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ABSTRACT

Inverse Problems in Transport and Diffusion Theory with Applications

in Optical Tomography

Kui Ren

The work in this thesis mainly concerns inverse problems in transport and diffusion

theory with an emphasis on applications in imaging techniques such as optical tomog-

raphy and atmospheric remote sensing. Mathematically, inverse problems here involve

the reconstruction of coefficients in partial differential (and integro-differential) equa-

tions from boundary measurements.

The first half of the thesis are devoted to the analysis and numerical solutions of

inverse transport problems in optical tomography and atmospheric remote sensing.

We developed two reconstruction algorithms for optical tomography in which we use

the frequency domain transport equation as the forward model of light propagation in

tissues. We show by numerical examples that the usage of the frequency domain infor-

mation allows us to reduce the crosstalk between absorption and scattering coefficients

in transport reconstructions from boundary current measurements. The crosstalk is

much severe when steady-state data are used in the reconstruction. We have also ana-

lyzed an inverse problem related to the scattering-free atmospheric radiative transport

equation. The inverse problem aims at reconstructing the concentration profiles of

atmospheric gases (parameterized as functions of altitude in both the coefficient and

the source term of the transport equation) from wavenumber-dependent boundary

radiation measurement taken by space-borne infrared spectrometer. We showed in

simplified situations that although the problem does admit a unique solution, it is

severely ill-posed. We proposed an explicit procedure based on asymptotic analysis

to reconstruct localized structures in the profile.

Modeling microscopic transport processes by macroscopic diffusion equations has

its advantage many applications. Mathematically the modeling problem corresponds



to the derivation of diffusion equations from transport equations. The second half

of the thesis is devoted to such modeling problems and inverse problems related to

them. We first compared in detail numerical reconstructions based the transport and

diffusion equations in highly scattering and low absorbing media of small size. We

characterized quantitatively the effect of inaccuracy in the diffusion approximation

on the quality of the reconstructions. We then derived a generalized diffusion ap-

proximation for light propagation in highly diffusive media with extended thin non-

scattering regions based on several previously reported results. We modeled those

non-scattering extended regions by co-dimension one surfaces and used localized sur-

face conditions to account for the effects of those non-scattering regions. Numerical

simulations confirmed the accuracy of the new diffusion approximation. An inverse

problem related to this generalized diffusion equation was then analyzed. The aim of

this inverse problem is to reconstruct the locations of those extended non-scattering

regions. We showed by numerical simulation that those regions be reconstructed

from over-determined boundary measurements. The reconstruction method is based

on shape sensitivity analysis and the level set method.
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Chapter 1

Introduction

Inverse problems related to the transport and diffusion equations have long been

of interest in many fields of applied sciences. In those problems, one attempts

to determine the spatial distribution of constitutive parameters in the equations.

Applications include for instance astronomy [182], nuclear science [109, 110], atmo-

spheric science [45, 46] as well as many other fields [3, 11, 51, 127]. Recent advances

in inverse transport and diffusion theory have been fueled by an increased interest

in optical tomography where one attempts to reconstruct the absorption and scat-

tering coefficients inside the body using boundary measurements of near infra-red

light [11, 13, 36, 48, 86, 93, 99, 114, 122, 123, 130, 142, 151, 162, 185].

1.1 Optical tomography

In optical tomography experiment, one sends near infra-red light into biological tis-

sues and measures the outgoing photon current at the surfaces of the tissues. One

then wants to infer the optical properties of the tissues from knowledge of those mea-

surements. These optical properties can be used for diagnostic purposes [48]. Ap-

plications of optical tomography include, for example, brain [30, 37, 93], breast [114,

143, 144, 177, 174] and joint imaging [92, 108, 131, 145, 184]. We refer to Fig. 1-1

for a schematic illustration of optical tomography problem and to [11, 13, 19, 34, 62,

122, 123, 130, 170, 178] for discussions on practical, theoretical, and computational

aspects of optical tomography.
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Figure 1-1: Schematic illustration of optical tomographic problem. Near infra-red
lights are sent into the tissue Ω from point sources located at the surface and the
outgoing currents of photons are measured by some detectors (2). Optical properties,
absorption σa(x) and scattering σs(x), of the tissue are objects that are sought.

Since the propagation of near infra-red light in tissues is best modeled by the ra-

diative transport equation, mathematically optical tomography reduces to an inverse

problem in transport theory. The term “inverse problem” here refers to the case

where instead of solving the transport equation with given coefficients, one try to re-

construct those coefficient from partial information (typically boundary information)

about a family of solutions.

An important issue in optical tomography is the so-called crosstalk phenomenon.

What we mean by cross-talk is that purely scattering (or purely absorbing) inclusions

are often reconstructed with unphysical absorption (or scattering) properties. This

behavior is well-understood from the theoretical viewpoint: different optical distribu-

tions inside the medium can lead to the same measurements collected at the surface

of the medium [14, 96]. Additional information needs to be obtained to improve the

reconstructions, and multiple frequency data is a way to do so.

In frequency domain optical tomography experiments, the light source intensity

is modulated, typically at 100 − 500 MHz, which leads to the propagation of so-

called photon density waves in scattering media. In chapter 2 and chapter 3 of this

thesis, we have developed numerical reconstruction algorithms that are based on the

frequency-domain transport equation. We show by numerical examples that the usage

of the frequency domain information allows us to reconstruct simultaneously the two
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coefficients in the transport equation from boundary current measurements.

1.2 The inverse transport problems

In many recent applications of transport theory, one aims at reconstructing the con-

stitutive coefficients in the transport equation from measured data around domain

boundary [15, 16, 126, 127, 169, 52, 170]. As we have seen, optical tomography

is one of such applications. In fact, there exist a relatively large body of inverse

problems related to the transport equation in mathematical and engineering sci-

ences [10, 66, 74, 109, 110, 182]; see for example also the reviews in [126, 127]. These

inverse problems pose difficult analytical and computational questions. Most of the

inverse transport problems are ill-posed [67, 96, 103], meaning that either a) there

exists no solution to the reconstruction of the coefficients from available data, or

b) there are more than one solutions, or c) the solution of the problem does not

depend continuously on the available data; see above references for more precise def-

initions of ill-posedness. Among ill-posed problems, some are called mildly ill-posed,

the others are called severely ill-posed [67]. Essentially mildly ill-posedness means

that assuming the uniqueness of reconstruct holds, when no regularization is applied,

noise contained in the data is amplified during the inversion procedure comparable

to what would result from a finite number of differentiations. When noise is more

amplified than what would result from an arbitrary number of differentiations, we

say the problem is severe ill-posed [67].

Atmospheric remote sensing is one of such severely ill-posed inverse transport

problems. In atmospheric remote sensing, one aims at reconstructing the concentra-

tion of atmospheric gases (parameterized as functions in the source term of the trans-

port equation) from wavenumber-dependent boundary radiation measurement taken

by space-borne infrared spectrometer. The problem is severely ill-posed because the

reconstruction invokes the inversion of Laplace transform which is a notoriously un-

stable process. We demonstrate in chapter 4 that although the problem does admit

a unique solution, it is severely ill-posed. Instead of attempting to reconstruct the



4

whole concentration profile, one should really focus on feature reconstruction. We

propose an explicit procedure based on asymptotic analysis to reconstruct localized

structures in the profile.

1.3 Diffusion approximations and inversions

Derivation of macroscopic diffusion models for microscopic transport processes is im-

portant in many applications. Diffusion equation models the spatial (and not the

phase space) particle density. It is both analytically more tractable and computa-

tionally less expensive than the transport equation.

Inverse problems in diffusion theory have been extensively studied. Many theo-

retical [14, 19, 51, 122, 123, 120, 121, 172, 178] and computational [11, 13, 47, 141,

152, 153, 162] analysis on inverse diffusion problem have been done in the past years.

The derivation of diffusion to model photon propagation is quite classical [11, 58,

65, 111]. Essentially diffusion can be used when scattering is high and absorption

small. Such assumptions are verified by almost all human tissues in the head but

for a thin layer filled with cerebrospinal fluid. This layer is almost collision-less and

absorption-less. Several studies show that diffusion models perform very poorly in

such layers [13, 59, 90, 149].

There exists a large literature on numerical techniques that allow us to use coarser

schemes (modeling transport or diffusion equations) in the regions where multiple

scattering makes the simulation relatively straightforward and finer schemes in the

vicinity of the clear layer where transport effects must be calculated accurately [22,

26, 77, 112, 175].

Because clear layers are thin in practice, an alternative solution exists to solving

transport equations. Hybrid models that would solve a diffusion equation where the

tissues are highly scattering and model the transport behavior in the clear layer have

been developed [13, 59, 149]. Similar models were developed using an approach based

on the asymptotic expansion of transport equations [17, 18].

Based on the work in [17, 18], we develop in chapter 6 of this thesis a generalized
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diffusion model that can correctly model the effect of clear layers while keeping the

computational cost on the same level as classical diffusion approximations. In the

new diffusion equation, the clear layers are replaced by co-dimension one surfaces and

their effects are modeled by tangential diffusion process supported on the surfaces.

We present numerical simulations that confirm the accuracy of the new diffusion

approximation. An inverse problem related to this generalized diffusion equation is

then analyzed in chapter 7. The aim of this inverse problem is to reconstruct the

location of those extended non-scattering regions. We show by numerical simulations

that those regions be reconstructed from over-determined boundary measurements.

The reconstruction method is based on shape sensitivity analysis and the level set

method.

1.4 Outline of the thesis

The thesis is organized as follows. We develop in chapter 2 and chapter 3 two recon-

struction algorithms for optical tomography that are based on the frequency domain

transport equation. We introduce a numerical procedure that combines a spatial

finite volume discretization, an angular discrete ordinate method, with a GMRES al-

gorithm to solve forward problems of the transport equation. The inversion methods

are based on numerical optimization techniques. A quasi-Newton type of method is

tested in chapter 2 and a PDE-constrained optimization method is presented in chap-

ter 3. The comparison between those methods are also considered. We then consider

an inverse transport problem in atmospheric remote sensing in chapter 4 where we

show in simplified situations that although the problem admits a unique solution,

it is severely ill-posed. We also propose an explicit procedure based on asymptotic

analysis to reconstruct localized structures in the profile. Chapter 5 is devoted to a

detailed comparison between transport-based and diffusion-based reconstructions in

small domains. In chapter 6 we derive a generalized diffusion equation for photon

propagation in diffusive media with clear layers. We also present numerical simula-

tions of the new diffusion equations. Chapter 7 is devoted to a study of an inverse
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problem of the generalized diffusion model where we reconstruct clear layers from

boundary measurement. A summary of the thesis is offered in chapter 8.

The chapters in this thesis are based on published [2, 23, 24, 25, 146] and submit-

ted [147, 148] research papers. We have tried to keep them relatively self-contained,

which causes some repetition in the presentation. Chapter 2 is based on [146, 147];

chapter 3 on [2]; chapter 4 on [24]; chapter 5 on [148]; chapter 6 on [23]; and chapter 7

on [25].
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Chapter 2

Inverse transport problem in
frequency domain optical
tomography

Optical tomography is increasingly being used as a medical imaging tool to assess

the scattering and absorbing properties of human tissues probed by near-infra-red

photons. Mathematically, optical tomography reduces to parameter identification

problems (inverse problems) for the ERT, also referred to as the linear Boltzmann

equation or the transport equation. The aim of this chapter is to design a recon-

struction algorithm that solves this inverse transport problem and can be used in

practical optical tomography applications. The presentation of this chapter is based

on reference [146, 147].

2.1 Problem formulation

Transport-based reconstruction codes for use in biomedical optical tomography have

recently been developed in several situations. First, a transport back-transport

method, a nonlinear inversion method, applied to the two-dimensional time-dependent

equation of radiative transfer was reported in [62]. New algorithms were devel-

oped and experimentally tested for two- and three- dimensional cases using a time-

independent ERT in [104, 105, 106, 107]. While these works, which address real-life

three-dimensional problems, are an important step towards practical applications,
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they still suffer from considerable cross-talk between absorption and scattering recon-

structions. What we mean by cross-talk is that purely scattering (or purely absorbing)

inclusions are often reconstructed with unphysical absorption (or scattering) proper-

ties. This behavior is well-understood from the theoretical viewpoint: Different opti-

cal distributions inside the medium can lead to the same measurements collected at

the surface of the medium [14, 96]. To avoid such cross-talks, which may lead to wrong

diagnostics, we need different data. An experimental technique increasingly employed

in recent years to obtain additional information is to use frequency domain measure-

ments. In this case the source intensity is modulated (typically between 100-1000

MHz), leading to the propagation of so-called photon density waves. Since frequency

domain measurements provide information about both the phase and the intensity of

the waves (and not only the intensity as in steady-state measurements), it is expected

that frequency-domain techniques will allow for better separation of absorption and

scattering effects [14, 124]. Numerical reconstructions based on frequency-domain

ERT, however, have not yet been developed in the literature. This is the major

motivation for the present work.

