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Abstract

Photoacoustic tomography (PAT) is a novel hybrid medical imaging technique that
aims to combine the large contrast of optical coefficients with the high resolution capa-
bilities of ultrasound. We assume that the first step of PAT, namely the reconstruction
of a map of absorbed radiation from ultrasound boundary measurement, has been done.
We focus on quantitative photoacoustic tomography (QPAT), which aims at quantita-
tively reconstructing the optical coefficients from knowledge of the absorbed radiation
map.

We present a non-iterative procedure to reconstruct such optical coefficients, namely
the diffusion and absorption coefficients, and the Grüneisen coefficient when the prop-
agation of radiation is modeled by a second-order elliptic equation. We show that
PAT measurements allow us to uniquely reconstruct only two out of the above three
coefficients, even when data are collected using an arbitrary number of radiation illu-
minations. We present uniqueness and stability results for the reconstructions of such
two parameters and demonstrate the accuracy of the reconstruction algorithm with
numerical reconstructions from two-dimensional synthetic data.

Key words. Quantitative photoacoustic tomography, hybrid imaging modality, hybrid inverse
problem, interior data, diffusion regime, non-iterative reconstruction.

1 Introduction

Photoacoustic tomography (PAT) is a recent hybrid medical imaging modality that combines
the large contrast of optical parameters with the high resolution capabilities of ultrasonic
waves. Optical tomography is an imaging modality that utilizes the large contrast observed
in optical parameters. Its spatial resolution is, however, limited because of multiple scatter-
ing of light [6, 7]. Ultrasound exhibits much lower contrast because sound speeds vary little
between healthy and unhealthy tissues. However, the focusing of ultrasonic waves allows for
high resolution reconstructions. PAT is based on the photo-acoustic effect, which couples
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optical and ultrasonic waves in a way that may be described as follows. As optical radiation
propagates, a fraction of its energy is absorbed and generates a local heating of the under-
lying medium. The resulting mechanical expansion is the source of acoustic signals that
propagate through the domain of interest. Ultrasonic transducers located at the boundary
of the domain then record the emitted pressure waves as a function of time.

A first inverse problem in PAT consists of reconstructing the absorbed radiation map
H(x) from the pressure measurements. For reference to this inverse problem in the physical
and engineering literatures, we refer the reader to, e.g., [17, 23, 40, 41] and their references.
When sound speed is constant, explicit formulas have been obtained for a large class of
geometries of interest; see [21, 22, 29, 30, 35] and their references. When sound speed is
not constant but known, time reversal algorithms perform well under standard non-trapping
conditions as demonstrated in [5, 27, 38]. Note that acoustic absorption is typically neglected
in such reconstructions. Accounting for absorption is in fact a difficult and not entirely
understood problem [28].

In this paper, we assume that the above first step is done and that H(x) is known. The
absorbed radiation map H(x) is proportional to the absorption coefficient σ(x), the intensity
u(x) of the radiation that reaches the point x, and the Grüneisen coefficient Γ(x), which
measures how much ultrasound is generated by the absorbed radiation. The second step of
PAT, called quantitative photoacoustics (QPAT), aims to reconstruct the unknown optical
parameters and the Grüneisen coefficient from knowledge of H(x) = Γ(x)σ(x)u(x). For
QPAT in the setting of transport equations, we refer the reader to [8]. We consider here the
case where radiation propagation is modeled by a second-order elliptic (diffusion) equation.
The unknown coefficients are (D, σ,Γ), the diffusion, absorption, and Grüneisen coefficients,
respectively.

QPAT may be done in several ways. Radiating fields (photons) propagating with differ-
ent optical frequencies (colors) do not interact with one another and thus solve uncoupled
equations. Since the optical coefficients themselves depend on color, one methodology con-
sists of using multiple radiation illuminations (this is the multi-source setting) and acquire
as many radiation maps H(x). The objective is then to reconstruct the unknown parameters
independently for each color of interest. This is the setting considered in e.g., [12, 37, 42]
and in this paper. Alternatively, a second methodology is to probe the domain of interest at
multiple optical wavelengths (colors) and to reconstruct optical coefficients based on prior
information regarding their frequency dependence [9, 17, 18]; see also [19] for a different
QPAT in the presence of chromophores with intensity-dependent absorption properties. We
refer the reader to [9] for an extension of the work presented in this paper to the setting
where prior information on the frequency dependence of the unknown coefficients is taken
into account.

This paper has two main objectives. In [12], the Grüneisen coefficient is assumed to be
known. In that setting, it is then shown that two well chosen illuminations are sufficient
to uniquely and stably reconstruct (D, σ). Moreover, [12] provides an explicit method to
solve (D, σ) that relies on solving a transport equation and a second-order elliptic equation.
The well-posedness of the transport equation requires that a vector field constructed from
available data satisfy appropriate assumptions. The set of well-chosen illuminations that
guaranty such assumptions is based on the construction of complex geometric optics solutions
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and is not very explicit. The first objective of this paper is to show that a large class of
illuminations allows for stable and robust reconstructions of (D, σ) in the two-dimensional
setting and to implement (a modified version of) the reconstruction proposed in [12] and
obtain robust and stable numerical reconstructions of (D, σ) for a large class of illuminations.

The second objective of the paper is to generalize the method in [12] to the reconstruction
of the three parameters (D, σ,Γ). There, we show a somewhat negative result: no matter
how many illuminations are used and how many corresponding H(x) are constructed, the
available data allow us to reconstruct only two functionals of (D, σ,Γ). The two functionals
uniquely determine all possible measurements of the form H(x) = Γ(x)σ(x)u(x). Thus,
independent of any method of reconstruction, two well-constructed measurements (H1, H2)
uniquely characterize all other possible measurements of the form H(x) and there is therefore
no need to acquire them, at least in the setting of noise-free data. However, we prove the
positive result that these two functionals uniquely characterize any pair of coefficients in
(D, σ,Γ) provided that the third one is known. These results are summarized in Theorem
2.2 and Corollary 2.3 below.

Section 2 devoted to the presentation of the theoretical results also provides a new stabil-
ity estimate for the solution to the transport equation. Under the assumption that the vector
field in the transport equation does not vanish, we obtain Hölder estimates for the solution to
the transport equation in different Lp norms in terms of errors in the measurement H(x) also
in Lq norms. (A function f(x) is in Lp(X) of a domain X when ‖f‖pp :=

∫
X
|f(x)|pdx <∞.)

