI(ux)).

This is a direct reconstruction algorithm in the sense that it does not involve any iteration
on the the unknown coefficient. The algorithm is very efficient since it requires solving the
transport equation (37) only once.

Remark 3.2. Thanks to the fact that the problem of reconstructing η given σa,xf is linear,
we can easily verify that the same type of uniqueness and stability results in Theorem 3.1
hold for the linearized problem of reconstructing η defined in (21) and (20). Moreover, the
above reconstruction algorithm works in exactly the same manner in the linearized setting.

3.2 The reconstruction of σa,xf

We now assume that we know η and aim at reconstructing σa,xf . In this case, we can show
the following result.

Theorem 3.3. Let gx ∈ Lp(Γ−) (p ∈ [1,∞]) be such that the solution ux to the transport
system (1) satisfies ux = KI(ux) ≥ c̃ > 0 for any coefficient pair (η, σa,xf ) ∈ A. Let H and
H̃ be data sets generated with coefficient pairs (η, σa,xf ) and (η, σ̃a,xf ) respectively. Then
H = H̃ a.e. implies σa,xf = σ̃a,xf a.e.. Moreover, the following bound holds,

c‖H − H̃‖Lp(Ω) ≤ ‖(σa,xf − σ̃a,xf )KI(ux)‖Lp(Ω) ≤ C‖H − H̃‖Lp(Ω), (38)

with c and C depending on Ω, σa,xi, σa,m, σs,x, σs,m, η and Ξ.
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Proof. Let (ux, um) and (ũx, ũm) be solutions to the coupled transport system (1) with
coefficients (η, σa,xf ) and (η, σ̃a,xf ) respectively. Define wx = ux − ũx and wm = um − ũm.
Then we have

H − H̃
Ξ

= σ̃ηa,xKI(wx) + σa,mKI(wm) + (1− η)(σa,xf − σ̃a,xf )KI(ux). (39)

This leads to the bound

‖H − H̃‖Lp(Ω) ≤ c′1‖KI(wx)‖Lp(Ω) + c′2‖KI(wm)‖Lp(Ω) + c′3‖(σa,xf − σ̃a,xf )KI(ux)‖Lp(Ω), (40)

and the bound

‖(σa,xf − σ̃a,xf )KI(ux)‖Lp(Ω) ≤ c′′1‖H− H̃‖Lp(Ω) + c′′2‖KI(wx)‖Lp(Ω) + c′′3‖KI(wm)‖Lp(Ω). (41)

We now verify that (wx, wm) solves the following transport system:

v · ∇wx + σ̃t,xwx = σs,xKΘ(wx)− (σa,xf − σ̃a,xf )ux, in X
v · ∇wm + σt,mwm = σs,mKΘ(wm) + ησ̃a,xfKI(wx) + η(σa,xf − σ̃a,xf )KI(ux), in X

wx(x,v) = 0, wm(x,v) = 0, on Γ−
(42)

where σt,x = σa,xi+ σ̃a,xf +σs,m. We then deduce, following similar procedure as in the proof
of Proposition 2.2, that

‖wx‖Lp(X) + ‖wm‖Lp(X) ≤ c′4‖(σa,xf − σ̃a,xf )KI(ux)‖Lp(Ω). (43)

The left bound in (38) then follows from (40) and (43).
To derive the right bound in (38), we use (39) to eliminate the quantity σa,xf − σ̃a,xf in

the transport system (42) to obtain:

v · ∇wx + σ̃t,xwx = σs,xKΘ(wx) + σ′s,xKI(wx) + σ′s,xmKI(wm)− (H−H̃)ux
Ξ(1−η)KI(ux)

, in X

v · ∇wm + σt,mwm = σs,mKΘ(wm)− σ′s,mKI(wm)− σ′s,mxKI(wx) + (H−H̃)η
Ξ(1−η)

, in X

wx(x,v) = 0, wm(x,v) = 0, on Γ−
(44)

where σ′s,x =
σ̃ηa,xux

(1−η)KI(ux)
, σ′s,xm = σa,mux

(1−η)KI(ux)
, σ′s,m = ησa,m

1−η , and σ′s,mx =
ησa,xi
1−η . To write the

system in standard form, we perform the change of variable wx → −wx. We then have

v · ∇wx + σ̃t,xwx + σ′s,xmKI(wm) = σs,xKΘ(wx) + σ′s,xKI(wx) + (H−H̃)ux
Ξ(1−η)KI(ux)

, in X

v · ∇wm + σt,mwm + σ′s,mKI(wm) = σs,mKΘ(wm) + σ′s,mxKI(wx) + (H−H̃)η
Ξ(1−η)

, in X

wx(x,v) = 0, wm(x,v) = 0, on Γ−
(45)