We now formulate the optical tomography problem. Let Ω ⊂ Rn be our domain of

interest, with sufficiently regular boundary ∂Ω. Then the frequency-domain equation

of radiative transfer that describes the photon density in the phase space, i.e., as a

function of position x ∈ Ω and direction θ ∈ Sn−1 (unit sphere of Rn) is given by [11]

T u ≡
( iω
v

+ θ · ∇+ σa(x)
)
u(x,θ) +Q(u)(x,θ) = 0 in Ω× Sn−1

u(x,θ) = f(x,θ) on Γ−,
(2.1)

where i =
√
−1, n = 2, 3 is the space dimension, v ∈ R+ is the speed of light in the

medium, and ω is the modulation frequency of the boundary source f(x,θ). The non-

negative function σa(x) ∈ L∞(Ω) is the absorption coefficient. The unknown quantity,

u(x,θ), is the radiant power per unit solid angle per unit area perpendicular to the

direction of propagation at x in the direction θ. Note that u(x,θ) depends also on

ω although, for simplicity, we do not write this dependency explicitly. The boundary
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sets Γ± are defined as

Γ± = {(x,θ) ∈ ∂Ω× Sn−1 s.t. ± θ · ν(x) > 0},

with ν(x) the outward unit normal to the domain at x ∈ ∂Ω. The scattering operator

Q is defined as

Q(u)(x,θ) = σs(x)
(
u(x,θ)−

∫
Sn−1

k(θ · θ′)u(x,θ′)dµ(θ′)
)
. (2.2)

Here, σs(x) ∈ L∞(Ω) is the scattering coefficient and dµ is the surface measure on

Sn−1 normalized so that
∫
Sn−1 dµ(θ) = 1. The “collision” kernel k(θ · θ′), which

describes the probability that photons traveling in direction θ′ scatter into direction

θ, is a positive function independent of x and satisfies the normalization condition:

∫
Sn−1

k(θ · θ′)dµ(θ′) = 1. (2.3)

The scattering kernel for light propagation in tissues is highly peaked forward and

is chosen as the Henyey-Greenstein phase function [87, 183]

k(θ · θ′) = C
1− g2

(1 + g2 − 2g cosφ)3/2
, (2.4)

where φ is the angel between θ and θ′, i.e., θ · θ′ = cosφ and where g ∈ [0, 1] is the

anisotropy factor, which measures how peaked forward the phase function is. The

larger g is, the more forward the scattering. The anisotropy factor is often used

to define the so-called effective scattering coefficient through σ′s = (1 − g)σs. C is a

normalization constant such that (2.3) hold. We mention that scattering kernels other

than (2.4) have also been used in some situations [101] and that simplified (Fokker-

Planck) models can also be used to analyze highly peaked scattering in biological

tissues [102].

The optical tomography problem thus consists of reconstructing σa(x) and σs(x)

in (2.1) from boundary current measurements; see (2.6) below. Our objective in this



10

work is to present a numerical scheme that performs the reconstruction.

2.1.1 Forward problem

The absorption and scattering coefficients σa and σs cannot take negative values and

have to be bounded. We thus introduce the following parameter space Q:

Q := {(σa, σs) : σa ≥ 0, σs ≥ 0, and (σa, σs) ∈ L∞(Ω)× L∞(Ω)}.

We also introduce the functional spaces [6, 58]:

L2
θ·ν(Γ±) :=

{
u(x,θ) :

∫
Γ±

|u(x,θ)|2|θ · ν(x)|dσ(x)dµ(θ) < +∞
}

W2(Ω× Sn−1) :=
{
u(x,θ) : u ∈ L2(Ω× Sn−1) and θ · ∇u ∈ L2(Ω× Sn−1)

}
.

Adapting well-known results [6, 58] with complex-valued absorption coefficient σa+
iω
v

in L∞(Ω), we have the following statement about the forward problem

Proposition 2.1.1. Assume that (σa, σs) ∈ Q, the modulation frequency is finite

ω < +∞, and f ∈ L2
θ·ν(Γ−). Then the forward problem (2.1) is well-posed and

admits a unique solution u(x,θ) ∈ W2(Ω× Sn−1).

We can then define the following albedo operator (as well as its adjoint) [52, 129]:

Λ :
f 7−→ u|Γ+

L2
θ·ν(Γ−) 7−→ L2

θ·ν(Γ+).
(2.5)

The albedo operator Λ maps the incoming flux on the boundary into the outgoing

flux and is a functional of the optical parameters σa and σs.

A major difficulty in optical tomography comes from the fact that in practice, only

outgoing currents, which are angular averages of the outgoing flux and are similar to

diffusion-type measurements, are available. This prevents us from using classical

uniqueness and stability results in inverse transport theory [52]. In fact, the inverse

problem we solve in this paper is very similar to the diffusion-based inverse prob-

lem [11], on which many more theoretical results exist. To date, we do not know
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of any theoretical result on the reconstruction of optical properties from outgoing

currents for arbitrary geometries. This makes the development of numerical tools all

the more important.

To be consistent with existing measurement technologies, we define the following

“measurement operator”:

Gu|Γ+ :=

∫
Sn−1

+

θ · ν(x)u|Γ+dµ(θ) ≡ z(x)

G : L2
θ·ν(Γ+) 7−→ L2(∂Ω) ≡ Z

(2.6)

with Sn−1
+ := {θ : θ ∈ Sn−1 s.t. θ · ν(x) > 0}. We will call Z the “measurement

space”. Now the composite operator GΛ : f 7→ z maps the incoming flux into the

tomographic measurements. The adjoint operator G∗ of G is defined via the identity

〈
G∗g1, g2

〉
L2

θ·ν(Γ+)
= 〈g1,Gg2〉Z , (2.7)

for all g1 ∈ Z and g2 ∈ L2
θ·ν(Γ+), where the symbol Y1 denotes the complex conjugate

of Y1, and 〈·, ·〉X is the usual inner product in a Hilbert space X. One observe that

G∗ is nothing but the operation of multiplication by θ · ν(x).

2.1.2 Least square formulation

The inverse problem of optical tomography can be formulated as follows: determine

(σa, σs)∈ Q such that

GΛf = z (2.8)

holds for all possible source-measurement pairs (f, z). Here z ∈ Z ≡ L2(∂Ω) is the

measured data corresponding to source f . This problem is in general severely ill-

posed (assuming that uniqueness of reconstruction holds as in diffusion theory [11])

in the sense that when no regularization is applied, noise contained in the data z

is more amplified during the inversion procedure than what would results from an

arbitrary number of differentiations [67]. Another practical difficulty in solving (2.8)

lies in the fact that the amount of available data may be quite limited [119]. For
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example, one may only be able to use a limited number (say, Nq) of light sources.

After discretizing (2.8) on a reasonable mesh, we will end up with a very under-

determined nonlinear system. A classical way to resolve the lack of measurements is

to turn to the following least square formulation: find (σa, σs) solving:

F(σa, σs) =:
1

2

Nq∑
q=1

∥∥GΛfq − zq
∥∥2

Z → min . (2.9)

Here, 1 ≤ q ≤ Nq denotes the light source number. For reasons we have mentioned

earlier, the least square problem (2.9) is usually not stable [11]. To stabilize the

problem, we impose additional smoothness restrictions on the coefficients we wish to

reconstruct. In other words, we look for optical properties in a space that is much

smaller than Q. We call this space the space of admissible parameters :

Qad := {(σa, σs) : (σa, σs) ∈ [σla, σ
u
a ]× [σls, σ

u
s ], and (σa, σs) ∈ H1(Ω)×H1(Ω)},

where σla(resp. σua) and σls (resp. σus ) are lower (resp. upper) bounds of σa and σs,

respectively, with σla > 0 and σls > 0. H1(Ω) is the usual Hilbert space of L2(Ω)

functions with first-order partial derivatives in L2(Ω):

‖Y ‖2
H1(Ω) := ‖Y ‖2

L2(Ω) + ‖∇Y ‖2
L2(Ω), for Y ∈ H1(Ω). (2.10)

It is known that Qad is a closed and convex subset of H1(Ω) ×H1(Ω). We can thus

introduce the following regularized least square functional:

Fβ(σa, σs) := F(σa, σs) +
β

2
J (σa, σs), (2.11)

where the last term is a regularization term and β is the regularization parameter [67].

The method for choosing β will be described in section 2.3.3. We use the Tikhonov

regularization functional in our problem:

J (σa, σs) = ‖σa − σ0
a‖2
H1(Ω) + ε‖σs − σ0

s‖2
H1(Ω), (2.12)
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where σ0
a and σ0

s are initial guesses for the σa and σs profiles, and ε is a small con-

stant. The choice of ε is addressed in section 2.3.3. We thus formulate the optical

tomography problem as the following regularized least square problem:

min
(σa,σs)

Fβ

(RLS) σla ≤ σa ≤ σua

σls ≤ σs ≤ σus

We first observe that problem (RLS) has at least one solution in the sense that the

functional Fβ(σa, σs) admits at least one minimizer. This existence result is classical

and follows from the weak lower semicontinuity and coercivity of Fβ(σa, σs) [115, 180].

However, we cannot show that Fβ(σa, σs) is strictly convex and cannot conclude that

the minimizer is unique [180].

Our implementation of the inverse problem of optical tomography is a gradient-

based minimization approach. We thus need to compute the Fréchet derivative of the

least square functional Fβ(σa, σs). Direct estimates of the Fréchet derivatives being

quite costly because the optical parameters are (at least at the continuous level)

infinite dimensional objects, we adopt the adjoint state (or co-state) approach [180]

to estimate the derivatives. We have the following result:

Theorem 2.1.2 (Fréchet derivatives). The functional Fβ(σa, σs) is Fréchet differen-

tiable with respective to σa and σs. The derivative at (σa, σs) in the direction (ha, hs)

is given by

 F ′βha

F ′βhs

 =


Re

Nq∑
q=1

〈
ϕq, (

∂T
∂σa

ha)uq

〉
L2(Ω×Sn−1)

+ β
〈
σa − σ0

a, ha
〉
H1(Ω)

Re
Nq∑
q=1

〈
ϕq, (

∂T
∂σs

hs)uq

〉
L2(Ω×Sn−1)

+ βε
〈
σs − σ0

s , hs
〉
H1(Ω)

 , (2.13)

where T is the transport operator defined in (2.1); uq and ϕq are the solutions of the

forward problem (2.1) with source fq and its adjoint problem (2.16) (defined below),

respectively. Re means taking the real part.

Proof. Let us denote by rq the residual GΛfq−zq = Guq|Γ+−zq. According to [62, 63],
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rq is Fréchet differentiable with respect to both σa and σs. The L2-norm is Fréchet

differentiable as shown in [115]. By the chain rule, ‖rq‖2
Z is Fréchet differentiable.

Since the summation is finite, we deduce that F is differentiable. Together with the

fact that J is differentiable, we conclude that Fβ is Fréchet differentiable with respect

to σa and σs.

We now compute these Fréchet derivatives. Let us compute the derivative with

respect to σa:

F ′
β(σa, σs)ha = Re

Nq∑
q=1

〈
rq,G(

∂uq|Γ+

∂σa
ha)

〉
Z

+ β 〈σa − σ0
a, ha〉H1(Ω)

= Re
Nq∑
q=1

〈
G∗rq,

∂uq|Γ+

∂σa
ha

〉
L2

θ·ν(Γ+)

+ β 〈σa − σ0
a, ha〉H1(Ω)

(2.14)

where we have used the properties of the adjoint operator (2.7). On the other hand,

differentiating the transport equation (2.1) for source fq gives:

T φq + (
∂T
∂σa

ha)uq = 0 in Ω× Sn−1

φq = 0 on Γ−,
(2.15)

where φq ≡
∂uq
∂σa

ha, and T is the transport operator defined in (2.1). We need also to

introduce an adjoint variable ϕq of uq which is the solution of the following adjoint

transport equation:

T ∗ϕq ≡
( iω
v
− θ · ∇+ σa(x)

)
ϕq(x,θ) +Q(ϕq)(x,θ) = 0 in Ω× Sn−1

ϕq(x,θ) = −G∗rq on Γ+.