These results are summarized in Theorem 2.4 and are based on a direct analysis of the
transport equation, as in e.g. [2], rather than on the method of characteristics as in [12].

The practical difficulties inherent to the numerical simulation of the transport and elliptic
equations that appear in QPAT are described in section 3. Several numerical experiments
presented in section 4 show the robustness of solving the transport and elliptic equations
to reconstruct two possibly highly oscillatory coefficients in (D, σ,Γ) from measurements of
the form H(x) = Γ(x)σ(x)u(x). We also show that increasing the number of illuminations,
which is unnecessary in the presence of noise-free data, allows us to obtain more stable
reconstructions of two coefficients in the presence of noisy data when the third coefficient is
known. This is consistent with the better stability estimates obtained in [12] in the presence
of multiple illuminations.

Let us finally mention that QPAT is one example in a large family of hybrid inverse
problems where one aims at reconstructing coefficient from knowledge of internal data. For
similar inverse problems with internal data that have been addressed in the mathematical
literature, we refer the reader to, e.g., [4, 10, 11, 14, 31, 32, 33, 39].

2 Reconstruction formulas and stability results

In Quantitative photoacoustic tomography (QPAT) in the diffusive regime, photon (radia-
tion) propagation is modeled by the following second-order elliptic equation

−∇ ·D(x)∇u+ σ(x)u = 0 in X
u = g on ∂X,

(1)
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with prescribed Dirichlet conditions at the boundary ∂X. Throughout the paper, we as-
sume that X is a bounded open domain in Rd with smooth boundary ∂X. The optical
coefficients (D(x), σ(x)) with D(x) the diffusion coefficient and σ(x) the absorption coef-
ficient are assumed to be bounded from above and below by positive constants. In the
theoretical analyses below, we also assume that they are Lipschitz continuous, i.e., of class
W 1,∞(X) (the space of differentiable functions with bounded derivative).

The information about the coefficients in QPAT takes the following form:

H(x) = γ(x)u(x) a.e. x ∈ X, where γ(x) := Γ(x)σ(x). (2)

The coefficient Γ(x) is the Grüneisen coefficient. In many works in QPAT, it is assumed to
be constant. We assume here that it is Lipschitz continuous and bounded above and below
by positive constants.

The objective of QPAT is to reconstruct (D, σ,Γ) from knowledge of H(x) in (2) obtained
for a given number of illuminations g in (1). The main results of this paper are that:

• Two well chosen illuminations provide two independent relations χ = χ(D, σ,Γ) and
q = q(D, σ,Γ) of the three coefficients (D, σ,Γ). This allows us to uniquely reconstruct
two out of the three coefficients (D, σ,Γ) provided the third one is known.

• These two independent relations uniquely determine the measurements H(x) for all
other possible illuminations g(x) on ∂X. In other words, independent of the num-
ber of illuminations and corresponding measurements, all that we can reconstruct
about (D, σ,Γ) is (χ, q). This makes it impossible to reconstruct the three coefficients
(D, σ,Γ) from QPAT data without additional prior information.

• For two well-chosen illuminations, the reconstruction of (χ, q) is Hölder-stable, which
means that an error of order ε in the data in an appropriate norm generates an error
in the reconstruction of (χ, q) of order εκ in another appropriate norm for some κ > 0.
(We say that a reconstruction is Lipschitz-stable when κ = 1.)

Our main assumptions are that:

(i) The coefficients (D, σ,Γ) are of class W 1,∞(X) and bounded above and below by
positive constants. The coefficients (D, σ,Γ) are known on ∂X.

(ii) The illuminations g1 and g2 are positive functions on ∂X and we assume that they are
the values (the restrictions) on ∂X of functions of class C3(X̄) (i.e., functions that are
three times differentiable with continuous derivative of order 3 on X̄ = X ∪ ∂X).

(iii) the vector field

β := H1∇H2 −H2∇H1 = H2
1∇

H2

H1

= H2
1∇

u2

u1

= −H2
2∇

H1

H2

(3)

is a vector field in W 1,∞(X) such that

|β|(x) ≥ α0 > 0, a.e. x ∈ X. (4)
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By standard regularity theory for elliptic equations and the maximum principle [25], the
solutions to (1) are of class W 3,p(X). Here and below, we denote by Wm,p(X) the space of
functions with derivatives of order less than or equal to m in Lp(X).

Beyond the regularity assumptions on (D, σ,Γ), the domain X, and the boundary condi-
tions g1 and g2 , the only real assumption we impose is (4). In general, there is no guaranty
that the gradient of u2

u1
does not vanish. The existence of vector fields such that (4) holds

independent of the unknown coefficients (D, σ,Γ) in a large set of coefficients is proved in
[12]. In that paper, illuminations that are close to values on ∂X of specific complex geo-
metric optics (CGO) solutions are shown to be sufficient to ensure (4). The proof in [12]
displays sufficient conditions for (4) to hold. However, such conditions are far from being
necessary and in fact many vector fields not based on the CGO solutions still satisfy (4).

In dimension d = 2, a simple condition guarantees that (4) holds. We have the following
result [2, 32]:

Lemma 2.1. Assume that h = g2
g1

on ∂X is an almost two-to-one function in the sense

of [32], i.e., a function that is a two-to-one map except possibly at its minimum and at its
maximum. Then (4) is satisfied.

Proof. Upon multiplying the equation for u1 by u2, the equation for u2 by u1, and subtracting
both relations, we obtain

−∇ · (Du2
1)∇u2

u1

= 0, in X

u2

u1

=
g2

g1

, on ∂X.
(5)

This implies that υ := u2

u1
satisfies an elliptic equation with a diffusion coefficient D̃ = Du2

1

bounded from above and below by positive constants. Note that β = H2
1∇υ. Results in,

e.g., [2, Theorem 1.2] show that ∇υ cannot vanish inside X. By the maximum principle
and the assumption on h, no critical point of υ can occur on ∂X either. This implies that
|∇υ| > 0 and that we can find a constant such that (4) holds since H2

1 is bounded from
below by a positive constant and by continuity |∇υ| attains its (strictly positive) minimum
in X̄.