With the assumption on gx, the coefficients σ′s,x, σ
′
s,xm, σ′s,m, and σ′s,mx are all positive. We

check also, after using the assumption ux = KI(ux), that ∆1 ≡ σ̃t,x + σ′s,xm − σs,x − σ′s,x =
σ̃a,x+(σa,m− σ̃ηa,x)/[(1−η)] and ∆2 ≡ σt,m+σ′s,m−σs,m−σ′s,mx = (σa,m−ησa,xi)/(1−η). The
conditions in Theorem 3.3 ensure that ∆1,∆2 ≥ c′ > 0 for some c′. We can therefore combine
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the techniques in [29, 63, 64, 71], see detailed analysis in [53], to show that system (45) admits
a unique solution (wx, wm) that satisfies

‖wx‖Lp(X) + ‖wm‖Lp(X) ≤ c′′4‖H − H̃‖Lp(Ω). (46)

We can now combine (41) and (46) to obtain the right bound in (38). The uniqueness
result follows from the fact that (45) admits only the trivial solution (wx, wm) = (0, 0) when
H = H̃.

Linearized Case. Unlike in the case of reconstructing η, the above proof is not construc-
tive since the unknown coefficient σa,xf shows up in the transport system (45). Therefore,
the proof does not provide directly a reconstruction algorithm. For numerical reconstruc-
tions in this nonlinear setting, we use the optimization-based algorithm in Section 4.4. If
we consider the same problem in linearized setting, we can indeed derive an explicit recon-
struction procedure. To do that, we replace the δσa,xf in (23) with its expression given in
the linearized datum (22) to get the following system:

v · ∇vx + σt,xvx + σ′s,xmKI(vm) = σs,xKΘ(vx) + σ′s,xKI(vx)− uxH′σ
(1−η)ΞKI(ux)

, in X

v · ∇vm + σt,mvm + σ′s,mKI(vm) = σs,mKΘ(vm) + σ′s,mxKI(vx) + ηH′σ
(1−η)Ξ

, in X

vx(x,v) = 0, vm(x,v) = 0, on Γ−
(47)

where we have performed the change of variable vx → −vx, and the coefficient σ′s,x =
σηa,xux

(1−η)KI(ux)
, while the coefficients σ′s,xm, σ′s,m, and σ′s,mx are defined as in (44). This system

does not contain the unknown coefficient δσa,xf . It can be solved for (vx, vm). We can then
reconstruct δσa,xf following (22). The reconstruction procedure can be summarized into the
following reconstruction algorithm.

Reconstruction Algorithm II.

S1. Given the background coefficient σa,xf , solve the first transport equation in (1) with
the boundary condition gx for ux (and therefore KI(ux));

S2. Evaluate the coefficients σ′s,x, σ
′
s,xm, σ′s,m and σ′s,mx;

S3. Solve the transport system (47) for (vx, vm) and perform the transform (−vx, vm) →
(vx, vm);

S4. Reconstruct δσa,xf as
[H ′σ

Ξ
− σηa,xKI(vx)− σa,mKI(vm)

]
/
[
(1− η)KI(ux)

]
.

Following the control theory for transport equations developed in [1, 3, 38], we can show,
under reasonable assumptions, the existence of sources gx such that ux = KI(ux) holds for
each pair (η, σa,xf ) ∈ A. Such sources, however, might be complicated, for instance we
might need to solve a control problem, to construct in practical applications. The usefulness
of Reconstruction Algorithm II is therefore limited by this fact. Note that in applications
where the medium is scattering-free, see for instance discussions in [23, 44], this algorithm
is indeed very useful since there are many ways to construct illuminations sources to have
ux = KI(ux).
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4 Simultaneous Reconstruction of Two Coefficients

We now consider the problem of simultaneous reconstruction of the quantum efficiency and
the fluorescence absorption coefficient. We start with the linearized case.

4.1 Linearization around (η, σa,xf) = (0, 0)

We first consider the special case where both coefficients are small. In this case the product of
the coefficient is small so that generation of fluorescence is very small and can be neglected.
Therefore, the system involves only the light at the excitation wavelength. The QfPAT
problem reduces to the usual quantitative PAT problem. To be precise, we linearize the
problem around the background (η, σa,xf ) = (0, 0). Then the second transport equation
in (10) has the solution vm = 0. Therefore, the datum (9) simplifies to

1

Ξ
H ′[0, 0](δη, δσa,xf ) = δσa,xfKI(ux) + σa,xiKI(vx), (48)

and the first transport equation in system (10) simplifies to

v · ∇vx + (σa,xi + σs,x)vx = σs,xKΘ(vx)− δσa,xfux, in X
vx(x,v) = 0, on Γ−.

(49)

We observe that δη does not appear in the datum (48) or the equation (49). Therefore, it
can not be reconstructed in this setting. We can show the following result.