(2.16)

Here we have used that Q∗ = Q, which follows from the definition (2.2). Multiply-

ing (2.15) by ϕq and (2.16) by φq, then integrating over Ω× Sn−1, we obtain

〈
G∗rq, φq

〉
L2

θ·ν(Γ+)
=

〈
ϕq, (

∂T
∂σa

ha)uq

〉
L2(Ω×Sn−1)

, (2.17)
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which leads to

F ′
β(σa, σs)ha = Re

Nq∑
q=1

〈
ϕq, (

∂T
∂σa

ha)uq

〉
L2(Ω×Sn−1)

+ β
〈
σa − σ0

a, ha
〉
H1(Ω)

. (2.18)

The derivative with respect to σs can be computed similarly.

This result shows that in order to compute the Fréchet derivative of the objective

functional Fβ(σa, σs), we need to solve one forward transport problem (2.1) and one

adjoint transport problem (2.16).

2.2 Discretization methods

There is a vast literature on the discretization of radiative transfer equations; see

for instance [4, 77, 113]. In this paper, we have chosen to use the discrete ordinates

method to discretize the directional variables and the finite volume method [68] to

discretize the spatial variables.

2.2.1 The discrete ordinates formulation

In the discrete ordinates method [4, 113], we approximate the total scalar flux, defined

as the integral of u(x,θ) over Sn−1, by the following quadrature rule

∫
Sn−1

u(x,θ)dµ(θ) ≈
J∑
j=1

ηju(x,θj), (2.19)

where θj is the jth direction and ηj the associated weight, for 1 ≤ j ≤ J . Details

on how to choose the set of directions {θj}Jj=1 and the corresponding weights {ηj}Jj=1

can be found in [113]. To ensure particle conservation, we impose that

J∑
j=1

ηj = 1. (2.20)

The equation of radiative transfer is now decomposed as a discrete set of J coupled



16

differential equations that describe the photon flux field along J directions:

∇ · (θju) + (σt +
iω

v
)u(x,θj) = σs(x)

J∑
j′=1

ηj′kjj′u(x,θj′), (2.21)

for j = 1, 2, ..., J , where kjj′ = k(θj · θj′), and where σt = σa + σs. We impose

J∑
j=1

ηjkjj′ = 1, 1 ≤ j′ ≤ J, (2.22)

so that the number of photons in the system is preserved by the scattering process.

2.2.2 Spatial discretization

We use a finite volume method to perform the spatial discretization. Finite volume

methods [68] ensure the conservation of mass (or momentum, energy) in a discrete

sense, which is important in transport calculations. They also have the advantage of

easily handling complicated geometries by arbitrary triangulations, which we need in

tomographic applications.

We implement a cell-centered version of the finite volume methods. Consider a

mesh of Rn, M, consisting of polyhedral bounded convex subsets of Rn which covers

our computational domain Ω. Let C ∈ M be a control cell, that is an element

of the mesh M, ∂C its boundary, and VC its Lebesgue measure. We assume that

the unknown quantity, for example u(x, θj), takes its averaged value in C (thus is

constant). We denote this value by uCj :

uCj ≡
1

VC

∫
VC

u(x,θj)dx. (2.23)

Integrating the above discrete ordinates equations (2.21) over cell C and using the

divergence theorem on the first term, we obtain the following equations

∫
∂C

θj · nC(x)ujdγ(x) + (σCt +
iω

v
)VCu

C
j = VCσ

C
s

J∑
j′=1

ηj′kjj′u
C
j′ , (2.24)
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for 1 ≤ j ≤ J , where, nC(x) denotes the outward normal to ∂C at point x ∈ ∂C,

dγ(x) denotes the surface Lebesgue measure on ∂C and σCs (σCt ) is the value of σs (σt)

on cell C.

Now we have to approximate the flux through the boundary of C, i.e., the first

integral term in equation (2.24). Let {Ci}Ii=1 be the set of neighboring cells of C. We

denote by SC,i the common edge of cell C and Ci, i.e., SC,i = ∂C ∩ ∂Ci. We then have

∫
∂C

θj · nC(x)ujdγ(x) =
∑
i

∫
SC,i

θj · nC(x)ujdγ(x). (2.25)

The flux
∫
SC,i

θj · nC(x)ujdγ(x) can be approximated by various numerical schemes.

In this work, we take a first-order upwind scheme:

F C
j,i :=

∫
SC,i

θj · nC(x)ujdγ(x) =

 θj · nC|SC,i|uCj if θj · nC ≥ 0

θj · nC|SC,i|uCi
j if θj · nC < 0,

(2.26)

where |SC,i| is the Lebesgue measure of SC,i. We then obtain a full discretization of

the discrete ordinates equations

∑
i

F C
j,i + (σCt +

iω

v
)VCu

C
j = VCσ

C
s

J∑
j′=1

ηj′kjj′u
C
j′ , (2.27)

for j = 1, 2, ..., J . Let N denote the total number of control cells. After collecting the

discretized transport equation (2.27) on all control cells, we arrive at the following

system of complex-valued algebraic equations

AU = SU + G (2.28)

where A ∈ CNJ×NJ and S ∈ CNJ×NJ are the discretized streaming-collision and

scattering operators, respectively. The boundary source f(x,θ), which comes into

the discretized system via the flux approximation (2.26) is denoted by G. The vector

U ∈ CNJ×1, which contains the values of u(x,θ) on the cell C in the direction θj is
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organized as

U =


U1

...

UJ

 , with Uj =


u1
j

...

uNj

 ∈ CN . (2.29)

The matrices A and S have sparse structures. In fact, they are sparse block

matrices. A is a block diagonal matrix that can be written as:

A =


A1

. . .

AJ

 +


C0

. . .

C0

 , (2.30)

where Aj ∈ CN×N is the discretization of the advection operator A defined by Au :=

θj · ∇u. From (2.26) we can deduce that Aj has no more than N × NE non-zero

elements, whereNE is the total number of edges (surfaces in 3-dimension) each control

cell has.

Matrix C0 ∈ CN×N is diagonal:

C0 =


V1(σ

1
t + iω

v
)

. . .

VN(σNt + iω
v
)

 ,

where we recall σit ≡ σia + σis (i = 1, ..., N).

The matrix S can be expressed as the direct product of two smaller matrices:

S = K⊗D0, (2.31)

with D0 ∈ CN×N a diagonal matrix given by

D0 =


V1σ

1
s

. . .

VNσ
N
s

 ,
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and K ∈ CJ×J a dense matrix with component (K)jj′ = ηj′kjj′ . In practical appli-

cations, the number of directions is much smaller than the number of spatial mesh

elements (J � N). So although K is dense, the scattering matrix S is sparse. How-

ever, in general the matrix K is not symmetric unless we choose ηj to be constant.

The matrix A−S is thus neither symmetric nor positive definite, which is the reason

for us to choose a GMRES solver in section 2.3.2.

Let us remark here that our finite volume discretization reduces to an upwind finite

difference scheme on usual finite difference grids. We refer to our earlier work [146]

for some numerical tests on the finite volume discretization of the transport equation.

2.2.3 Discrete adjoint problem

We present in this section the numerical method we have employed to compute the

gradient of discrete objective function with respect to the optical properties on each

cell.

To simplify the notation, we denote from now on by σa ∈ RN×1 the absorption

coefficient vector (σ1
a, ..., σ

C
a , ..., σ

N
a )T and σs ∈ RN×1 the scattering coefficient vector

(σ1
s , ..., σ

C
s , ..., σ

N
s )T .

We want to minimize the discrepancy between model predictions and measure-

ments over a set of source and detector pairs. Let Nq denote the number of sources

used an experiment, and Nd denote the number of detectors used for each source.

Then the following objective function we employed takes the following form

Fβ(σa, σs) =
1

2

Nq∑
q=1

Nd∑
d=1

|PdUq − zδq,d|2 +
β

2
J (σa, σs) (2.32)

where zδq,d denote the d-th measurement of the q-th source. The superscript δ is used

to denote the level of noise contained in the measurements. Uq is solution of the

transport equation for the q-th source. Pd ∈ R1×N is a discretized version of the

measurement operator. It takes the outgoing flux at detector d and averages over
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Sn−1
+ . The discretized regularization term is given by

J (σa, σs) =
N∑
C=1

( ∑
κ={x,y,z}

[ΩC
κ(σa − σ0

a)]
2 + (σCa − σ0,C

a )2
)

+ ε
N∑
C=1

( ∑
κ={x,y,z}

[ΩC
κ(σs − σ0

s)]
2 + (σCs − σ0,C

s )2
)

(2.33)

where ΩC
κ ∈ R1×N denotes the discretized partial differential operator at cell C in the

κ (= x, y, z) direction.

We now start to compute the gradient of objective function (2.32) with respect to

optical properties on each mesh element. It is straightforward to check that

∂Fβ
∂σCa

=
[ Nq∑
q=1

Nd∑
d=1

rqdPd
∂Uq

∂σCa

]
Re

+
β

2

∂J
∂σCa

, (2.34)

with rqd = PdUq − zδq,d, and [·]Re denotes the real part of [·].

At the same time, we notice from (2.28) that:

∂A

∂σCa
Uq + A

∂Uq

∂σCa
=

∂S

∂σCa
Uq + S

∂Uq

∂σCa
, (2.35)

for source q = 1, ..., Nq, which is equivalent to saying that

∂Uq

∂σCa
= −(A− S)−1∂(A− S)

∂σCa
Uq, (2.36)

since A− S is invertible. It is very important to note that the matrices A and S are

independent of the source used. Thus, there are no superscripts q associated with

them. We thus have

∂Fβ
∂σCa

= −
[ Nq∑
q=1

Nd∑
d=1

rqdPd(A− S)−1∂(A− S)

∂σCa
Uq

]
Re

+
β

2

∂J
∂σCa

. (2.37)

We now introduce a new state variable Ψq ∈ CN×1 (called adjoint variable of Uq)
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given by

−
Nd∑
d=1

rqdPd(A− S)−1 = ΨqT . (2.38)

where ΨqT denotes the transpose of Ψq. We then say that Ψq is the solution of the

following adjoint equation of (2.28):

(A− S)TΨq = −
Nd∑
d=1

rqdP
T
d . (2.39)

One then arrives at

∂Fβ
∂σCa

=
[ Nq∑
q=1

ΨqT ∂(A− S)

∂σCa
Uq

]
Re

+
β

2

∂J
∂σCa

, (2.40)

with
∂J
∂σCa

= 2
( ∑
κ={x,y,z}

ΩC
κ(σa − σ0

a)(Ω
C
κIC) + (σCa − σ0,C

a )
)
,

where the unit direction vector IC ∈ RN×1 is a vector whose C-th element is 1 and all

other components are zero.

Very similar computation leads to the fact that the derivatives of the objective

functional with respect to σCs are given by

∂Fβ
∂σCs

=
[ Nq∑
q=1

ΨqT ∂(A− S)

∂σCs
Uq

]
Re

+
β

2

∂J
∂σCs

, (2.41)

with
∂J
∂σCs

= 2ε
( ∑
κ={x,y,z}

ΩC
κ(σs − σ0

s)(Ω
C
κIC) + (σCs − σ0,C

s )
)
.

Formulas (2.40) and (2.41) are what we used to compute the derivatives of objec-

tive function with respect to optical properties on each element. Note that we did not

form explicitly the matrix ∂(A−S)
∂σCa

(resp. ∂(A−S)
∂σCs

) in the evaluations of ΨqT ∂(A−S)
∂σCa

Uq

(resp. ΨqT ∂(A−S)
∂σCs

Uq) because this matrix has a very simple sparse structure according
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to (2.30) and (2.31). Instead, a matrix-free method was adopted. In fact, since

[
∂(A− S)

∂σCa
]ij =

 VC, i = j and mod (i, N) = C

0, otherwise ,
(2.42)

where recall that N is the total number of volume cells that cover our computational

domain, we have

ΨqT ∂(A− S)

∂σCa
Uq =

J∑
j=1

Ψq
(j−1)×N+CVCU

q
(j−1)×N+C. (2.43)

Note that here Ψq
(j−1)×N+C (resp. Uq

(j−1)×N+C) denotes the [(j−1)×N+C]-th element

of Ψq (resp. Uq).

The same observation on ∂(A−S)
∂σCs

leads to

ΨqT ∂(A− S)

∂σCs
Uq =

J∑
j=1

Ψq
(j−1)×N+CVCU

q
(j−1)×N+C

−
J∑

j′=1

J∑
j=1

(K)j′jΨ
q
(j′−1)×N+CVCU

q
(j−1)×N+C. (2.44)

where the (j′, j)th component of matrix K, (K)jj′ = ηj′kjj′ , as given in (2.31). We

can thus evaluate (2.40) and (2.41) without forming any intermediate matrices.