In dimension d ≥ 3, the above result on the (absence of) critical points of elliptic solutions
no longer holds. However, by continuity, we may verify that (4) is satisfied for a large class
of illuminations when D is close to a constant and σ is sufficiently small. For arbitrary
coefficients (D, σ) in dimension d ≥ 3, the only available proof that (4) is satisfied for
an open set of illuminations is the one obtained in [12]. Note also that (4) is a sufficient
condition for us to solve the inverse problem of QPAT. In [2], a similar problem is addressed
in dimension d = 2 without assuming a constraint of the form (4). In this paper, we consider
vector field for which (4) holds.

Uniqueness result. We first prove a result that provides uniqueness up to a specified
transformation.

Theorem 2.2. Assume that hypotheses (i)-(iii) hold. Then

5



(a) H1(x) and H2(x) uniquely determine the whole measurement operator H : H
1
2 (∂X)→

H1(X), which to g defined on ∂X associates H(g) = H in X defined by (2).

(b) The measurement operator H uniquely determines the two following functionals of
(D, σ,Γ):

χ(x) :=

√
D

Γσ
(x), q(x) := −

(∆
√
D√
D

+
σ

D

)
(x). (6)

Here ∆ is the Laplace operator.

(c) Knowledge of the two functionals χ and q uniquely determines H1(x) and H2(x). In
other words, the reconstruction of (D, σ,Γ) is unique up to transformations that leave
(χ, q) invariant.

Proof. Let us start with (a). As in the derivation of (5), we obtain

−∇ · (Du2
1)∇H2

H1

= 0, in X

Du2
1 = D|∂Xg

2
1, on ∂X.

(7)

This is a transport equation in conservative form for Du2
1. More precisely, this is a transport

equation ∇·ρβ̃ = 0 for ρ with ρ|∂X = 1 and β̃ = χ2β = (Du2
1)∇H2

H1
. Since β̃ ∈ W 1,∞(X) and

is divergence free, the above equation for ρ admits the unique solution ρ ≡ 1 since (4) holds.
Indeed, we find that ∇ · (ρ− 1)2β̃ = 0 by application of the chain rule with ρ|∂X − 1 = 0 on
∂X. Upon multiplying the equation by H2

H1
and integrating by parts, we find∫

X

(ρ− 1)2χ2H2
1

∣∣∣∇H2

H1

∣∣∣2dx = 0.

Using (4), we deduce that ρ ≡ 1. This proves that Du2
1 is uniquely determined. Dividing

by H2
1 = (Γσ)2u2

1, this means that χ > 0 is uniquely determined. Note that we do not
need the full W 1,∞(X) regularity of β. All we need is that β be sufficiently regular so that
the renormalization property holds in order to obtain the above integral; see [3, 13, 16, 20].
However, we still need a condition of the form (4) to conclude that the solution to the
transport equation is unique. See in particular the treatment of two-dimensional vector
fields in [15, 26].

Let now g be an arbitrary boundary condition and let u be the solution to (1) and
H = Hg defined by (2). Replacing H2 above by H yields

−∇ · χ2H2
1∇

H

H1

= 0, in X

H = Γ|∂Xσ|∂Xg, on ∂X.
(8)

This is a well-defined elliptic equation with a unique solution H ∈ H1(X) for g ∈ H 1
2 (∂X).

This proves that H is uniquely determined by (H1, H2).
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Let us next prove (b). We have already seen that χ was determined by (H1, H2), which
is clearly determined by H. Moreover, define v =

√
Du1, which is also uniquely determined

based on the results in (a). Define

q =
−∆v

v
= −∆(

√
Du1)√
Du1

.

Since u1 is bounded from below, is sufficiently smooth, and solves (1), a routine calculation
shows that q is given by (6).

Finally, we prove (c). Since q is known, we can solve

(∆ + q)vj = 0, X, vj =
√
D|∂Xgj ∂X, j = 1, 2.

Because q is of the specific form (6) as a prescribed functional of (D, σ,Γ), it is known
that (∆ + q) does not admit 0 as a (Dirichlet) eigenvalue, for otherwise, 0 would also be a
(Dirichlet) eigenvalue of the elliptic operator

(−∇ ·D∇+ σ)· = (−
√
D(∆ + q)

√
D) · . (9)

The latter calculation is the standard Liouville transformation allowing us to replace an
elliptic operator by a Schrödinger operator. Thus vj is uniquely determined for j = 1, 2.
Now,

Hj = Γσuj =
Γσ√
D
vj =

vj
χ
, j = 1, 2,

and is therefore uniquely determined by (χ, q).

On the reconstruction of two coefficients. The above result shows that the unique
reconstruction of (D, σ,Γ) is not possible even from knowledge of the full measurement
operator H defined in Theorem 2.2. We therefore face this peculiar situation that two well-
chosen illuminations uniquely determine the functionals (χ, q) but that acquiring additional
measurements does not provide any new information, at least in the absence of noise in the
data. However, if one coefficient in (D, σ,Γ) is known, then we have the following positive
result that the other two coefficients are uniquely determined:

Corollary 2.3. Under the hypotheses of the previous theorem, let (χ, q) in (6) be known.
Then

(a) If Γ is known, then (D, σ) are uniquely determined.

(b) If D is known, then (σ,Γ) are uniquely determined.

(c) If σ is known, then (D,Γ) are uniquely determined.

Proof. (a) is probably the most practical case as Γ is often assumed to be constant. Since
Γ is known, then so is Γχ =

√
D/σ so that we have the elliptic equation for

√
D:

(∆ + q)
√
D +

1

Γχ
= 0, X,

√
D|∂X =

√
D|∂X , ∂X. (10)
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Again, because of the specific form of q, (∆ + q) is invertible and the above equation admits

a unique solution. Once
√
D, hence D, is known, then so is σ =

√
D

Γχ
.

If D is known in (b), then σ is known from q and Γ is known from χ.
Finally in (c), we obtain that from the expression for q that

√
D(∆ + q)

√
D + σ = 0 X,

√
D|∂X =

√
D|∂X , ∂X. (11)

We need to prove a uniqueness result for the above nonlinear equation for
√
D. Let us

assume that
√
D and another solution τ

√
D for 0 < τ(x) satisfy the above equation for σ

fixed. We have
−
√
D(∆ + q)

√
Dτ − σ

τ
= 0 X.