Proposition 4.1. Let ux be the solution to the first transport equation in (1) with σa,xf = 0.
Let gx ∈ Lp(Γ−) (p ∈ [1,∞]) be such that ux = KI(ux) ≥ c̃ > 0. Denote by H ′[0, 0] and

H̃ ′[0, 0] the perturbed data sets in the form of (48), generated with perturbed coefficients (δη,

δσa,xf) and (δ̃η, δ̃σa,xf) respectively. Then H ′[0, 0] = H̃ ′[0, 0] a.e. implies δσa,xf = δ̃σa,xf
a.e.. In addition, we have,

c‖H ′[0, 0]−H̃ ′[0, 0]‖Lp(Ω) ≤ ‖(δσa,xf− δ̃σx,f )KI(ux)‖Lp(Ω) ≤ C‖H ′[0, 0]−H̃ ′[0, 0]‖Lp(Ω), (50)

with c and C constants that depend on Ω, Ξ, σa,xi and σs,x.

Proof. The datum (48) implies directly that

‖H ′[0, 0]− H̃ ′[0, 0]‖Lp(Ω) ≤ c1‖(δσa,xf − δ̃σa,xf )KI(ux)‖Lp(Ω) + c2‖vx − ṽx‖Lp(X), (51)

and

‖(δσa,xf − δ̃σa,xf )KI(ux)‖Lp(Ω) ≤ c′1‖H ′[0, 0]− H̃ ′[0, 0]‖Lp(Ω) + c′2‖vx − ṽx‖Lp(X), (52)

with the constants depend on Ω, σa,xi and Ξ.
With the assumptions in the theorem, we deduce from the transport equation (49) that

‖vx − ṽx‖Lp(Ω) ≤ c3‖(δσa,xf − δ̃σa,xf )KI(ux)‖Lp(Ω). (53)
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The left bound in (50) then follows from (51) and (53). To get the right bound in (50), we
use the datum (48), and the assumption that ux = KI(ux), to rewrite (49) as

v · ∇vx + (σa,xi + σs,x)vx = σs,xKΘ(vx) + σa,xiKI(vx)− H′[0,0]
Ξ

, in X
vx(x,v) = 0, on Γ−.

(54)

This is a conservative transport equation that admits a unique solution with the stability
result:

‖vx − ṽx‖Lp(Ω) ≤ c′3‖H ′[0, 0]− H̃ ′[0, 0]‖Lp(Ω), (55)

where c′3 depends on Ω, σa,xi, σs,x and Ξ. The right bound in (50) then follows from (52)
and (55).

The above proof is again constructive when a gx that satisfies the assumption in the
theorem is available to us, in the sense that we only need to solve (54) for vx and then
compute δσa,xf = (H ′[0, 0]/Ξ− σa,xiKI(vx))/KI(ux).

4.2 Linearization around a general background

We now consider the linearization around a general background (η 6≡ 0, σa,xf 6≡ 0). We
study the case where we have J ≥ 2 data sets, 1 ≤ j ≤ J :

H ′j[η, σa,xf ](δη, δσa,xf )

ΞKI(u
j
x)

= (−δησa,xf + (1 − η)δσa,xf ) +
σηa,x

KI(u
j
x)
KI(v

j
x) +

σa,m

KI(u
j
x)
KI(v

j
m)

(56)

where ujx is the solution to the first transport equation in (1) with background coefficient
σa,xf and illumination source gjx, while (vjx, v

j
m) is the solution to the coupled system (10).

To study the linear inverse problem defined in (56), we introduce two new variables
ζ = δησa,xf + ηδσa,xf and ξ = δσa,xf . It is straightforward to verify that (ζ, ξ) uniquely
determines (δη, δσa,xf ) when η 6≡ 0 and σa,xf 6≡ 0. We can then collect the J data sets to
have the following linear system for the unknown coefficient pair (ζ, ξ):

Π

(
ζ
ξ

)
= z, with, Π =

 −I + Π1
ζ I − Π1

ξ
...

...
−I + ΠJ

ζ I − ΠJ
ξ

 and z =


H′1[η,σa,xf ]

ΞKI(u1x)
...

H′J [η,σa,xf ]

ΞKI(uJx)

 (57)

with Πj
ζ = σa,m

KI(ujx)
Λj
m and Πj

ξ =
σηa,x

KI(ujx)
Λj
x + σa,m

KI(ujx)
Λj
mx. Here Λj

x, Λj
mx and Λj

m are defined

as in (26) and (27) with ux replaced by ujx. From Lemma 2.3 we know that Πj
ζ and Πj

ξ

(1 ≤ j ≤ J) are compact operators on L2(Ω).
From the discussion in the previous sections, we know that I − Πj

ζ and I − Πj
ξ are all

invertible for well-selected illumination sources gjx, 1 ≤ j ≤ J . However, that does not
guarantee the invertibility of the linear system (57). For the case of J = 2, the invertibility
of the system (57) is equivalent to the invertibility of (I−Π2

ζ)
−1(I−Π2

ξ)−(I−Π1
ζ)
−1(I−Π1

ξ).
Therefore, we need to choose illumination sources g1

x and g2
x such that (I −Π2

ζ)
−1(I −Π2

ξ)−
(I − Π1

ζ)
−1(I − Π1

ξ) is invertible; see next section for some discussions on the regularized
version of this problem.
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4.3 A partially linearized model