2.3 Numerical implementation

We have implemented the quasi-Newton optimization algorithm to solve the regu-

larized least-square problem (RLS) introduced in section 2.1.2. We have found in

practice that this method converged much faster (in terms of function evaluations)

than the nonlinear conjugate gradient method with either the Fletcher-Reeves or

the Polak-Ribière updating formula [132]. This is expected from theory [132] and is

consistent with practical applications tested in [107]. We have also implemented a

Gauss-Newton method [132] to solve the least square problem (without the bounds
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constraints), and found that the method converges extremely slow in our case. This

is probably due to the fact that our problem is highly nonlinear and Gauss-Newton

method usually does not work well in this kind of situations [81, 132]. Detail com-

parison between various method of solving the least-square reconstruction problem is

an ongoing project.

In this work, we employ the BFGS update rule [132] of inverse Hessian matrix for

our quasi-Newton method. The usual BFGS method, however, requires the explicit

construction of the Hessian matrix, which is unrealistic for large problems. The

memory size required to store the Hessian matrix is roughly proportional to the

square of the memory used for the unknown parameters. We have thus resorted to

a limited-memory version of BFGS method which avoids the explicit construction of

the inverse Hessian matrix.

2.3.1 Numerical optimization

The BFGS algorithm can be viewed as a special case of quasi-Newton method [132].

With σ denoting the vector of discretized optical properties, the quasi-Newton meth-

ods can be characterized by the following iterative process:

σk+1 = σk + αkpk, k ∈ N+ (2.45)

where pk is a descent direction vector and αk is the step length. The BFGS algorithm

chooses pk to be the solution of an approximated solution of Newton-type optimality

equation, i.e.,

pk = Hkgk, (2.46)

where gk is the gradient of the least-square functional, gk = −∇σFβ(σk). Hk is the

inverse Hessian matrix of Fβ at step k. Instead of computing real inverse Hessian

matrices, which is very time-consuming, the BFGS algorithm chooses to approximate

Hk by the following updating rule

Hk+1 = W T
k HkWk + ρksks

T
k (2.47)
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with Wk = I−ρkyksTk , sk = σk+1−σk, yk = gk+1−gk, and ρk = 1
yT

k sk
. I is the identity

matrix. As we mentioned above, forming (2.47) takes tremendous computer memory

for large problems. To overcome this shortcoming, the limited-memory version of

BFGS only stores the vector yk and sk obtained in the last m (3 ≤ m ≤ 7 usually)

iterations [100] and discards the rest. Thus after first m iterations, (2.47) can be

expressed as:

Hk+1 = (W T
k · · ·W T

k−m)H0
k+1(Wk−m · · ·Wk)

+ ρk−m(W T
k · · ·W T

k−m+1)sk−msTk−m × (Wk−m+1 · · ·Wk)

+ ρk−m+1(W
T
k · · ·W T

k−m+2)sk−m+1s
T
k−m+1 × (Wk−m+2 · · ·Wk)

...

+ ρksks
T
k

(2.48)

with the sparse initial guess H0
k+1 given by H0

k+1 =
yT

k+1sk+1

yT
k+1yk+1

I.

We refer interested readers to [100, 132] for more details on the limited-memory

BFGS algorithms, and to reference [107] for applications of those algorithms to optical

tomographic problems. Convergence of BFGS algorithms has been proved under

certain conditions and has been tested on many applications [41, 132].

To impose bounds on optical parameters, we have to modify the relation (2.46)

slightly. We adopt a gradient projection method [41, 100, 132] to do this. At the

beginning of each iteration, we use the gradient projection method to find a set of

active bounds. We then solve a sub-minimization problem

min
σ
Qk(σ) ≡ Fβ(σk) + gTk (σ − σk) +

1

2
(σ − σk)

TH−1
k (σ − σk), (2.49)

on the set of free variables to find an approximation solution σk+1, treating the active

bounds as equality constraints by Lagrange multipliers. After we find an approxima-

tion solution σk+1, a line search along pk = σk+1−σk is done to find the step length

αk in (2.45). We use a line search method that enforces the Wolfe conditions [132].
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That is, we look for an αk that solves:

min
αk>0

Fβ(σk + αkpk), (2.50)

and satisfies:

Fβ(σk + αkpk) ≤ Fβ(σk) + c1αk∇FT
β (σk)pk (2.51)

∇FT
β (σk + αkpk)pk ≥ c2∇FT

β (σk)pk (2.52)

where c1 = 10−4, c2 = 0.1 in our case. More details on how to impose bound

constraints in BFGS algorithms can be found in [100, sec. 5.5] and [41, 186].

2.3.2 Solving algebraic systems

As we have mentioned before, at each step of the minimization process, we have to

solve both a discretized transport equation (2.28) and its adjoint problem (2.39) to

compute the Fréchet derivatives (2.40) and (2.41) of the objective functional, forming

the gradient vector gk in (2.46). In fact, almost all of the computational time in

the reconstruction process is devoted to the solution of these transport equations. In

this work, instead of using the popular source iteration (SI) method, which converges

very slowly in diffusive regimes unless it is properly accelerated [4], we choose to solve

the forward problems by a preconditioned GMRES(n) algorithm [157, 158], where n

denotes the number of iterative steps after which GMRES is restarted. Our general

principle is to choose n large when the problem size is small and n small when the

problem size is large. The implementation of the algorithm is based on the template

provided in [27]. The preconditioner we employ is the zero fill-in incomplete LU

factorization (ILU(0)) [139, 157] that has been proved to be efficient in transport

calculations [139]. Details about this factorization can be found in reference [157]. In

all of the numerical examples in section 2.4, we pick n = 7, and the GMRES algorithm

is stopped if the relative residual is small enough. For example, the stopping criteria

‖G− (A− S)Uk‖l2/‖G− (A− S)U0‖l2 ≤ 10−10, is used to solve (2.28). Here U0 is
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the initial guess and Uk is the U value at the k-th GMRES iteration.

2.3.3 Selecting regularization parameter

To choose the optimal regularization parameter β in (2.11), we adopt the L-curve

method in this study. Although there exist proofs that the L-curve method fails to

convergence for certain classes of inverse problems [179], we have observed satisfactory

results in our applications. We plot the log of the regularization functional against

the squared norm of the regularized residual, say, rβ, for a range of values of the

regularization parameter. The right parameter β is the one at which the L-curve

reaches the maximum of its curvature [82, 180]. One can show that the right β

maximizes the following curvature function [180]

κ(β) = −R(β)S(β)[βR(β) + β2S(β)] + [R(β)S(β)]/S ′(β)

[R2(β) + β2S2(β)]3/2
, (2.53)

where R(β) and S(β) are defined by

R(β) := ‖rβ‖2
L2 , S(β) := J (σa, σs).

We recall that β is not included in J (σa, σs). One notices immediately that the L-

curve method requires several reconstructions for any single problem, and thus is very

time-consuming. A simple continuation method is suggested in [81] to reduce the

computational cost of regularization parameter selection. In this method, one start

the first reconstruction with a relatively large β. The result of this reconstruction is

then taken to be the initial guess of next reconstruction with a smaller β. If the two

β are not dramatically different from each other, then the two reconstructions should

converge to similar results. Thus, the reconstruction with smaller β is supposed to

converge fast since its initial guess is chosen to be close enough to its real solution. The

process can be repeated to perform reconstructions with several values of β. We adopt

this continuation method in our three-dimensional numerical example (Example 4)

in the next section. We present in Fig. 2-5 (B) and Fig. 2-9 (B) the L-curve we have
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used in Example 1 and Example 3, respectively, to choose the optimal regularization

parameter β. Note that in the Fig. 2-5 (B), J (σa, σs) simplifies to ‖σa‖2
H1 since we

reconstruct only σa and we have chosen σ0
a = 0 in that case.

Another important issue is to choose an appropriate weight ε in the regularization

functional defined in (2.12). This weight is necessary because, in practice, σs takes

values that are about two order of magnitude larger than σa. The weight is used

to bring the two terms in the regularization functional to the same level so that the

regularization term has an effect on both σa and σs. In all our numerical simulations in

section 5, we choose ε to be the ratio (σba/σ
b
s)

2, where σba and σbs are optical properties

of background media.

We remark finally that the H1 norm we use in the regularization functional can be

replaced by other norms or semi-norms. For example, we have performed reconstruc-

tions on numerical Example 1 in section 5.3 with stricter bounds on σa and ‖∇σa‖L2

(instead of ‖σa‖H1) as the regularization functional. We have obtained very similar

results (although the optimal regularization parameter changes). The main reason

for us to use the H1 norm is that in many practical applications, we want to find

solutions near some reference (σ0
a, σ

0
s), for example, some known background.

2.3.4 Cost of the numerical method

The computational cost of our method consists of two main parts. The first part is

the evaluation of the objective function and its gradient in the optimization process.

The second part is the updating of the BFGS matrices and vectors.

The costs of the function evaluation and of its gradient scale linearly with the

number of optical sources Nq. Since each forward problem and its corresponding

adjoint problem cost about the same, each gradient calculation (about 2Nq forward

solves) is approximately twice as expensive as a function evaluation (aboutNq forward

solves). The cost in updating BFGS matrices and vectors can be neglected compared

to function and gradient evaluations. The reason is that BFGS vectors (in R2N) are

dramatically smaller than the vectors appearing in the forward and adjoint problems

(in CJN).
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In our computations, we store the non-zero elements of the matrix A−S by using

the compressed row storage scheme [27] whenever it is possible to do so. When it is

not possible to store A− S, we store A, C0, K and D0 defined in (2.30) and (2.31).

This requires much less memory with the price that extra efforts has to be paid

to evaluate matrix vector products in GMRES. We use the following procedure to

compute Y ≡ (A− S)X for any vector X with the same structure as U in (2.29):

1. For j = 1, ..., J ,

– Compute X′
j = D0Xj;

– Compute X′′
j = C0Xj;

– Compute X′′
j = X′′

j + AjXj;

2. For j = 1, ..., J , Yj = X′′
j −

∑
j′ Kjj′X

′
j.

We prefer to store the matrix A − S because it saves computational time when

matrix-vector products are calculated. In all the numerical examples shown in the

following section, we were able to store A − S. Note that the storage requirement

does not increase with the number of sources (Nq) because we solve the transport

equation (and its adjoint) with different sources sequentially. The storage cost of

BFGS vectors can be neglected compared with the storage of the forward and adjoint

matrices and vectors.

2.4 Numerical examples

We provide in this section several numerical examples that illustrate the performance

of our numerical method. We will first show some forward simulations and then show

some reconstructions.

2.4.1 Forward simulations

To initially test the performance of the transport solver, we chose two examples. In

the first example, we consider a 2-dimensional homogeneous medium of size 5 cm × 5
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cm, defined as Ω := {(x, y)T |0 < x, y < 5}. A point source is placed at xs = (0, 2.5)T

and 49 detectors are uniformly distributed on the right boundary of the domain,

i.e, positions for the detector d (1 ≤ d ≤ 49) is xd = (5, 0.1d)T ; see Fig. 2-1 (a).

The computational domain is discretized into 100 × 100 square cells. 128 directions

(uniformly distributed on unit circle) with equal weights are used. The scattering

kernel we employed is the Henyey-Greenstein phase function [4] with an anisotropic

factor g = 0.9. In all computations, we set the refractive index of the medium to be

constant and equal to 1.37.

5 cm
2 cm

(a) 

(b) 

Figure 2-1: Geometrical settings of the computational domains. Diamond (�) and
circle (◦) denote source and detectors, respectively.

Fig. 2-2 (a) and (b) show AC amplitude and phase delay for the first example cal-

culated at detector positions assuming different optical properties. The modulation

frequency for the source is taken to be 200 MHz. We observe that at a fixed modula-

tion frequency, an increase in either absorption or scattering will cause a decrease of

the AC amplitude computed at the detectors, see Fig. 2-2 (a). Phase delays obtained

at the detectors (see Fig. 2-2 (b)) increase with scattering effects but decrease with

increasing absorption. These observations agree with the underlying physics of the

transport processes [43].