Thanks to (9), this implies the following equation for τ :

−∇ ·D∇τ + σ(τ − 1

τ
) = 0, X, τ = 1, ∂X.

Upon multiplying by τ − 1 and integrating by parts, we find that∫
X

D|∇(τ − 1)|2dx+

∫
X

σ|τ − 1|2 τ + 1

τ
dx = 0.

Since τ > 0, we deduce from the above that τ ≡ 1 and that D is uniquely determined by q.
We then retrieve Γ from knowledge of χ.

Reconstruction formulas. Note that the above uniqueness results are constructive. In
all cases, we need to solve the transport equation for χ:

−∇ · (χ2β) = 0 in X, χ|∂X known on ∂X, (12)

with β the vector field defined in (3). This uniquely defines χ > 0. Then we find that

q(x) = −∆(H1χ)

H1χ
= −∆(H2χ)

H2χ
. (13)

This provides explicit reconstructions for (χ, q). In case (b), no further equation needs to
be solved. In cases (a) and (c), we need to solve an elliptic equation for

√
D, which is the

linear equation (10) in (a) and the nonlinear equation (11) in (c). These are the steps that
will be implemented in the sections on numerical simulations below.

Stability of the solution of the transport equation. Before presenting our numerical
framework, we derive a stability result for the reconstruction of χ. A similar result was
obtained in [12] by using the stability of the method of characteristics to solve ordinary
differential equations. Here, we present a stability result that is directly obtained from the
PDE (7) and is similar in spirit to estimates obtained in [2] and to the notion of renormal-
ization property of transport equation [20]. Similar stability results can be obtained for q
and then for (D, σ,Γ) depending on the reconstruction considered.
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Theorem 2.4. We assume that the hypotheses of Theorem 2.2 hold. Let H = (H1, H2) be
the measurements corresponding to the coefficients (D, σ,Γ) for which hypothesis (iii) holds.
Let H̃ = (H̃1, H̃2) be the measurements corresponding to the same illuminations (g1, g2) with
another set of coefficients (D̃, σ̃, Γ̃) such that (i) and (ii) still hold. Then we find that

‖χ− χ̃‖Lp(X) ≤ C‖H − H̃‖
1
2

(W 1,
p
2 (X))2

, for all 2 ≤ p <∞. (14)

Let us assume, moreover, that γ(x) is of class C3(X̄). Then we have the estimate

‖χ− χ̃‖Lp(X) ≤ C‖H − H̃‖
1
3

(L
p
2 (X))2

, for all 2 ≤ p <∞. (15)

By interpolation [1], the latter result implies that

‖χ− χ̃‖L∞(X) ≤ C‖H − H̃‖
p

3(d+p)

(L
p
2 (X))2

, for all 2 ≤ p <∞. (16)

We may for instance choose p = 4 above to measure the noise level in the measurement H
in the square integrable norm when noise is described by its power spectrum in the Fourier
domain.

Proof. Define ν = χ2 and ν̃ = χ̃2 with χ defined in (6) and β and β̃ as in (3). Then we find
that

∇ · ν − ν̃
ν

(νβ) +∇ · ν̃(β − β̃) = 0.

Note that νβ = χ2H2
1∇H2

H1
is a divergence-free field. Let ϕ be a twice differentiable, non-

negative, function from R to R with ϕ(0) = ϕ′(0) = 0. Then we find that

∇ · ϕ
(ν − ν̃

ν

)
(νβ) + ϕ′

(ν − ν̃
ν

)
∇ · ν̃(β − β̃) = 0.

Let us multiply this equation by a test function ζ ∈ H1(X) and integrate by parts. Since
ν = ν ′ on ∂X, we find∫

X

ϕ
(ν − ν̃

ν

)
νβ · ∇ζdx+

∫
X

ν̃(β − β̃)∇ ·
[
ζϕ′
(ν − ν̃

ν

)]
dx = 0.

Upon choosing ζ = H2

H1
, we find∫

X

ϕνH2
1

∣∣∣∇H2

H1

∣∣∣2dx+

∫
X

ν̃(β − β̃) · ∇H2

H1

ϕ′dx+

∫
X

ν̃(β − β̃) · ∇ν − ν̃
ν

H2

H1

ϕ′′dx = 0.

Above, ϕ stands for ϕ(ν−ν̃
ν

) in all integrals. By assumption on the coefficients, ∇ν−ν̃
ν

is
bounded a.e.. This is one of our main motivations for assuming that the optical coefficients
are Lipschitz. The middle term is seen to be smaller than the third term and so we focus on
the latter one. Upon taking ϕ(x) = |x|p for p ≥ 2 and using assumption (iii), we find that

‖ν − ν̃‖pLp(X) ≤ C

∫
X

|β − β̃||ν − ν̃|p−2dx.
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By an application of the Hölder inequality, we deduce that

‖ν − ν̃‖Lp(X) ≤ C‖β − β̃‖
1
2

L
p
2 (X)

.

We next write β − β̃ = (H1 − H̃1)∇H2 + H̃1(∇(H2 − H̃2) − . . . and use the fact that the
solutions to (1) and the coefficients are in W 1,∞(X) to conclude that (14) holds.

The other results are obtained by regularity theory and interpolation. Indeed from
regularity results in [25] with coefficients in W 1,∞(X), we find that the solutions to (1) are
of class W 3,q(X) for all 1 ≤ q < ∞. Since the coefficient γ is of class C3(X̄), then the
measurements Hj are of class W 3,q(X) for all 1 ≤ q <∞. Standard Sobolev estimates [25]
show that

‖Hj − H̃j‖W 1,q(X) ≤ C‖Hj − H̃j‖
2
3

Lq(X)‖Hj − H̃j‖
1
3

W 3,q(X).

The last term is bounded by a constant, which gives (15) for q = p
2
. Another interpolation

result states that

‖ϕ‖∞ ≤ ‖∇ϕ‖θ∞‖ϕ‖1−θ
p , θ =

d

d+ p
.

This provides the stability result in the uniform norm (16).