We now briefly discuss a very popular simplification of the mathematical model in the flu-
orescence optical tomography literature. This simplification assumes that the fluorescence
absorption coefficient σa,xf is small compared to the background tissue absorption coeffi-
cient σa,xi. Therefore, it can be dropped from the first equation in the model (1); see for
instance [46]. In other words, the model, for source gjx (1 ≤ j ≤ J), now reads,

v · ∇ujx + (σa,xi + σs,x)u
j
x = σs,xKΘ(ujx), in X

v · ∇ujm + (σa,m + σs,m)ujm = σs,mKΘ(ujm) + ησa,xfKI(u
j
x), in X

ujx(x,v) = gjx, ujm(x,v) = 0 on Γ−.
(58)

The data, for source gjx (1 ≤ j ≤ J), now simplify to,

H̃j ≡
Hj

ΞKI(u
j
x)
− σa,xi = (1− η)σa,xf +

σa,m

KI(u
j
x)
KI(u

j
m). (59)

The inverse problem of reconstructing η and σa,xf from datum (59) is a nonlinear problem
despite the fact that a partial linearization has been performed on the transport model.
However, if we define ζ = (1 − η)σa,xf and ξ = σa,xf , then the inverse problem is bilinear
with respect to (ζ, ξ). Precisely, we can write the datum as,

H̃j = ζ − Πj
ζ(ζ) + Πj

ζ(ξ), 1 ≤ j ≤ J (60)

with Πj
ζ = σa,m

KI(ujx)
Λj
m defined the same way as before and being compact on L2(Ω). This can

again be written into the form of linear system (57) with the coefficient matrix and source
vector respectively

Π =

 I − Π1
ζ Π1

ζ
...

...
I − ΠJ

ζ ΠJ
ζ

 , and, z =

 H̃1
...

H̃J

 . (61)

Regularized Inversion with J = 2. In the case that two data sets are available, we can
solve the inverse problems in this section and Section. 4.2 in regularized form. To do that,
we observe that if we define

Πα = Π +

(
0 0
0 αI

)
, α > 0 (62)

then Πα is a Fredholm operator on L2(Ω)× L2(Ω) for the Π defined in both (57) and (61).
To be precise, Πα are respectively,

Πα =

(
−I + Π1

ζ I − Π1
ξ

−I + Π2
ζ αI + I − Π2

ξ

)
∼
(
−I + Π1

ζ I − Π1
ξ

Π2
ζ − Π1

ζ αI + Π1
ξ − Π2

ξ

)
=

(
−I + Π1

ζ I
0 αI + Π1

ξ

)
+

(
0 −Π1

ξ

Π2
ζ − Π1

ζ −Π2
ξ

)
, (63)
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and

Πα =

(
I − Π1

ζ Π1
ζ

I − Π2
ζ αI + Π2

ζ

)
=

(
I − Π1

ζ 0
I αI

)
+

(
0 Π1

ζ

−Π2
ζ Π2

ζ

)
(64)

where ∼ is used to denote the elementary operation of subtracting the first row from the
second row. For any fixed α > 0, let us denote by N (Πα) the null space of matrix operator
Πα, then the following result follows immediately from classical stability theory of Fredholm
operators [35].

Proposition 4.2. Let z and z̃ be two perturbed data sets defined as in (57) or (61). Let

(ζ, ξ)t and (ζ̃ , ξ̃)t be the solution to Πα

(
ζ
ξ

)
= z and Πα

(
ζ̃

ξ̃

)
= z̃ respectively for some

α > 0. Then we have

c̃‖z− z̃‖(L2(Ω))2 ≤ ‖(ζ, ξ)− (ζ̃ , ξ̃)‖(L2(Ω))2/N (Πα) ≤ C̃‖z− z̃‖(L2(Ω))2 . (65)

for some constants c̃ and C̃.

In the numerical computation, to solve (57) or (61) directly, we have to construct the
operator Π explicitly. This is hard to do in practice since it essentially requires the analytical
form of the Green’s function for the transport equation at the emission wavelength. We do
not have access to this Green’s function. Instead, solve the linear problem with a classical
method of Landweber iteration [36] that we summarize in the following algorithm.

Reconstruction Algorithm III.

S1. Take initial guess (ζ0, ξ0);

S2. Iteratively update the unknown through the iteration:(
ζk+1

ξk+1

)
= (I− τΠ∗Π)

(
ζk
ξk

)
+ τΠ∗z, k ≥ 0. (66)

Stop the iteration when desired convergence criteria are satisfied.