In the second example, we compare the results obtained for a cylindrical domain
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Figure 2-2: AC amplitude (a) phase delay (b) computed at the detectors for different
optical parameters. g = 0.9 and 128 directions are used. Solid line: σa = 0.1 cm−1,
σs = 120 cm−1; dash line: σa = 0.2 cm−1, σs = 120 cm−1; dotted line: σa = 0.1 cm−1,
σs = 240 cm−1. The modulation frequency of the source is 200 MHz.

with and without a void-like inclusion. By void-like inclusion we mean a region in

which both optical parameters are very small (σa=0.001 cm−1 and σs=0.01 cm−1).

The domain is defined by Ω := {(x, y, z)T |x2 + y2 < 1; 0 < z < 2} and the void

by Ωv = {(x, y, z)|(x − 0.4)2 + y2 < 0.22, 0 < z < 2}. A point source is placed

on xs = (−1, 0, 1)T and the detectors are uniformly distributed on the half circle

Γ = {(x, y, z)|x2 + y2 = 1, x ≥ 0, z = 1}, see Fig. 7-1(b). The domain is discretized

into 11836 tetrahedral elements, and 120 directions (S10) with full level symme-

try [113] are used. For the convenience of notation, we assign a superscript h to those

quantities associated with the homogeneous medium and a superscript i to those with

the inhomogeneities.

Fig. 2-3 shows results for the second example. We plot here the difference between

the quantities calculated with and without the void inclusion as a function of detector

positions. We assign the superscript v to those quantities computed in the former case

and the superscript h to those in the latter case. We show the comparison at several

modulation frequencies. It can be seen from Fig. 2-3 that the AC amplitude increases

at the detectors right behind the void inclusion. This well-known effect is due to the

non-scattering and non-absorbing nature of void regions. A change of phase of a few

degrees is observed, as well as phase change increase with the modulation frequency
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of the source.

0 10 20 30 40
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Detectors

A
m

pl
itu

de
 d

iff
er

en
ce

: I
v −

Ih

(a)

0 10 20 30 40
−2

−1.5

−1

−0.5

0

0.5

Detectors

P
ha

se
 d

iff
er

en
ce

: θ
v −
θh

(b)

Figure 2-3: The difference of (a) AC amplitude (Iv−Ih) and (b) phase delay (θv−θh)
calculated at the detectors for various modulation frequencies in domain with a void
inclusion. g = 0.9 and 120 fully level-symmetric directions [113] are used. The optical
parameters are: σa = 0.1 cm−1, σs= 120 cm−1. Solid line: ω = 200 MHz; empty circle:
ω = 400 MHz; dotted line: ω = 600 MHz.

2.4.2 Setup for the reconstructions

We now provide four numerical examples that illustrate the performance of our nu-

merical reconstruction method. In the first example, we reconstruct the spatial distri-

bution of the absorption coefficient while keeping the scattering coefficient fixed. In

the second example the spatially varying scattering coefficient is reconstructed, while

the absorption coefficient is fixed. We then show an example in which both optical

properties are reconstructed simultaneously. All the first three examples are done in

two-dimensional settings. In the fourth example, we show three-dimensional simulta-

neous reconstructions of both optical properties. The setting for our calculations in

the following.

For our two-dimensional simulations, we consider a computational domain of size

2× 2 cm2, denoted by Ω ≡ Ω ∪ ∂Ω = [0, 2]× [0, 2]. We cover the domain by 80× 80

cells of uniform size whose nodes are given by

Ωh = {xi,j = (xi, yj), xi = i∆x, yj = j∆y, i, j = 0, 1, ..., 80},
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with ∆x = ∆y = 0.025. The direction space is discretized into 128 uniformly dis-

tributed (over [0,2π)) directions with identical quadrature weight:

S1
∆θ = {θi : θi = (i− 1) ∗∆θ, i = 1, ..., 128}.

where ∆θ = 2π/128. The above discretizations yield a total number of 819200 un-

knowns for one forward problem (solving for U in (2.28)), which is also true for the

corresponding adjoint problem (Ψ in (2.39)). In all two-dimensional simulations,

four sources (Nq = 4) are used. They are located at (0, 1), (1, 0), (2, 1) and (1, 2),

respectively. For each sources, 20 detectors (Nd = 20) are used. The detectors are

uniformly distributed along the sides of the square.

For the three-dimensional simulation, we consider a cylindrical domain given by

Ω := {(x, y, z) : x2 + y2 ≤ 1; 0 ≤ z ≤ 2}.

We cover the domain by 22022 tetrahedral elements. For the integration over S2, we

employ the full level symmetric S8 discrete ordinate set of [113]. This set consists of

80 directions. A total number of 16 sources (Nq = 16) are used in the simulation.

The sources are uniformly distributed on the two circles defined by Γqi = {(x, y, z) :

x2 + y2 = 1; z = zi} (i = 1, 2), where z1 = 0.5, z2 = 1.5. We arrange 8 layers of

totally 128 detectors on the boundary of the domain. Those detectors are located

at Γdj = {(x, y, z) : x2 + y2 = 1; z = zj} (j = 1, ..., 8), with zj = 0.3 + (j − 1) ∗ 0.2.

Note that some detectors are placed on the same xy-plane as sources (but they do

not overlap with each other).

2.4.3 Generating synthetic data

In all the numerical reconstructions presented in section 2.4, the “measurements” are

synthetic rather than coming from real experimental data. A straightforward way

of generating synthetic data is to use the same discretization for the forward model

and for the inversion procedure. This may lead to somewhat simplified inversions of
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the finite dimensional problem, which is often referred to as inverse crimes in the

inverse problems community [54, p.133]. To avoid committing these “crimes”, the

data are generated with a discretization about twice as fine (in all variables) as the

discretization used in the inversions.

In the following sections, our “exact data” will thus be those obtained from the fine

mesh calculations. By noisy data, we mean the “exact data” polluted by additional

multiplicative noise. Let zd be the exact data, the “noisy” data are simulated accord-

ing to the rule: zδd = (1 + δ ∗ random)zd, where “random” is a uniformly distributed

random variable in [−1, 1] and δ ≥ 0 will vary in our numerical simulations.

It should be noted that the “exact data” seen on the coarse grid used in the

inversion actually already contain some “noise” because they were generated by the

fine mesh calculations.

2.4.4 Single parameter reconstructions

We start with a simpler case where only one optical parameter needs to be recon-

structed. Such reconstructions are often useful in practical applications. For example,

it is generally believed that changes in the oxygenation of tissues correspond mainly

to changes in the absorption property of tissues [177].

Example 1: Reconstructing σa We first reconstruct a small absorbing disc cen-

tered at (1.15 cm, 1.15 cm) of radius 0.2 cm embedded in the two-dimensional compu-

tational domain. The optical parameters for the background and the disc are σa = 0.1

cm−1, σs = 80 cm−1 and σa = 0.2 cm−1, σs = 80 cm−1, respectively. The anisotropy

factor g = 0.90. Those are typical parameter values as they are encountered in

biomedical applications. The modulation frequency of the source is ω = 600MHz.

Each reconstruction here takes approximately 5 hours on a 2.4GHz Pentium XEON

processor.

Fig. 2-4 shows the real absorption map and the reconstructed maps for different

noise levels. We also provide in Fig. 2-5 (A) (solid line) the evolution of the normalized

objective function versus the iteration step in the case of reconstructions using noise
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Figure 2-4: Maps of the reconstructed absorption coefficient σa [cm−1] in Example
1. (A): real absorption map; (B): reconstructed absorption map with exact syn-
thetic data; (C): reconstruction with 10% random noise; (D): reconstruction with
20% random noise; (E): cross sections of map (A) (solid line), (B) (dashed line), (C)
(dash-dotted line) and (D) (dotted line) along the bottom left to top right diagonal.
(F): same as (E) except that the cross section is along y = 0.4.

free synthetic data. Note that although the total number of BFGS iterations can be

reduced by stricter line search scheme in the optimization algorithm, the total com-

putational time remains almost constant. We have tested many classical line search

algorithms. The results shown here use the one that works best for our application.

The quality of the reconstructions is measured as follows. Denote by M o ∈ RN

(M r ∈ RN) an exact (reconstructed) quantity, which can be either the absorption or

the scattering map. We then define the relative l2 error between M o and M r by:

El2 =
‖M r −M o‖l2
‖M o‖l2

:=

√∑N
i=1(M

r
i −M o

i )
2√∑N

i=1(M
o
i )

2

. (2.54)
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Figure 2-5: (A). Evolution of normalized objective functional Fβ with respect to
the number of iteration steps k for Example 1. Solid line: reconstruction of an
absorbing disc; dashed line: reconstruction of a scattering disc. (B). L-curve used to
choose optimal regularization parameter β for reconstruction with noise-free data in
the reconstruction of an absorbing disc. The circle (◦) denotes the place where β is
chosen. Note that here J = ‖σa‖2

H1 because we reconstruct only σa and we have set
σ0
a = 0.

The quality of the reconstruction in the case of an absorbing disc is given by the

parameters shown in the second column of Tab. 2.4.4. In Fig. 2-5 (B), we display the

L-curve we use to choose the optimal parameter β in the above reconstructions. We

mention again that due to the acquisition of our data presented in section 2.4.3, the

noise-free data actually contain “noise” on the coarse grid.

The reconstructions are classical examples of what we may expect in the field.

Because of the severe ill-posedness of the inverse problem, it is difficult to reconstruct

localized objects unless additional information is included in the reconstruction (which

we do not want to do here). Note that the center and the integral of the absorption

inclusion are more or less well reconstructed, even if the localized absorption map is

somewhat smeared over a relatively large domain (whose size increases as the noise

level, whence the regularization parameter β, increases). This is consistent with

results obtained from asymptotic theories; see for instance [19].

Example 2: Reconstructing σs We now replace the highly absorbing disc in the

previous case by a highly scattering disc at the same position and with the same
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Figure 2-6: Maps of reconstructed reduced scattering coefficients σ′s = (1 − g)σs
[cm−1] for Example 1. (A): real scattering map. (B): reconstructed scattering map
with noise free synthetic data. (C): reconstruction with 10% random noise. (D):
reconstruction with 20% random noise. (E): cross sections of map (A) (solid line),
(B) (dashed line), (C) (dash-dotted line) and (D) (dotted line) along the bottom left
to top right diagonal. (F): same as (E) except that the cross section is along y = 0.4.

size. The optical parameters for the background and the disc are σa = 0.1 cm−1,

σs = 70 cm−1 and σa = 0.1 cm−1, σs = 80 cm−1, respectively. Again, the anisotropy

factor g = 0.9, the modulation frequency ω = 600MHz. Each reconstruction here

takes approximately 6 hours on a 2.4GHz Pentium XEON processor. Fig. 2-6 shows

the exact scattering map and the reconstructed maps for different noise levels. Error

estimates are presented the third column of Tab. 2.4.4.

Cases absorbing disc scattering disc
Noise level 0% 10% 20% 0% 10% 20%
β × 108 1.0 2.8 4.6 1.3 2.9 5.7
El2 0.064 0.069 0.072 0.065 0.074 0.080

Table 2.1: Optimal regularization parameters β and errors in reconstructions for
different cases in Example 1 and Example 2.

The quality of the reconstructions is very similar in the above two examples and

is quite satisfactory. In spite of the fact that stronger regularizations have to be
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imposed as the noise level increases, the localization and the estimate for the optical

parameters in the presence of moderate noise indeed allow us to obtain reasonably

accurate information toward diagnostic purposes.

2.4.5 Frequency-domain versus steady-state

One of the main reasons for introducing frequency-domain reconstructions is that

they allow for a better separation between the scattering and absorption properties

of the inclusions [124]. Diffusion-based theories show that both coefficients cannot be

reconstructed simultaneously without additional geometrical hypotheses [14, 96]. We

now show on two numerical examples that frequency-domain data indeed substantially

improve the reconstruction of both coefficients.

Figure 2-7: Top row: Maps of reconstructed absorption coefficients σa [cm−1] at
BFGS iteration k = 40, 80, 120 and 156(final), respectively, for the frequency domain
reconstruction in Example 3. Middle row: same as the top row but for the reduced
reconstructed scattering coefficients σ′s = (1−g)σs [cm−1]. Bottom row: cross section
of real (solid line with +) and reconstructed absorption maps (left), reduced scattering
maps (right) along the diagonal at iterations k = 40 (solid line), 80 (dashed line), 120
(dash-dotted line) and 156 (dotted line). The reconstructions are done with noise-free
synthetic data.
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Example 3: Two-dimensional simultaneous reconstruction We reconstruct

here in the square domain two small discs of radius 0.2 cm and centered at (1.35

cm, 1.35 cm) and (0.65 cm, 0.65 cm), respectively. The first disc is highly absorbing

and the second one is highly scattering. Optical properties for the two discs are

σa = 0.2 cm−1, σs = 70 cm−1 and σa = 0.1 cm−1, σs = 80 cm−1, respectively. The

background parameters are σa = 0.1 cm−1 and σs = 70 cm−1. As before, g = 0.9,

ω = 600MHz. Each reconstruction takes approximately 8 hours on a 2.4GHz Pentium

XEON processor.