On the reconstruction of one coefficient. We conclude our theoretical section by
the reconstruction of one coefficient when the other two coefficients are known. This is
significantly simpler than the reconstruction of two coefficients. In none of the cases do we
need to solve a transport equation involving the vector field β. The latter was obtained by
eliminating σ from the elliptic equation, which is no longer necessary when two coefficients
are already known.

When only Γ is unknown, then we solve (1) for u and then construct Γ =
H

σu
.

When only σ is unknown, then we solve

−∇ ·D∇u(x) +
H

Γ
= 0, in X

u(x) = g(x), on ∂X
, σ =

H

Γu
. (17)

When only D is unknown, we obtain u = H
σΓ

and then the above elliptic equation in (17)
with D|∂X known is a transport equation for D. As soon as ∇u is a sufficiently smooth,
non-vanishing vector field, then D is uniquely determined by the above linear equation. This
problem is analyzed in e.g., [2, 36].

3 Numerical implementation of the reconstruction

In this section and the next, we present a numerical implementation of the reconstruction
procedure given in the above theorem and its corollary. We recall that we have to solve a
transport equation to reconstruct χ and q and an elliptic equation to reconstruct D when
the latter is not known.
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All the theoretical results require a certain degree of smoothness of the coefficients we
are interested in. The numerical experiments below show that the reconstructions are quite
robust even when the coefficients display multiple jump singularities. When this occurs, the
numerical implementation has to be done carefully in order to avoid spurious oscillations.

Numerical simulation of the transport equations. The reconstruction procedure we
presented above is non-iterative in the sense that the nonlinear inverse problem is solved
in one step. No iterations or updating of the unknowns are necessary as in the nonlinear
reconstruction schemes used in optical tomography [6]. In principle, we only need to solve
the transport equation (7) numerically to reconstruct χ2 = Du2

1/H
2
1 . In practice, we have

to be careful in the numerical computations because the vector field β = H2
1∇

H2

H1

usually

varies significantly over the domain. We found it numerically useful to normalize the vector
field in the transport equation (7). We rewrite the transport equation as

−∇ ·
(
χ2|β|

)
β̂ = 0 in X

χ2|β| =

√
D|∂X

Γ|∂Xσ|∂X
on ∂X,

(18)

so that the new vector field β̂ =
β

|β|
is a unit vector everywhere.

Regularization in the presence of noise. When the illuminations are chosen so that
the vector field β is regular enough, we can solve (18) directly to reconstruct χ (since |β| is

known). When the data are noisy, the vector field β computed by differentiating
H2

H1

may

become irregular. Solving the transport equation (18) with such an irregular vector field
can be problematic in practice. Two ways to regularize the problem have been considered.

The first way of regularizing the problem is to add a small artificial diffusion ε to the
transport equation:

−ε∆
(
χ2|β|

)
−∇ ·

(
χ2|β|

)
β̂ = 0, in X

χ2|β| =

√
D|∂X

Γ|∂Xσ|∂X
, on ∂X.

(19)

We then solve this regularized equation to reconstruct χ.
The second way to regularize the problem is to work directly on the discretized system.

We discretize the equation using a first order upwind discontinuous Galerkin method. Let
us denote by f the discretized version of χ2|β|, A the corresponding discretized transport
operator and d the right hand side that comes from the boundary condition. We then obtain
a system of equations Af = d. We solve the transport equation in the least-square sense by
minimizing the following functional

O(f) = F(f) +R(f) ≡ 1

2
‖Af − d‖2

2 + ρ‖Mf‖1. (20)
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Here M denotes the discretized version of the gradient operator. We have chosen the reg-
ularization term to be the TV norm of f (i.e. l1 norm of Mf) to deal with discontinuous
coefficients. To recover smooth coefficients, we should replace the l1 norm with the square
of the l2 norm of Mf , ρ‖Mf‖2

2 , in which case the least-square problem admits the explicit
solution f = (A∗A + ρM∗M)−1A∗d.

To minimize the objective functional (20) with the l1 regularization term, we use the
Bregman iteration scheme proposed in [34]. The Bregman iteration scheme is characterized
by the following iterative procedure for k ≥ 0 starting with the projection operator P0:

fk+1 = arg min
f
F(f) +R(f)− 〈Pk, f〉

Pk+1 = Pk −∇fF(fk+1),
(21)

where ∇fF(fk+1) means the evaluation of ∇fF at fk+1. It is proved in [34] that the iterations
are well-defined and that the scheme converges if there are only non-smooth functions in the
kernel of A, or at the continuous level, in the kernel of the transport operator with vector
field β̂. For applications of the Bregman method to photoacoustic tomography, see also [24].

Setting with multiple illuminations and construction of vector fields. It is shown
in [12] that acquiring 2n measurements for well-chosen illuminations can improve the stabil-
ity of the reconstructions. The main idea is that two measurements allow us to obtain the
transport equation considered before: ∇ · χ2β = 0 so that β · ∇χ2 + χ2∇ · β = 0 while 2n
measurements (or sometimes possibly less) allow us to get an equation for the full gradient
∇χ2 provided that n linearly independent vector fields can be constructed at each x ∈ X.
Instabilities that may appear when solving β ·∇χ2 +χ2∇·β = 0 in the vicinity of ∂X when β
is almost tangent to ∂X no longer appear when we solve a system of the form ∇χ2 +Λχ2 = 0
with Λ an appropriate known vector.

We have not tried to implement a reconstruction based on solving the above redundant
vectorial equation. However, we have demonstrated that acquiring more measurements was
unsurprisingly beneficial when noise was present in the data. In the presence of I > 2 data
sets, we can write down I − 1 transport equations of the form (7) for the same unknown χ
but different vector field βi, i = 2, ..., I. We may then solve the over-determined system of
I−1 transport equations to reconstruct χ. We can either solve the system in the least square
sense or solve (18) for different indices and then take the average of the results. We can
also use multiple data sets as follows. We divide the data into two groups, Hi, i = 1, ..., k
and Hj, j = k + 1, ..., I. We then construct the data H̃1 =

∑k
i=1Hi and H̃2 =

∑I
j=k+1 Hj.