Here τ is a positive algorithmic parameter that we select by trial and error. The adjoint
operator Π∗ is formed by transposing Π and replacing Πj

ζ and Πj
ξ with Πj∗

ζ = KI(u
j
x)S

∗
m ◦

KI ◦ σa,m

KI(ujx)
and Πj∗

ξ = ujxS
∗
x ◦KI ◦ σηa,x

KI(ujx)
+ ujxS

∗
x ◦KI ◦ ησa,xfS∗m ◦KI ◦ σa,m

KI(ujx)
respectively.

Here S∗z is the adjoint of Sz (z ∈ {x,m}) that is defined as the solution operator of the
adjoint transport equation with coefficients σa,z, σs,z and vacuum boundary condition, i.e.
wz = S∗z (f) with wz the solution to:

−v · ∇wz + (σa,z + σs,z)wx − σs,zKΘ(wz) = f, in X, wz = 0 on Γ+.

Therefore, at iteration k of the Landweber algorithm, we solve J forward transport systems
and then J adjoint transport systems to apply the operator Π∗Π to the vector (ζk, ξk)

t.
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4.4 Iterative reconstruction for the nonlinear case

For the simultaneous reconstruction of η and σa,xf in the general nonlinear case, we do not
have any theoretical results on uniqueness and stability currently. Nor do we have more
explicit reconstruction methods. We rely mostly on general computational optimization
techniques to solve the inverse problem. More precisely, we search for solutions to the
inverse problem by minimizing the objective functional:

Φ(η, σa,xf ) ≡
1

2

J∑
j=1

∫
Ω

{
Ξ
[
σηa,xKI(u

j
x) + σa,mKI(u

j
m)
]
−Hj

}2

dx + βR(η, σa,xf ) (67)

where the regularization functional is taken asR(η, σa,xf ) = 1
2
(‖∇η‖2

[L2(Ω)]d
+‖∇σa,xf‖2

[L2(Ω)]d
).

Following the result in Proposition 2.2 and the chain rule, we can obtain the following
result straightforwardly.

Corollary 4.3. The functional Φ(η, σa,xf ), viewed as the map: Φ : W 1
2 (Ω)×W 1

2 (Ω) 7→ R+

is Fréchet differentiable at any (η, σa,xf ) ∈ W 1
2 (Ω)×W 1

2 (Ω) ∩ A. The partial derivatives in
the direction δη (such that (η+ δη, σa,xf ) ∈ A) and the direction δσa,xf (such that (η, σa,xf +
δσa,xf ) ∈ A) are given respectively as

Φ′η[η, σa,xf ](δη) =

∫
Ω

{ J∑
j=1

zjΞ
[
− δησa,xfKI(u

j
x) + σa,mKI(w

j
m)
]

+ β∇δη · ∇η
}
dx,(68)

Φ′σ[η, σa,xf ](δσa,xf ) =

∫
Ω

J∑
j=1

zjΞ
[
δσa,xf (1− η)KI(u

j
x) + σηa,xKI(vx) + σa,mKI(vm)

]
dx(69)

+ β

∫
Ω

∇δσa,xf · ∇σa,xfdx, (70)

where the residual zj = Ξ
[
σηa,xKI(u

j
x)+σa,mKI(u

j
m)
]
−Hj, wm is the unique solution to (21),

and (vx, vm) is the unique solution to (23).

We can therefore employ gradient-based minimization techniques to minimize the func-
tional (67). Here we use the limited memory version of the BFGS quasi-Newton method
that we implemented in [54]. This method requires only the gradients of the objective func-
tional which we derived in Corollary 4.3. To simplify the computation of these gradients
numerically, we apply the adjoint state technique. We denote by (qjx, q

j
m) the unique solution

to the following adjoint transport system:

−v · ∇qjx + σt,xq
j
x = σs,xKΘ(qjx) + Ξσηa,xzj + ησa,xfKI(q

j
m), in X

−v · ∇qjm + σt,mq
j
m = σs,mKΘ(qjm) + Ξσa,mzj, in X

qjx(x,v) = 0, qjm(x,v) = 0 on Γ+.
(71)
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It is then straightforward to show that

Φ′η[η, σa,xf ](δη) =

∫
Ω

{ J∑
j=1

δησa,xfKI(u
j
x)
[
− Ξzj +KI(q

j
m)
]

+ β∇δη · ∇η
}
dx,(72)

Φ′σ[η, σa,xf ](δσa,xf ) =

∫
Ω

J∑
j=1

δσa,xfKI(u
j
x)
[
Ξ(1− η)zj + ηKI(qm)−KI(qx)

]
dx

+ β

∫
Ω

∇δσa,xf · ∇σa,xfdx. (73)

Therefore, to compute gradients of the Φ at (η, σa,xf ), we only need to solve a set of J
forward transport systems (1) and a set of J adjoint transport systems (71). We can then
evaluate the gradients in any given direction (δη, δσa,xf ) according to (72) and (73).

It is obvious that this optimization-based nonlinear reconstruction method can be used
also to reconstruct a single coefficient. To only reconstruct η, we only need to set the gradient
with respect to σa,xf to zero and vice versa.