We compare the reconstructions based on frequency-domain ERT with those based

on steady-state ERT. The latter is obtained by setting the frequency ω = 0 in our

formulation and keeping everything else the same. We present in Fig. 2-7 and Fig. 2-8

the reconstructions obtained by the frequency-domain method and the steady-state

method, respectively. We also list the parameters which measure the quality of the

reconstructions at different iteration steps in Tab. 2.2.

Example 4: Three-dimensional simultaneous reconstruction In the last nu-

merical test, we show simultaneous reconstructions of two optical properties in a

three-dimensional setting. We try to reconstruct a small cylinder Ωs = {(x, y, z) :

(x − 0.5)2 + y2 ≤ 0.22, 0 ≤ z ≤ 2} embedded in the cylindrical domain defined in

section 2.4.2. Both the absorption and the scattering coefficients of the small cylinder

are different from those of the background. This is different from the case in Example

3 where absorption and scattering anomalies are located at different places. Optical

properties for the small cylinder are σa = 0.2 cm−1 and σs = 80 cm−1, while those

for the background are σa = 0.1 cm−1 and σs = 70 cm−1. The anisotropy factor

g = 0.9 and the modulation frequency ω = 600MHz. Each reconstruction takes ap-

proximately 22 hours on a 3GHz Pentium XEON processor. As in Example 3, we

compare the frequency domain reconstructions with the steady state reconstructions.

Cross sections of reconstructions obtained by frequency-domain method and steady-

state method are presented in Fig. 2-10 and Fig. 2-11, respectively. Qualities of the

reconstructions at different iteration steps are again listed in Tab. 2.2.
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Figure 2-8: Top row: Maps of reconstructed absorption coefficients σa [cm−1] at
BFGS iteration k = 40, 80, 120 and 354(final), respectively, for the steady state
reconstruction in Example 3. Middle row: same as the top row but for the reduced
reconstructed scattering coefficients σ′s = (1−g)σs [cm−1]. Bottom row: cross section
of real (solid line with +) and reconstructed absorption maps (left), reduced scattering
maps (right) along the diagonal at iterations k = 40 (solid line), 80 (dashed line), 120
(dash-dotted line) and 354 (dotted line). The reconstructions are done with noise-free
synthetic data.

We first observe that in both two-dimensional (Example 3) and three-dimensional

(Example 4) reconstructions, the frequency domain reconstruction converges faster

(in terms of BFGS iterations) than the steady state reconstruction; see for example

the results on Fig. 2-9 (A) and in Tab. 2.2. This has been confirmed in many other

geometrical settings we have tested: the speed of convergence of the steady-state

reconstruction presented here is one of the most favorable we have obtained, whereas

the speed of convergence of the frequency-domain reconstructions was very often

similar to what we have presented here.

As far as quality of the reconstruction is concerned, we observe a significant im-

provement in the frequency domain reconstructions compared to the steady-state re-

constructions. In all simulations, the stopping criteria is the same:
Fk

β (σa,σs)

F0
β(σa,σs)

≤ 10−5.
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Figure 2-9: (A). Evolution of the normalized objective functional Fβ with respect to
the number of iteration steps k for Example 3. Solid line: frequency domain recon-
struction of both coefficient simultaneously; dashed line: steady state reconstruction
of both coefficients simultaneously. (B.) L-curve used to choose optimal regulariza-
tion parameter β for reconstruction with noise-free data in the frequency domain
simultaneous reconstruction of absorbing and scattering coefficients. The circle (◦)
denotes the place where β is chosen. Note that J ≡ ‖σβ‖2

H1 := ‖σβa‖2
H1 + ε‖σβs ‖2

H1

because we have set σ0
a = σ0

s = 0.

Although the L2 errors may not enjoy a dramatic improvement (see Tab. 2.2), they

are still significantly reduced. More importantly, the last rows in Fig. 2-7 and Fig. 2-

8 show dramatic reductions (at least by a factor 2) of the cross-talk between the

absorption and scattering reconstructions: the spurious bumps (left of the left pic-

ture on the bottom row and right of the right picture on the bottom row in Fig. 2-7

and Fig. 2-8) are clearly much stronger in the steady-state calculations than in the

frequency-domain calculations. This is the major advantage of the frequency-domain

calculations. Very similar phenomena are observed in the three-dimensional sim-

ulations; see Fig. 2-10 and Fig. 2-11. Although the absorption coefficient is still

over-estimated in the frequency domain case (last row of Fig. 2-10), it is better than

the situation in the steady-state case (last row of Fig. 2-11) where the absorption

coefficient σa is severely over-estimated while the reduced scattering coefficient σ′s is

severely under-estimated. As predicted by theory, we have observed that an increases

in ω led to reduced cross-talks. How much this effect depends on the choice of the

frequency (as well as on possible combinations of different frequencies) and on the
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Figure 2-10: Top row: XY cross-section (at z = 1) and XZ cross-section (at y =
0) of the reconstructed absorption coefficient σa [cm−1] for the frequency domain
reconstruction in Example 4. Middle row: same as the top row but for the reduced
reconstructed scattering coefficients σ′s = (1 − g)σs [cm−1]. Bottom left: real (solid)
and reconstructed (dotted) absorption coefficient along line y = 0, z = 1. Bottom
right: same as bottom left but for reconstructed reduced scattering coefficient.

geometrical setting will be explored in future works.

2.5 Conclusions and remarks

We have formulated an inverse problem in optical tomography as a regularized least

square problem based on the frequency-domain equation of radiative transfer to model

light propagation in biological tissues. In the inversion procedure, the forward model

is discretized by using a finite volume method and a discrete ordinates method. We

solve the regularized least square problem by using a limited-memory Quasi-Newton

method with BFGS type updating rule for the Hessian matrix, and have incorporated

positivity constraints and L∞ bounds on the optical parameters. Numerical recon-
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Figure 2-11: Top row: XY cross-section (at z = 1) and XZ cross-section (at y = 0) of
the reconstructed absorption coefficient σa [cm−1] for the steady-state reconstruction
in Example 4. Middle row: same as the top row but for the reduced reconstructed
scattering coefficients σ′s = (1 − g)σs [cm−1]. Bottom left: real (solid) and recon-
structed (dotted) absorption coefficient along line y = 0, z = 1. Bottom right: same
as bottom left but for reconstructed reduced scattering coefficient.

structions based on synthetic data provide results that are in agreement with the

expected reconstructions. Notably, the crosstalk between the two optical parameters

is significantly reduced in frequency-domain reconstructions.

The method presented here also overcomes several of the shortcomings of diffusion-

equation based optical tomography [11, 58], which provides a very useful tool in many

problems but fails to adequately model strongly absorbing regions (e.g. large blood-

filled spaces such as brain hematoma), low-scattering void-like inclusions (e.g. spaces

filled with cerebrospinal fluid, amniotic fluid, or synovial fluid) and optically relatively

thin media such as fingers and small animals. Main domains of application of the

proposed method will be functional imaging of rheumatoid arthritis (RA) of human
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k = 40 k = 80 k = 120 Final
σa σs σa σs σa σs σa σs

El2(f) 0.121 0.144 0.092 0.112 0.080 0.092 0.063 0.076
E3 El2(s) 0.181 0.224 0.127 0.132 0.113 0.112 0.094 0.106

El2(f) 0.194 0.252 0.173 0.208 0.147 0.189 0.131 0.171
E4 El2(s) 0.342 0.422 0.287 0.366 0.245 0.322 0.210 0.292

Table 2.2: Error estimates for the reconstructions of Example 3 (E3) and Example
4 (E4) for several iteration steps (k) in the optimization process. Here, “f” refers to
frequency-domain calculations and “s” to steady state calculations.

finger joints, and small animal imaging [88, 92], where the diffusion equation typically

fails to generate accurate forward predictions.

One problem with the methods presented in the chapter is that the speed of the

inversion depends strongly on how fast and accurately the forward problem is solved.

Codes that use the radiative transport equation as a forward model are especially

slow, since numerical solutions of ERT require in general the discretization of an

angular variable in addition to spatial and time variables (in time-dependent case).

In next chapter, we will introduce a new kind of method that can accelerate the

reconstruction process considerably. We will compare numerically the performance

of the two methods in various settings.
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Chapter 3

Inverse transport as a
PDE-constrained optimization
problem

As we have seen in the previous chapter, numerical optimization techniques play an

important role in the solution of the inverse transport problems. We have developed

an algorithm that is based on quasi-Newton type of minimization technique. This

method requires solving the forward problem for some approximations of absorption

and scattering coefficients over and over again in each reconstruction. The speed of

the algorithm depends strongly on how fast and accurately the forward problems are

solved. Since numerical solutions of the ERT are very expensive, the inversion is

usually very slow. In the chapter, we introduce a new type of minimization technique

that can potentially speed up the reconstruction process. We will compare the ad-

vantages and disadvantages of the new method with the quasi-Newton method in the

previous chapter. The presentation of this chapter is based on reference [2].

3.1 Problem statement

Let us recall first the problem of optical tomography. In general, the propagation of

the near-infrared light in tissue can be modeled by a set of differential equations and

boundary conditions that can be written abstractly into the form

O(σ, u) = 0, (σ, u) ∈ σ × U , (3.1)
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where σ ≡ (σa, σs) denotes the optical property of the tissue while u essentially

measures the distribution of light in the tissue. The σ denotes the function space

where the optical property σ takes value in, and the U denotes the space that solution

u belongs to. O(σ, u) should be understood as an operator from σ × U to U .

Model (3.1) can be either the radiative transfer equation [11, 43, 58], which is

believed to be very accurate but hard to solve as we have seen in chapter 2, or the

less accurate diffusion equation [11], which is an approximation of the ERT in the

cases where scattering is sufficiently high (σs � 1) and absorption is sufficiently small

(σa � 1).

The measured data (in data space Z) in optical tomography is usually a bounded

linear functional of u, Gu, where G : U 7→ Z is called the measurement operator.

Note that G has to introduced because in practice only partial information about the

forward solution, u, can be measured [11]. An example of the measurement operator

is the one defined in (2.6) in the previous chapter. We remark here that when u can

be measured directly, G is nothing but an identity operator.

The objective of optical tomography is to transform the measured data into accu-

rate approximation of the spatial distribution of optical properties σ inside the tissue.

Due to the lack of analytical inversion formulas, this transformation is usually done

through numerical optimization tools [11, 13, 147]. The guiding principle of optimiza-

tion approaches to the inverse problems in optical tomography is to update iteratively

model parameter σ such that the forward model (3.1) generates a set of data (pre-

dictions) that best match measurements. To be more specific, let us first denote by

z ∈ Z our experimental measurements. We then introduce a real-valued non-negative

function, called objective function, to be minimized to generate the inverse solution,

φ : σ × U 7−→ R+:

φ(σ, u) =
1

2
‖Gu− z‖2

Z +R(σ). (3.2)

Again, the first term is used to quantify the difference between the measurements

and model predictions, while the second term, R(σ), is a regularization term. The

parameter σ that minimizes φ is the one we want.
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The diffuse optical tomographic imaging can now be formulated as the following

equation-constrained optimization problem

minimize φ(σ, u)

subject to (3.1).
(3.3)

Note that we do not consider here additional constraints on the optical property

σ, which might be add to (3.3) as we have done in the previous chapter; see also

references [91, 141, 154, 155].

There are several techniques to solve (3.3) in optimization theory [132]. All the

existing algorithms in optical tomography community convert (3.3) into an uncon-

strained optimization problem, just as what we did in chapter 2. Essentially one first

solves the equation (3.1) to obtain u as a function of σ, u = u(σ) and then uses this

fact to eliminate the explicit dependency of the objective function (3.2) on function

u, giving rise to another function that should be minimized only with respect to the

optical property σ, φ̃ : σ 7−→ R+:

φ̃(σ) ≡ φ(σ, u(σ)). (3.4)

To minimize φ̃(σ), one can use methods such as the conjugate gradient and quasi-

Newton methods we adopted in chapter 2; see also references [1, 79, 107, 133, 147, 162]

for details in implementation of algorithms based on this unconstrained approach.