This is equivalent to saying that H̃1 and H̃2 are generated by the illuminations g̃1 =
∑k

i=1 gi
and g̃2 =

∑I
j=k+1 gj, respectively. Numerically, we have observed that both ways of utilizing

multiple data sets yielded almost identical reconstruction results.

Elliptic equation with non-smooth diffusion coefficient. The inversion procedure
presented in the theoretical section can be applied to the reconstruction of discontinuous
diffusion coefficients. Instead of solving (10) for

√
D, we reconstruct non-smooth coefficients

D as follows. We rewrite the diffusion equation, again using the fact that we can reconstruct

12



v1 =
√
Du1, and H1 = Γσu1, as

−∇ · v2
1∇

1

u1

=
H1

Γ
, in X,

1

u1

=
1

g1

(x), on ∂X.

(22)

This is an elliptic equation for
1

u1

. In the case when g1 > 0 everywhere on ∂X, (22) provides

stable reconstructions of u1 and thus
√
D, provided that v1 has been reconstructed faithfully.

4 Simulation results

In all the simulations below, we take the domain of interest to be the square X = (0, 2)2.
We use the notation x = (x, y) and ∂XL, ∂XR, ∂XT , and ∂XB denote the left, right, top
and bottom parts of the boundary, respectively.

We discretize the diffusion equations, such as (1), (11) and (22), and the transport
equations, such as (18), with a first-order discontinuous Galerkin method. The domains
are covered with triangular finite element meshes with about 15000 nodes. All the plots
are displayed on a structured grid interpolating the quantities defined on the finite element
mesh with a MATLAB interpolation algorithm. The semilinear elliptic equation (11) is
solved with a standard Newton method. We observed that the Newton scheme converged
rapidly and was quite robust with respect to changes in the initial guess.

In all the numerical simulations, we construct the interior data H(x) by solving the diffu-
sion equation with the true coefficients on an extremely fine finite element mesh, evaluating
Γσu on the fine mesh, and interpolating it onto the coarser mesh used in the reconstruc-
tions. The data constructed this way thus contain some “noise” due to the mesh difference
and interpolation. Nonetheless, we shall refer to these data as the “noise-free” data. We
estimated that this “noise” level was less than 0.2%.

A simple noise model. We also perform reconstructions using noisy data. For want of
a more physically realistic noise model, here we simply add a discrete (on the coarse mesh
composed of 15000 nodes) i.i.d. noise to the data set H(x) so that

H̃(x) = H(x) ∗ (1 + α random(x)), (23)

where random(x) is an uncorrelated random field taking values in [−1, 1] and α controls
the noise level. Such a noise is sufficient to generate highly oscillatory vector fields that
complicate the simulation of the transport equation. When sufficiently noisy data are ac-
quired, we need to run a de-noising process on the vector field, which we chose as a low-pass
filter constructed by a 5-point sliding averaging process. Although this may not be the best
denoising process available, it worked quite well numerically to remove the high-frequency
noise generated in (23). A more systematic study of noise in QPAT, including low-frequency
noise that may have a larger impact on the reconstructions, still needs to be done.
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We measure the quality of the reconstruction using the relative L2 error between recon-
structed and true coefficients. We use ECσ and ENσ to denote the relative L2 error in the
reconstruction of σ from “clean” and “noisy” data, respectively. All noisy data have 8%
random noise constructed as in (23).

Vector fields with different illumination patterns. We show here that many pairs of
illuminations can generate vector fields that connect every point inside the domain with a
point on the boundary of the domain, in the sense that for every point inside the domain,
there is an integral curve of the vector field passing through that point and reaching the
boundary.

Figure 1: Top left to bottom right: the absorption coefficient, the diffusion coefficient,
and the normalized vector fields constructed using the illumination pairs (g1, g2), (g3, g4),
(g5, g6), (g7, g8) in Experiment 1.

Experiment 1. In the first numerical experiment, we plot the vector fields generated from
different pair of illuminations for a problem with the following discontinuous absorption and
diffusion coefficients:

σ(x) =

{
0.3, x ∈ X1

0.1, x ∈ X\X1
D(x) =

{
0.04, x ∈ X2 ∪X3

0.02, x ∈ X\(X2 ∪X3),

where the inclusions are X1 = [0.3 0.7] × [0.3 0.7], X2 = [0.8 1.2] × [1.3 1.7] and X3 =
[1.3 1.7]×[0.3 1.1]. The Grüneisen coefficient is taken to be constant and equals 0.5 although
it does not play a role in the plot of the vector field. We consider four different pairs of
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illuminations (g1, g2), (g3, g4), (g5, g6) and (g7, g8) that are defined respectively as follows.

g1 =

{
1.0, x ∈ ∂XT ∪ ∂XL,
0.5, x ∈ ∂XB ∪ ∂XR

g2 =

{
0.5, x ∈ ∂XT ∪ ∂XL,
1.0, x ∈ ∂XB ∪ ∂XR

g3 =

{
1.0, x ∈ ∂XT ∪ ∂XL,
0.0, x ∈ ∂XB ∪ ∂XR

g4 =

{
0.0, x ∈ ∂XT ∪ ∂XL,
1.0, x ∈ ∂XB ∪ ∂XR

g5 =

{
1.0, x ∈ ∂XL,
0.0, x ∈ ∂XR ∪ ∂XT ∪ ∂XB

g6 =

{
0.0, x ∈ ∂XL ∪ ∂XT ∪ ∂XB,
1.0, x ∈ ∂XR

g7 =


x, x ∈ ∂XT ,
y, x ∈ ∂XL,
0.0, x ∈ ∂XB ∪ ∂XR

g8 =


0.0, x ∈ ∂XT ∪ ∂XL,
x, x ∈ ∂XB,
y, x ∈ ∂XR

The results of the numerical experiment are shown in Fig. 1. Even though slight errors may
occur near boundaries, in general the constructed vector fields are quite accurate. Note that
for better visualization purpose, we have plotted the vector field on a mesh that is 8 times
coarser than the mesh used in the numerical reconstructions shown below.

Numerical simulations with smooth coefficients. We present in Experiments 2, 3
and 4 the reconstructions of (Γ, σ), (Γ, D), and (σ, D) in the setting of smooth coefficients.
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Figure 2: Experiment 2. From top left to bottom right: true Γ and σ, reconstructed Γ and
σ with noise-free data, reconstructed Γ and σ with noisy data, cross-section of true (solid)
and reconstructed (red dashed and blue dot-dashed) Γ and σ along y = 1 with noisy data.