5 Numerical Experiments

We now present some numerical reconstructions using synthetic interior data. We restrict
ourselves to two-dimensional settings only to simplify the computation.

The spatial domain of the reconstruction is the square Ω = (−1, 1) × (−1, 1). All the
transport equations in Ω × S1 are discretized angularly with the discrete ordinate method
and spatially with a first-order finite element method on triangular meshes. In all the
simulations in this section, reconstructions are performed on a finite element mesh consisting
of about 2000 triangles and a discrete ordinate set with 64 directions. For the absorption
and scattering coefficients that are known, we take

σa,xi = σa,m = σba (2− (b2xc+ b2yc mod 2)) , (74)

σs,x = σs,m = σbs (1 + (b2xc+ b2yc mod 2)) , (75)

where b·c represents the floor operation, σba and σbs are respectively the base level absorption
and scattering coefficients. In all the cases below, we set σba = 0.1. The value of σbs varies from
case to case and will be given below; see Fig. 1 (i) and (ii) for plots of the two coefficients.
The scattering kernel Θ is set to be the Henyey-Greenstein phase function [9, 32, 70] which
depends only on the product v · v′.

To generate synthetic data for the nonlinear inversions, we solve the transport system (1)
with true quantum efficiency η and fluorescent absorption coefficient σa,xf and compute
H according to (3). To generate synthetic data for linearized inversions, for instance in
Experiment 3 below, we use directly the linearized data models, for instance (56), with the
true coefficient perturbations. This way, we can exclude the linearization error from the
data used in the inversion. We do this since our main aim is to test the performance of
the reconstruction algorithms, not to check the accuracy of the linearizations. To mimic
noisy measurements, we add additive random noise to the synthetic data by multiplying
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each datum point by (1 + γ × 10−2normrnd) with normrnd a standard Gaussian random
variable and γ a number representing the noise level in percentage. When γ = 0, we say the
data are noise-free.

To measure the quality of the reconstruction, we use the relative L2 error. This error is
defined as the L2 norm of the difference between the reconstructed coefficient and the true
coefficient, divided by the L2 norm of the true coefficient and then multiplied by 100.

We performed numerical simulations on the reconstructions of many different coefficients
pairs (η, σa,xf ). The qualities of the the reconstructions are very similar. To avoid repetition,
we will present only reconstructions for a typical coefficient pair we show in (iii)-(iv) of Fig. 1.

Figure 1: From left to right are: (i) the absorption coefficient σa,xi = σa,m defined in (74)
with σba = 0.1, (ii) the scattering coefficient σs,x = σs,m defined in (75) with σbs = 2.0, (iii)
the true quantum efficiency η to be reconstructed in the numerical experiments, and (iv)
the true fluorescence absorption coefficient σa,xf to be reconstructed.

Experiment 1. In the first set of numerical studies, we consider the reconstruction of the
quantum efficiency η assuming that the fluorescent absorption coefficient σa,xf is known.
We use the Reconstruction Algorithm I presented in Section 3.1. We first perform numeri-
cal experiments in isotropic medium with two different strengths of scattering coefficients.
We show in Fig. 2 the reconstructions of η under base scattering σbs = 1.0. Shown from
left to right are respectively the η reconstructed using data with noise level γ = 0, 2, 5
and 10 respectively. The relative L2 errors in the reconstructions are respectively 0.01%,
14.24%, 35.59% and 71.18%. We repeat the simulations for a medium with stronger (but
still isotropic) scattering (σbs = 9.0). The results are shown in Fig. 3. The relative L2 errors
in this case are 1.04%, 14.84%, 37.02% and 74.02% respectively. If we compare the results
in Fig. 2 and those in Fig. 3, we see that the quality of the reconstructions are almost inde-
pendent of the scattering strength. This is what we observed in our numerical experiments
in other cases as well.

Experiment 2. In the second set of numerical studies, we consider the reconstruction of
the fluorescent absorption coefficient σa,xf assuming that the quantum efficiency η is known.
Currently, we do not have a well-established method to construct illuminations sources
such that the condition ux = KI(ux) is satisfied for the transport solution, besides in non-
scattering media. We therefore can not use directly the Reconstruction Algorithm II as we

19



Figure 2: The quantum efficiency η reconstructed with different types of data. The noise
levels in the data used for the reconstructions, from left to right are γ = 0, 2, 5 and 10
respectively. The base scattering strength is σbs = 1.0.

Figure 3: Same as in Fig. 2 but with base scattering strength σbs = 9.0.

commented before. Instead, we use the nonlinear reconstruction algorithm in Section 4.4.
We show in Fig. 4 the reconstructions of σa,xf in an isotropic medium with base scattering
strength σbs = 1.0. Shown from left to right are respectively the reconstructions using data
with noise levels γ = 0, 2, 5 and 10. The relative L2 errors in the four reconstructions are
0.01%, 6.42%,16.06% and 32.12% respectively. In Fig. 5, we show the same reconstructions
in an anisotropic scattering medium with base scattering strength σbs = 9.0 and anisotropic
factor 0.9. The relative L2 errors are 0.02%,6.70%,16.74% and 33.42%, respectively. We
again observed that the reconstructions are of good quality with data contains reasonably
low level of random noise.