One drawback of the above-mentioned method is that for each evaluation of the

function φ̃(σ) during the minimization process, one has to solve the forward prob-

lem (3.1) once to obtain u(σ). So each inversion procedure will require hundreds of

forward-problem-solving, which usually takes extremely long computational time.

The approach that is considered in this chapter does not require solving the for-

ward problem many times. Instead of working with (3.4), we start directly from

problem (3.3). To do that, we introduce the following Lagrangian functional for
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problem (3.3), L : σ × U × V∗ 7→ R,

L(σ, u;λ) = φ(σ, u)− 〈λ,O(σ, u)〉 , (3.5)

where λ ∈ U∗ is the Lagrange multiplier, U∗ is the dual space of U , and 〈·, ·〉 denotes

the duality pair between U and U∗. From the theory of constrained optimization

theory [32, 132], it is known that the solution to (3.3) satisfies the following optimality

condition for L [32, 132]:

∂L
∂σ

(σ̄, ū; λ̄) = 0,
∂L
∂u

(σ̄, ū; λ̄) = 0, O(σ̄, ū; λ̄) = 0, (3.6)

The system (3.6) is also known as the Karush-Kuhn-Tacker (KKT) condition [132].

Now the optimal point of (3.3) can be found by solving this KKT system. This ap-

proach is often referred to as all-at-once method because it solves the forward and

minimization problems simultaneously as compared to the unconstrained optimiza-

tion approach.

This kind of constrained optimization technique promises a much faster solution

of the inverse problem and has already proved to be very useful in other applications

such as shape design in aerodynamics [134, 164] and optimal control of incompress-

ible flows [75]; see also [33] for a general overview. In all those problems, there are

forward models that can be written in the form of (3.1). This kind of problem is

often called simulation-based optimization in the literature. In the case when the

forward model is a partial differential equation, the term PDE-constrained optimiza-

tion is used instead [33]. For the optical tomography problem, the integro-differential

radiative transport equation can be written as a system of coupled first-order partial

differential equations after passing to the discrete ordinate formulation (see the pre-

vious chapter), we can thus put our inverse problem in a general PDE-constrained

optimization framework. However, implementation of this PDE-constrained opti-

mization approach for optical tomography has never been reported to the best of our

knowledge. In the rest of the chapter, we will develop a constrained optimization

approach for optical tomographic imaging and compare its performance with the un-
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constrained optimization approach. Throughout this paper, we will not worry about

the existence and uniqueness problems of (3.3), but rather focus on the numerical

aspects.

We remarks finally that in general, optimization with constraints is not completely

new in optical tomography. Many authors have exploited simple-bound constraints,

which specifies upper and lower bounds for the optical properties such as those in

chapter 2; see also [91, 141, 154, 155]. However, in all these case the forward problem

still needs to be solved many times, and one does not make use of the advantages of

novel PDF-constrained concepts in which the governing equation itself is considered

as a constraint.

3.2 The augmented Lagrangian method for inverse

transport

As before, let us denote by Nq the total number of light sources and denote by Nd

the number of detectors readings corresponding to each source. The solution of the

forward problem (2.28) corresponding to Gq is denoted by Uq and the set of solutions

for all sources is denoted by Û ≡ (U1, ...,UNq). The set of measurements is denoted by

z ≡ {zq,d, d = 1, ..., Nd, q = 1, ..., Nq}. Finally, for the detector located at a mesh node

xd ∈ ∂Ω, we denote by Pd : R2LN 7→ C the discretized version of the measurement

operator that measures the outgoing current at xd. Here L is the number of discrete

ordinates used, N is the number of volumes used in the finite volume discretization

of the domain.

With all these notations, we are ready to introduce the objective function to be

minimized in optical tomography

Φ(Σ, Û) =
1

2

Nq∑
q=1

Nd∑
d=1

|PdUq − zq,d|2

|zq,d|2
+
β

2
R(Σ), (3.7)

where β is a the regularization parameter. Σ is the discretization of σ. It is important
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to note that the objective function Φ takes into account solutions Uq of the forward

problem for all Nq sources simultaneously.

Now on the discretized level, optical tomography can be formulated as a mini-

mization problem subject to the constraints (2.28) for Nq different sources:

min
(Σ,bU)∈R2N×R2LNNq

Φ(Σ, Û),

subject to (A− S)Uq −Gq = 0, 1 ≤ q ≤ Nq.

(3.8)

Note that each discrete constraint (A−S)Uq−Gq = 0 binds the vector of optical prop-

erties Σ and the vector of fluences Uq for a particular source Gq. The overall number

of discretized constraints is (number of sources)×(number of ordinates)×(number of

finite volumes).

3.2.1 The augmented-Lagrangian algorithm

Let us write Oq(Σ,Uq) ≡ (A − S)Uq − Gq = 0 from now on. We introduce a

Lagrangian function L : R2N × R2LNNq × R2LNNq 7→ R defined by

L(Σ, Û; λ̂) = Φ(Σ, Û)−
Nq∑
q=1

λT
q Oq(Σ,Uq), λq ∈ R2LN . (3.9)

where λ̂ ≡ (λ1, ...,λNq) is introduced just to simplify the notation. The solution to

the optimization problem (3.8) satisfies the optimality condition of (3.9), which is

given by the following system:

∇ΣL(Σ, Û; λ̂) = ∇ΣΦ(Σ, Û)−
Nq∑
q=1

λT
q∇ΣOq(Σ,Uq) = 0,

∇bUL(Σ, Û; λ̂) = ∇bUΦ(Σ, Û)−
Nq∑
q=1

λT
q∇UqOq(Σ,Uq) = 0,

∇λqL(Σ, Û; λ̂) = Oq(Σ,Uq) = 0, q = 1, ..., Nq.
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In other words, if (Σ∗, Û∗) provides an optimal solution of (3.8), then there exist

λ∗q ∈ R2LN , 1 ≤ q ≤ Nq, such that (Σ∗,U∗, λ̂
∗
) is a stationary point of the Lagrangian

function (3.9).

There exists several methods to find the stationary point of the Lagrangian func-

tion. For example, one can solve directly system (3.10) if an efficient nonlinear alge-

braic solver is available as in [33]. Here, we propose to use an augmented Lagrangian

method, which is an iterative method easy to implement. The method defines an

augmented Lagrangian function by

LK(Σ, Û; λ̂) = L(Σ, Û; λ̂) +
1

2K

Nq∑
q=1

‖Oq(Σ,Uq)‖2
l2 , (3.10)

where the term (1/2K)
∑Nq

q=1 ‖Oq(Σ,Uq)‖2
l2 is a penalty for violating the constraints

Oq(Σ,Uq) = 0, 1 ≤ q ≤ Nq. The augmented Lagrangian method will look for

a stationary point of the function LK instead of L. Note that in the limit that the

constraints are satisfied exactly, LK = L. We send interested readers to reference [132]

for more theoretical issues.

Assume that at the k-th iteration of the algorithm we have an approximation

(Σk, Ûk, λ̂
k
) to the stationary point (Σ∗, Û∗, λ̂

∗
) of the Lagrangian function. Let us

fix the current estimates of the Lagrangian multipliers λ̂
k

and a penalty parameter

Kk. Minimization of LKk
(Σ, Û; λ̂

k
) with respect to Σ and Û yields the following

system:

∇ΣΦ(Σ, Û)−
Nq∑
q=1

[
(λk

q)
T − 1

Kk

OT
q (Σ,Uq)

]
∇ΣOq(Σ,Uq) = 0,

∇bUΦ(Σ, Û)−
Nq∑
q=1

[
(λk

q)
T − 1

Kk

OT
q (Σ,Uq)

]
∇UqOq(Σ,Uq) = 0.

(3.11)

Suppose that (Σk, Ûk) is an approximate minimizer of LKk
(Σ, Û; λ̂

k
), i.e. an ap-

proximate solution of system (3.11). Comparing this system with the optimality
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condition (3.10), we conclude that λk
q − (1/Kk)Oq(Σ

k,Uk
q) approximates λ∗q:

λ∗q ≈ λk
q − (1/Kk)Oq(Σ

k,Uk
q), 1 ≤ q ≤ Nq. (3.12)

This formula can be rearranged to produce an estimate of Oq(Σ,U
k
q):

Oq(Σ
k,Uk

q) ≈ Kk(λ
k
q − λ∗q). (3.13)

Hence, we deduce that if λk
q is close to the optimal Lagrangian multiplier λ∗q, and Kk

is small enough, then the pair (Σk, Ûk) satisfies the corresponding constraint with a

high accuracy. Formula (3.12) prompts a rule for iterative updating of the Lagrangian

multipliers:

λk+1
q = λk

q − (1/Kk)Oq(Σ
k,Uk

q), 1 ≤ q ≤ Nq. (3.14)

We thus arrive to the following augmented Lagrangian algorithm.

Augmented Lagrangian Algorithm:

Initially choose K0, τ0 > 0 and maximum iteration step MAXIT and Lagrangian

multiplier λ̂0; choose also the initial guess (Σ̃0, Ũ0) for subproblem (1) in the next

loop;

• FOR k = 0, 1, 2, ...,MAXIT

1. Find the minimizer (Σk, Ûk) of LKk
(Σ, Û; λ̂

k
) by an iterative method that

– starts from initial value (Σ̃k, Ũk);

– terminates when ‖∇(Σ,bU)LKk
(Σk, Ûk; λ̂

k
)‖l2 ≤ τk is satisfied;

2. IF (final convergence criteria reached)

STOP, (Σk, Ûk) is the final solution;

3. Update Lagrangian multipliers

λk+1
q = λk

q − (1/Kk)Oq(Σ
k,Uk

q), 1 ≤ q ≤ Nq; (3.15)
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4. Choose new penalty parameter Kk+1 ∈ (0, Kk) and new subproblem-

stopping parameter τk;

5. Set starting point for the next iteration:

(Σ̃k+1, Ũk+1) = (Σk, Ûk);

• END

We refer to references [32, 97, 132] for more detailed discussion of the augmented

Lagrangian method, including the choice of parameters Kk and τk.

To solve the sub-optimization problem in step 1 of the above algorithm, we can

use the limited-memory version of BFGS algorithm as we have introduced before

in chapter 2. The BFGS algorithm requires computing of the gradient of objective

function with respect to Σ and Û. Those gradients can be analytical computed

through

∇ΣLK(Σ, Û; λ̂) = ∇ΣR(Σ)−
Nq∑
q=1

λT
q∇ΣOq(Σ,Uq)+

1

K

Nq∑
q=1

(Oq(Σ,Uq))
T∇ΣOq(Σ,Uq),

(3.16)

where ∇ΣOq = (∇ΣaOq,∇ΣsOq), and partial derivatives

∂Oq

∂[Σa]i
≡


∂[Oq ]1
∂[Σa]i

∂[Oq ]2
∂[Σa]i

...


can be easily computed explicitly using the matrix representation (2.30) and (2.31).

Gradient ∇bULK(Σ, Û; λ̂) can similarly be found in a closed form.

3.2.2 Interpretation and discussion

As follows from the estimate (3.13), the constraints Oq(Σ,Uq) = 0, q = 1, ..., Nq are

in general not satisfied with (Σk, Ûk) on every iteration of the ALM. This means that
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Figure 3-1: A simple illustration of the iteration process of unconstrained (�) and
constrained (©) optimization approaches to optical tomography. The subscript u
and c denotes quantities in unconstrained and constrained minimization process, re-
spectively.

Uk
q is not the exact solution of the radiative transport equation with the optical prop-

erties Σk ≡ (Σk
a,Σ

k
s) and source Gq, which is quite different from the unconstrained

optimization approach in chapter 2, in which Uk
q is the solution of the ERT with opti-

cal properties (Σk
a,Σ

k
s) on every step k of an iterative minimization algorithm such as

the quasi-Newton method. To outline the difference between the two methods we give

a simple geometrical interpretation of the unconstrained and constrained optimization

approaches. The equations Oq(Σ,Uq) = 0, q = 1, ..., Nq define a set C of the space

RN × RN × (R2LN)Nq . On every iteration of the unconstrained optimization method

vectors (Σk, Ûk) are forced to belong to the set C by construction. Satisfying this

condition exactly requires solving forward problems for different right-hand sides on

every iteration of the algorithm. In the constrained optimization approach, however,

conditions Oq(Σ
k,Uk

q) = 0, q = 1, ..., Nq will be satisfied only in the limit when the

algorithm converges. At a specific iteration before this convergence, (Σk, Ûk) does

not have to belong to the set C; see Fig. 3-1. This property provides a higher degree

of freedom in choosing a new iteration, and thus can lead to computationally less

intensive algorithms.