Experiment 2. In this experiment, we intend to reconstruct the Grüneisen and absorption
coefficients:

Γ(x) = 0.8 + 0.4 tanh(4x− 4)) and σ(x) = 0.1 + 0.2e−(x−1)2−(y−1)2 .
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The diffusion coefficient is a known constant D(x) = 0.01 + 0.01 tanh(4y − 4)). The
measurements are constructed with the two sources g1 and g2. The results of the numerical
experiment are shown in Fig. 2. The accuracy of the reconstructions can be best seen in
the cross-section plots. The relative L2 errors, defined as the ratio between the L2 error in
a reconstructed image and L2 norm of the corresponding true image, in the reconstructions
are ECΓ = 0.2%, ENΓ = 1.1%, ECσ = 0.2% and ENσ = 1.6%, respectively. We obtain very
similar results when we use other pairs of illuminations.
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Figure 3: Experiment 3. From top left to bottom right are: true Γ and D, reconstructed
Γ and D with noise-free data, reconstructed Γ and D with noisy data, cross-section of true
(solid) and reconstructed (red dashed and blue dot-dashed) Γ and D along y = 1 with noisy
data.

Experiment 3. In this experiment, we intend to reconstruct the Grüneisen and diffusion
coefficients:

Γ(x) = 0.6 + 0.3 sin(πx) and D(x) = 0.03 + 0.01 sin(πy).

The absorption coefficient is the known constant σ = 0.1. The measurements are again
constructed with the two sources g1 and g2. The results of the numerical experiments are
shown in Fig. 3. The relative L2 errors in the reconstructions are ECΓ = 0.2%, ENΓ = 1.1%,
ECD = 0.2% and END = 1.4%, respectively. As can be seen from the cross-section plots, the
reconstruction are fairly accurate. When noise-free data are used, we obtain almost perfect
reconstructions.

Experiment 4. In this experiment, the absorption and diffusion coefficients are given by

σ(x) = 0.1 + 0.2e−(x−1)2−(y−1)2 and D(x) = 0.03 + 0.02 sin(πx) sin(πy),

respectively. The Grüneisen coefficient is constant and given by Γ = 0.5. The measurements
are constructed with the two sources g1 and g2 described above. The results of the numerical
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experiment are shown in Fig. 4. The relative L2 errors are ECσ = 0.2%, ENσ = 0.8%, ECD =
0.1% and END = 3.1%, respectively.
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Figure 4: Experiment 4. From top left to bottom right are: true σ and D, reconstructed
σ and D with noise-free data, reconstructed σ and D with noisy data, cross-section of true
(solid) and reconstructed (red dashed and blue dot-dashed) σ and D along y = 0.5 with
noisy data.

Numerical simulations with discontinuous coefficients. We now consider the recon-
struction of discontinuous Grüneisen, absorption and diffusion coefficients. The reconstruc-
tions are done with the Bregman iteration method that was described above. As we have
seen, the discontinuities in Γ(x) and σ(x) cause no problem in the reconstructions, while
the discontinuities in the diffusion coefficient require special treatment.

Experiment 5. In this experiment, we intend to reconstruct the Grüneisen coefficient
that contains three inclusions at X1 = [0.3 0.7] × [0.3 0.7], X2 = [0.8 1.2] × [1.3 1.7] and
X3 = [1.3 1.7]× [0.3 1.1] and a smooth absorption coefficient:

Γ(x) =

{
0.8, x ∈ X1 ∪X2

0.4, x ∈ X\(X1 ∪X2)
and σ(x) =

{
0.3, x ∈ X3

0.1, x ∈ X\X3.

The diffusion coefficient is a known constant D(x) = 0.02. The measurements are con-
structed with the same sources as in Experiment 1. The results of the numerical experiment
are shown in Fig. 5. The relative L2 errors in the reconstructions are ECΓ = 0.2%, ENΓ = 5.0%,
ECσ = 0.2% and ENσ = 10.7%, respectively. Inside each region of constant coefficients, the
reconstructions are as accurate as before. The error in the reconstructions occurs mainly at
the location of the discontinuities. Even so, the jump of the coefficients across the interface
is well captured.
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Figure 5: Experiment 5. From top left to bottom right: true Γ and σ, reconstructed Γ and
σ with noise-free data, reconstructed Γ and σ with noisy data, cross-section of true (solid)
and reconstructed (red dashed and blue dot-dashed) Γ and σ along y = 0.5 with noisy data.

Experiment 6. In this experiment, we intend to reconstruct the discontinuous Grüneisen
and diffusion coefficients:

Γ(x) =

{
0.3, x ∈ X1

0.1, x ∈ X\X1
and D(x) =

{
0.04, x ∈ X2 ∪X3

0.02, x ∈ X\(X2 ∪X3).

The absorption coefficient is a known constant σ(x) = 0.1. The measurements are con-
structed with the same two sources g1 and g2 as in the previous cases. The results of the
numerical experiment are shown in Fig. 6. The relative L2 errors in the reconstructions are
ECσ = 0.2%, ENσ = 6.2%, ECD = 0.2% and END = 7.1%, respectively.

Experiment 7. In this experiment, we intend to reconstruct the absorption coefficient

σ(x) =

{
0.1 + 0.1 ∗ (sign(random) + 1), x ∈ Xij, 1 ≤ i, j ≤ 10
0.1, x ∈ X\(∪Xi,j),

where random is a random number in [−1 1] and Xij is the box Xij = [0.3 + 0.1(i−1) 0.3 +
0.1i]× [0.3 + 0.1(j − 1) 0.3 + 0.1j], and the discontinuous diffusion coefficient

D(x) =

{
0.02 + 0.02 ∗ (sign(random) + 1), x ∈ Xij, 1 ≤ i, j ≤ 10
0.02, x ∈ X\(∪Xi,j)

where Xij is the box Xij = [0.7 + 0.1(i− 1) 0.7 + 0.1i]× [0.7 + 0.1(j − 1) 0.7 + 0.1j]. The
Grüneisen coefficient is a known constant Γ(x) = 0.5. The measurements are constructed
with the two sources g1 and g2. One realization of the coefficients and the results of the
numerical experiment are shown in Fig. 7. The relative L2 error in the reconstructions are
ECσ = 0.2%, ENσ = 13.0%, ECD = 0.2% and END = 16.2%, respectively.
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Figure 6: Experiment 6. From top left to bottom right are: true Γ and D, reconstructed
Γ and D with noise-free data, reconstructed Γ and D with noisy data, cross-section of true
(solid) and reconstructed (red dashed and blue dot-dashed) Γ and D along y = 1.