Figure 4: The fluorescence absorption coefficient σa,xf reconstructed with different types of
data. The noise level in the data used for the reconstructions, from left to right are: γ = 0
(noise-free), γ = 2, γ = 5, and γ = 10. The base scattering strength is σbs = 1.0.
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Figure 5: Same as in Fig. 4 but in a medium of anisotropic scattering with base scattering
strength σbs = 9.0 and anisotropic factor 0.9.

Experiment 3. In the third set of numerical simulations, we study the simultaneous
reconstruction of the coefficients η and σa,xf in the linearized setting described in Section 4.3
using the Reconstruction Algorithm III. The synthetic perturbed data are generated using
directly the linearized model (56), not the original nonlinear model. Our aim here is to
test the stability of the reconstruction, not the accuracy of the linearization. We use data
sets collected from four angularly-resolved illuminations supported respectively on the four
sides of the boundaries of the domain, pointing toward the interior of the domain. The
background scattering strength is σbs = 1.0 and the anisotropic factor is 0.5. We linearize
the problem around the background coefficients:

η0 =
1

|Ω|

∫
Ω

η(x)dx and σ0
a,xf =

1

|Ω|

∫
Ω

σa,xf (x)dx.

The reconstructions, after adding back the background, are shown in Fig. 6. The relative
L2 error in the reconstructions using data with noise level γ = 0, γ = 2, γ = 5 and γ = 10
are respectively (0.00%, 0.00%), (14.65%, 7.45%), (37.28%, 18.77%) and (75.80%, 39.04%)
respectively. In all reconstructions, we applied the Tikhonov regularization with a small
regularization strength that we select by trial and errors. We hope to develop more system-
atical strategy on regularization in the future.

Experiment 4. The last set of numerical simulations are devoted to the simultaneous
reconstructions of the coefficient pair (η, σa,xf ) in the fully nonlinear setting. We use the
optimization-based reconstruction algorithm developed in Section 4.4. Besides the fact that
the synthetic data are now generated with the full transport model (1), not the linearized
model (56), the setup (for instance the background coefficients and anisotropic factor etc)
is the same as that in Experiment 3. We performed reconstructions with data containing
various noise levels. When the noise level is too high, we have difficulties to find reasonable
initial guesses to make the algorithm converge. We show in Fig. 7 reconstructions with
data containing a small amount of noise, γ = 0, 1 and 2 respectively, with the initial guess
(η0, σ0

a,xf ) being the average of the true coefficients inside the domain. The relative L2 error in
the reconstructions are respectively (16.40%, 8.32%), (18.26%, 9.17%) and (23.26%, 19.30%)
respectively. We again impose weak Tikhonov regularizations in all the reconstructions with
the regularization strengths selected by trial and error. Tuning various parameters in the
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Figure 6: Simultaneous reconstructions of the coefficient pair (η, σa,xf ) in the linearized
setting with different types of data. The noise level in the data used for the reconstructions
are (from left to right): γ = 0, 2, 5 and 10 respectively. The base scattering strength is
σbs = 1.0.

algorithm could potentially improve the reconstructions results, but we did not pursue in
that direction.

6 Concluding Remarks

We studied in this work a few inverse problems in quantitative fluorescence photoacoustic
tomography in the radiative transport regime. We derived some uniqueness and stability
results on the reconstruction of the fluorescence absorption coefficient and the quantum
efficiency of the medium. In some cases, we were also able to develop efficient numerical
reconstruction algorithms. These results complement the results in [57] for the QfPAT
problem in the diffusive regime. We showed numerical simulations based on synthetic data
to support the mathematical analysis and demonstrate the performance of some of the
reconstruction algorithms.

One important application of the results in this paper is in X-ray modulated fluorescence
tomography (or X-ray luminescence tomography (XLT)) [61]. In XLT, X-rays, instead of
NIR photons, are used to excite the molecular markers. The X-ray density ux and the
generated NIR photon densities um solve the coupled transport system (1) with the scattering
term KΘ(ux) = 0 since X-rays travel in straight lines without being scattered. The theory
and reconstruction methods we developed in this work remain valid in that case. In other
words, we can recover stably the fluorescence absorption coefficient using data collected
from one X-ray illumination. This would provide a useful alternative to the reconstruction
method for XLT in [61].

Even though the QfPAT problem has been analyzed in detail in [57] in the diffusive
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Figure 7: Simultaneous reconstruction of the coefficient pair (η, σa,xf ) in the nonlinear setting
with different types of data. The noise level in the data used for the reconstructions, from
left to right, are respectively γ = 0, 1 and 2.

regime, the developments in this work are still useful in many settings. One well-known
example is the application in optical imaging of small animals [33] where the diffusion model
is not sufficiently accurate to describe the propagation of NIR photons inside the animals.