Numerical simulations with multiple illuminations. We have seen that multiple
illuminations would not provide extra information that would allow us to reconstruct all
three coefficients. However, acquiring more data does improve reconstructions by averaging
out noise in the data.

Experiment 8. We present here a reconstruction of the absorption and diffusion coef-
ficients of Experiment 6 with multiple data sets. We have a total of 10 measurements
constructed using the sources g1-g10, with g1 - g8 given above and g9, g10 given as

g9 =

 e
−

(y − 1)2

2 0.12

√
2π0.12

, x ∈ ∂XL,

0.0, x ∈ ∂X\∂XL

g10 =

 e
−

(y − 1)2

2 0.12

√
2π0.12

, x ∈ ∂XR,

0.0, x ∈ ∂X\∂XR.

The data are polluted again with 8% of random noise. The transport equations are solved
in the least square sense with l1 sparsity regularization using the Bregman iteration method.
The reconstruction results are presented in Fig. 8. The relative L2 error in the reconstruc-
tions are EC

σ = 0.1%, EN
σ = 9.3%, EC

D = 0.1% and EN
D = 9.6%, respectively. The re-

constructions from redundant measurements in the case of noisy data are indeed improved.

5 Conclusions

This paper considers the reconstruction of (D, σ,Γ) from knowledge of several measurements
of the form Hj(x) = Γ(x)σ(x)uj(x), where the photon densities uj(x) solve the diffusion
equation (1) with prescribed illuminations g = gj on ∂X for 1 ≤ j ≤ J .
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Figure 7: Experiment 7. From top left to bottom right are: true σ and D, reconstructed
σ and D with noise-free data, reconstructed σ and D with noisy data, cross-section of true
(solid) and reconstructed (red dashed and blue dot-dashed) σ and D along y = 1 with noisy
data.

Our first main result is that independent of J ≥ 2, the most we can obtain about
(D, σ,Γ) are the two functionals (χ, q) defined in (6). In other words, knowledge of the full
measurement operator H, which to an arbitrary function g on ∂X associates H(g)(x) =
Γ(x)σ(x)u(x) with u solution of (1), is equivalent to knowledge of (χ, q).

The functionals (χ, q) are uniquely determined by two measurements (H1, H2) associated
to well-chosen illuminations (g1, g2). Solving for (χ, q) from knowledge of (H1, H2) requires
that one solve an explicit linear transport equation (12) and then evaluate q in (13). That
the illuminations are well-chosen means that the vector field β defined in (3) and appearing
in (12) never vanishes so that (4) holds. A large class of such well-chosen illuminations
exists in two dimensions of space as indicated in Lemma 2.1. In three dimensions of space,
ensuring (4) independently of the unknown coefficients (D, σ,Γ) in a given set of admissible
coefficients is much more difficult and the only methodology known at present is the one
developed in [12] based on the construction of complex geometrical optics solutions.

Our second main result concerns the reconstructions of (D, σ,Γ) from knowledge of (χ, q).
We show in Corollary 2.3 that knowledge of (χ, q) and one coefficient in (D, σ,Γ) uniquely
and stably determines the remaining two coefficients. Arguably the most practical result
concerns the unique and stable reconstruction of (D, σ) when Γ is known (and typically
modeled as a constant coefficient). Other reconstructions may also be envisaged, such as for
instance the reconstruction of (D, σ,Γ) from knowledge of the (reduced) scattering coefficient
σs = 1

3D
− σ and of (χ, q). Similar techniques to those developed in Corollary 2.3 are then

likely to be useful for such reconstructions although we do not pursue this in detail here.
The reconstruction of all parameters in (D, σ,Γ) is therefore not possible, independently

of the reconstruction method employed, without additional prior information. Assuming
knowledge of one of the three parameters as we have done in this paper is probably the
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Figure 8: Experiment 8. From top left to bottom right are: true σ and D, reconstructed
σ and D with noise-free data, reconstructed σ and D with noisy data, cross-section of true
(solid) and reconstructed (red dashed and blue dot-dashed) σ and D along y = 1.

simplest model of prior information. Many other ways to incorporate prior information may
be considered. We have mentioned the use of multiple frequencies (light colors) and a priori
prescribed behaviors of the coefficients (D, σ) with respect to frequency as a means to address
non-uniqueness; see e.g. [9]. Assuming the coefficients are piecewise constant may also help
restore uniqueness since the expression for q(x) in (6) may provide information about the
jump of D across (smooth) interfaces. Prior information strategies (other than assuming one
of the coefficients known) were not considered in this paper. They are, however, rendered
necessary by the non-uniqueness results obtained in Theorem 2.2.

From the computational viewpoint, the reconstruction procedures require that we solve
a transport equation of the form (12) to reconstruct χ(x) and possibly an elliptic equation
of the form (10) or (11) to reconstruct D(x). The simulation of all transport and elliptic
equations was performed by using first-order Galerkin methods.

In the presence of smooth coefficients, we have observed almost no difference between
the two regularization methods in (19) and (20) to solve the transport equation for χ.
However, some care needs to be taken with the vector field β in the presence of discontinuous
coefficients (D, σ,Γ). The two-dimensional numerical reconstructions performed with the l1
minimization scheme (20) proved to be very robust with respect to the (not very physical)
additive noise considered in (23). Reconstructions based on (19) or Tikhonov regularizations
proved less robust.

More physical models of noise, including “noise” generated in the reconstruction of H(x)
from boundary pressure measurements (the first step of PAT mentioned in the introduction),
still need to be derived. Since the proposed reconstruction methodology was able to handle
the numerically more challenging high frequency component of the noise, we are confident
that reconstructions based on e.g. (12)-(10) will prove quite robust with realistic noise
models or experimental data.
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