Our main research focus in near future is to analyze the uniqueness and stability proper-
ties of the simultaneous reconstruction problem, i.e. the problem of reconstructing the pair
(η, σa,xf ), in the fully nonlinear setting. This is an unsolved problem even in the diffusive
regime [57], although numerical simulations we have so far suggested that uniqueness and
stability both hold, at least in the regime where both coefficients are sufficiently large.
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and V. Ntziachristos, Multispectral opto-acoustic tomography of deep-seated fluo-
rescent proteins in vivo, Nature Photonics, 3 (2009), pp. 412–417.

[52] D. Razansky and V. Ntziachristos, Hybrid photoacoustic fluorescence molecular
tomography using finite-element-based inversion, Med. Phys., 34 (2007), pp. 4293–4301.

[53] K. Ren, Existence and uniqueness of Lp solutions to a radiative transport system,
Preprint, (2015).

[54] K. Ren, G. Bal, and A. H. Hielscher, Frequency domain optical tomography based
on the equation of radiative transfer, SIAM J. Sci. Comput., 28 (2006), pp. 1463–1489.

[55] , Transport- and diffusion-based optical tomography in small domains: A compar-
ative study, Applied Optics, 46 (2007), pp. 6669–6679.

[56] K. Ren, H. Gao, and H. Zhao, A hybrid reconstruction method for quantitative
photoacoustic imaging, SIAM J. Imag. Sci., 6 (2013), pp. 32–55.

[57] K. Ren and H. Zhao, Quantitative fluorescence photoacoustic tomography, SIAM J.
Imag. Sci., 6 (2013), pp. 2024–2049.

[58] T. Saratoon, T. Tarvainen, B. T. Cox, and S. R. Arridge, A gradient-based
method for quantitative photoacoustic tomography using the radiative transfer equation,
Inverse Problems, 29 (2013). 075006.

[59] O. Scherzer, Handbook of Mathematical Methods in Imaging, Springer-Verlag, 2010.

[60] V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil,
P. M. W. French, and S. R. Arridge, Fluorescence lifetime imaging by using
time gated data acquisition, Applied Optics, 46 (2007), pp. 7384–7391.

[61] P. Stefanov, W. Cong, and G. Wang, Modulated luminescence tomography, In-
verse Problems and Imaging, 9 (2015), pp. 551–578.

27



[62] P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound
speed, Inverse Problems, 25 (2009). 075011.

[63] J. Tervo, On coupled Boltzmann transport equation related to radiation therapy, J.
Math. Anal. Appl., 335 (2007), pp. 819–840.

[64] J. Tervo and P. Kokkonen, On existence of L1-solutions for coupled Boltz-
mann transport equation and radiation therapy treatment optimization, arXiv, (2014).
1406.3228v1.

[65] B. Wang, Q. Zhao, N. M. Barkey, D. L. Morse, and H. Jiang, Photoacous-
tic tomography and fluorescence molecular tomography: A comparative study based on
indocyanine green, Med. Phys., 39 (2012), pp. 2512–2517.

[66] L. V. Wang, ed., Photoacoustic Imaging and Spectroscopy, Taylor & Francis, 2009.

[67] , Photoacoustic tomography, Scholarpedia, 9 (2014). 10278.

[68] , Photoacoustic tomography: Principles and advances, Progress in Electromagnetics
Research, 147 (2014), pp. 1–22.

[69] Y. Wang, K. Maslov, C. Kim, S. Hu, and L. V. Wang, Integrated photoacoustic
and fluorescence confocal microscopy, IEEE Trans. Biomed. Eng., 57 (2010), pp. 2576–
2578.

[70] A. J. Welch and M. J. C. Van-Gemert, Optical-thermal Response of Laser Irra-
diated Tissue, Plenum Press, New York, 1995.

[71] B. L. Willis and C. V. M. van der Mee, Multigroup transport equations with
nondiagonal cross-section matrices, J. Math. Phys., 27 (1986), pp. 1633–1638.

[72] K. E. Wilson, T. Y. Wang, and J. K. Willmann, Acoustic and photoacoustic
molecular imaging of cancer, J. Nuclear Medicine, 54 (2013), pp. 1851–1854.

[73] R. J. Zemp, Quantitative photoacoustic tomography with multiple optical sources, Ap-
plied Optics, 49 (2010), pp. 3566–3572.

28


	Introduction
	General Properties of the Inverse Problems
	Reconstructing of a Single Coefficient
	The reconstruction of 
	The reconstruction of a,xf

	Simultaneous Reconstruction of Two Coefficients
	Linearization around (,a,xf)=(0,0)
	Linearization around a general background
	A partially linearized model
	Iterative reconstruction for the nonlinear case

	Numerical Experiments
	Concluding Remarks