An advantageous property of the augmented Lagrangian method for optical to-

mography is that it does not have significantly larger memory requirements than

unconstrained optimization methods. Since the discretized transport operator T ≡
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Figure 3-2: Test problems setup. Cylinder height: H = 2 cm, radius r = 1 cm;
radius of the embedded small cylinder r = 0.25 cm. (a) source-detector layout with
8 sources (�), 64 detectors (©); (b) finite-volume mesh with 6727 tetrahedrons.

A− S is the same for all sources Gq, one needs to store only one T as in the uncon-

strained optimization cases. Actually, the only extra storage needed are the several

source, radiance vectors and Lagrangian multipliers. This storage is much smaller

than the storage of T.

We also remark that the augmented Lagrangian method proposed above can be

easily parallelized. First, in the sub-optimization problem, step 1, the gradient of the

augmented Lagrangian function has an analytical form (3.16), which involves only

the summation of local matrix-vector and vector-vector products. The computation

of this gradient can thus be done on separate processors and then collected. A trivial

example is to send those terms with different subscript q to different processors.

Second, the update of Lagrangian multipliers in step 2 of the method can also be sent

to parallel processors.

3.3 Numerical reconstructions

3.3.1 The test problem setup

To illustrate the performance of the ALM, we consider three types of media and

measurement geometries. In the first problem, we reconstruct the absorption coeffi-

cient in a cylinder with a smaller cylindrical inhomogeneity, in which the absorption

coefficient is twice as high as in the background (see Fig. 3-2 for the geometrical
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Problem 1 Problem 2 Problem 3
Anisotropy factor g 0.0 0.5 0.9
Background σa (cm−1) 0.1 0.1 0.5
Inhomogeneity σa (cm−1) 0.2 0.1 1.0
Background σ′s (cm−1) 10.0 10.0 10.0
Inhomogeneity σ′s (cm−1) 10.0 15.0 15.0
Number of sources 8 8 24
Number of detectors 64 64 24
Modulation frequency ω (MHz) 400 400 400
Number of finite volumes 6747 6747 13867
Number of ordinates 8 48 80

Table 3.1: Parameters used in three different problems

set-up). In the second problem, which uses the same overall geometry, we recon-

struct the spatial distribution of the scattering coefficient in a moderately anisotropic

medium. In these two problems all sources and detectors are located on the circle

defined by Γ := {(x, y, z) : x2 + y2 = 1, z = 1}. Finally, we show an example in

which we simultaneously reconstruct the absorption and scattering coefficients in a

highly anisotropic medium (Fig. 3-10 and Tab. 3.1). In this case, all sources and de-

tectors are located on two circles defined by Γ1 = {(x, y, z) : x2 + y2 = 1.52, z = 2.2}

and Γ2 = {(x, y, z) : x2 + y2 = 1.52, z = 3.5}. Similar measurement configurations

are commonly used [184], for example, for optical measurements in finger joints, or

small animal studies. For the discrete ordinate method, we use the level symmetric

discrete ordinate arrangement and the corresponding weight set from [113]. All recon-

structions were performed on a Linux workstation with a 700 MHz Pentium XEON

processor.

Synthetic measurements

As measurements we use synthetic data, which are obtained by implementing a for-

ward solver to the problem with exact optical properties. An algorithm for the forward

problem solution in frequency domain is presented in [146]; see also chapter 2. To

avoid a cancellation of numerical errors when the same model is used for the inverse

problem and for generation of the synthetic data, which is often referred to as an
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“inverse crime” [54], these data were generated using a much finer mesh (64280 finite

volumes) and 48 discrete ordinates. Along with the “exact” synthetic measurements

we consider synthetic measurements with added interval Gaussian noise. If zq,d is a

synthetic measurement corresponding to the source q and detector d, then instead of

zq,d we use zνq,d = zq,d + νq,dN (0, 1)I[−1,1], where N (0, 1) is a standard normal distri-

bution, and I[−1,1] is an interval indicator function that is equal to 1 on the interval

[−1, 1] and zero otherwise. Parameter νq,d is the standard deviation of the added

noise. The signal-to-noise ratio χ is then defined as

χ = 10 log10

zq,d
νq,d

(3.17)

In our experiments, the signal-to-noise ratio χ is the same for all sourcedetector pairs

and is equal to 20 dB or 15 dB, which are typical values for optical tomography

systems [107].

The initial guess

In all three problems considered in the paper we use homogeneous distributions as

initial guesses of σa and σs for the absorption and scattering coefficients. Solution of

the forward problem with these optical properties provides us with the initial guess

for the radiance u. We solve the forward problems with different sources only once

to ensure that the ALM starts from the point in the space of “optical properties–

radiance” pairs that belongs to the set C (see Fig. 3-1).

The stopping criterion

The stopping criterion for the algorithm is given by

|E(Ûk+1)− E(Ûk)| < ε,



57

with ε = 10−6 and the error function E(Û) being the first term in (3.7), in other

words,

E(Û) =
1

2

Nq∑
q=1

Nd∑
d=1

|PdUq − zq,d|2

|zq,d|2
.

Therefore the algorithm is stopped when the error function E(Û) does not decrease

anymore.

Reconstruction error measurement

To evaluate the quality of reconstruction we use the correlation coefficient ρ(x, y) and

the deviation factor δ(x, y) between two vectors that are defined as

ρ(x, y) =

∑N
i=1(xi − x̄)(yi − ȳ)

(N − 1)V ar(x)V ar(y)
, δ(x, y) =

√∑N
i=1(xi − yi)/N

V ar(y)
, (3.18)

where x̄ (ȳ) denotes mean value of x (y) and V ar(x) (V ar(y)) denotes variance of x

(y).

We will compute the correlation coefficient and deviation factor between recon-

structed (with a superscript r) and exact (with a superscript e) optical properties.

The larger the correlation coefficient the closer the reconstructed quantities resemble

the exact ones. If the reconstructed quantities are are identical to the exact ones, then

the their correlation coefficient is 1. The smaller δ the smaller the absolute difference

between reconstructed and exact quantities are. In the ideal case δ = 0. Note that,

since it is possible to obtain reasonably good reconstructions only in the vicinity of

the planes where sources and detectors are located (Fig. 3-2(a)), we compute ρ and

δ only in this plane.

3.3.2 Reconstruction of absorption coefficients

The constrained and unconstrained algorithms were used to perform reconstructions

for various combinations of different noise levels and regularization parameters. The

results with respect to the correlation coefficient, deviation factor, CPU time, num-
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Figure 3-3: Convergence history of E(Ûk)/E(Û0) for σa reconstruction (in log10

scale). (a) The lm-BFGS unconstrained optimization method with no noise. (b)
The augmented Lagrangian method, χ = ∞(no noise), and χ = 15 dB; (c) The
augmented Lagrangian method, χ = 20 dB and different regularization parameters.
All the values of β are given in units of[ 10−10].
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Method ALM ALM ALM ALM ALM lm-BFGS
Signal to noise ration χ (dB) 15 20 20 20 ∞ ∞
Regularization parameter β 200 10 200 500 200 -
Iteration to convergence 512 422 367 315 248 60
CPU time (h) 9.1 7.9 6.4 5.5 3.9 103.2
Correlation ρ(σea, σ

r
a) 0.63 0.53 0.68 0.71 0.76 0.79

Deviation δ(σea, σ
r
a) 0.85 0.97 0.79 0.81 0.69 0.64

Table 3.2: Quality of reconstruction of the absorption coefficient for different recon-
struction methods, different noise levels and different regularization parameters. The
parameter β is given in unit of [10−10].

ber of iterations to convergence are summarized in Tab. 3.2, and the corresponding

convergence history (the error function E(Ûk) versus the iteration number k) of the

iterative methods is shown in Fig. 3-3.

Comparison of constrained and unconstrained optimization

We first compare the performance of our newly developed constrained optimization

code with the unconstrained optimization code developed in chapter 2. Fig. 3-4 (a)

and (b) show the reconstruction of the absorber obtained with that unconstrained

optimization code using noise-free data (χ = ∞). It took approximately 103.2 h of

CPU time to complete 60 lm-BFGS iterations (Tab. 3.2, Fig. 3-3(a)). The correlation

coefficient is ρ(σea, σ
r
a) = 0.79 and the deviation factor is δ(σea, σ

r
a) = 0.64. Fig. 3-4 (c)

and (d) display the images obtained with the augmented Lagrangian method, using

the same spatial and angular discretization and the same finite-volume mesh. A com-

parable image quality is achieved in only 3.9 h (248 ALM iterations), which is almost

27 times faster. This acceleration factor is essentially determined by the number of

matrix-vector multiplications with the matrix T ≡ A − S, required to complete the

reconstruction. For example, for the absorption reconstruction problem considered in

this section, on every ALM iteration one has to make on average 1.5×103 multiplica-

tions with the matrix T for each source. The unconstrained optimization code makes

approximately 1.5× 105 matrix-vector multiplications for each source on every itera-

tion of the lm-BFGS method. Since 60 lm-BFGS iterations are needed to get Fig. 3-4

(a) and (b), while 248 ALM iterations are required for Fig. 3-4 (c) and (d), the overall
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number of matrix-vector multiplications used by the ALM code is approximately 24

times less than in the unconstrained minimization code, which accords well with the

observed CPU time differences. We also explored if relaxing the accuracy require-

ments for the forward and adjoint solutions in the unconstrained optimization code

can yield similar acceleration. We observed a moderate (up to 25%) acceleration of

the reconstruction in the cases where appropriate accuracy requirements were chosen.

Here an appropriate accuracy requirement means a stopping criterion for the forward

GMRES solver such that it still ensures convergence of the reconstruction algorithm.

For example, we usually stop the GMRES solver when the relative residual is smaller

than 10−13. If we stop the GMRES when the relative residual is smaller than 10−7 in

the first several quasi-Newton steps, the reconstruction still converges to very simi-

lar results, and the computational time is reduced by approximately 25%. However,

if we further relax the accuracy requirements our minimization algorithm no longer

converges to the right solution. The reason for this, in our opinion, is because we use

the adjoint differentiation method to compute the gradient of the objective function

with respect to optical parameters. This gradient is calculated using the solution

of the forward and adjoint problems. In the cases where the forward and adjoint

solutions are not accurate enough, the approximate gradient can be computed only

approximately which results in poor convergence of the minimization algorithm, or

no convergence at all.

Note that the reconstructions of the absorption coefficient obtained by different

methods (ALM versus lm-BFGS) do not coincide completely. But this fact is expected

and can be easily explained. Indeed, ALM and lm-BFGS generate iterations that do

not have to be the same (see Fig. 3-1), but converge to each other only in the limit as

k →∞. In the lm-BFGS method for the unconstrained optimization the intensity Uk
q

is a solution of the forward problem (the radiative transfer equation) with σa = σka ,

on each iteration k, by construction, whereas this property does not have to hold for

the augmented Lagrangian method.
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Figure 3-4: Cross sections of the reconstructed absorption coefficient in the plane
y = 0 ((a), (c) and (e)) and z = 1 ((b), (d) and (f)) with the quasi-Newton lm-BFGS
method for the unconstrained optimization and the ALM for problem 1 with differ-
ent noise levels. The target optical properties are σa = 0.2 cm−1 in the inclusion
and σa = 0.1 cm−1 in the background. (a) and (b) correspond to the reconstruction
with unconstrained minimization approach; (c) and (d) correspond to the ALM re-
construction with noise free data; (e) and (f) correspond to the ALM reconstruction
with 15 dB added noise.
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Impact of noise level

Next we test the impact of noise in the synthetic measurement data on the recon-

struction results. An example of a reconstruction performed with data with a signal-

to-noise ratio χ = 15 dB is shown in Fig. 3-4 (e) and (f) next to the images obtained

with noise-free data (Fig. 3-4 (c) and (d)). As expected the quality of reconstruction

decreases with a decreased signal-to-noise ratio. The correlation coefficient drops from

0.76 in the case of noise-free data to 0.63, while the deviation factor increases from

0.69 to 0.85 (see Tab. 3.2). Note that as the noise level increases (and χ decreases),

the number of necessary ALM iterations and CPU time increases. The results for

χ = 20 dB (the fourth column in Tab. 3.2) are in between the values for 15 dB and

noise-free data (χ = ∞). However, even for χ = 25 dB which is a very reasonable

noise level for currently available instrumentation, the 9.1 h CPU time is still over 11

times faster than the time it takes to complete unconstrained optimization with noise-

free data. Only if the signal-to-noise ratio drops below 10 dB, does the augmented

Lagrangian method fail to converge to any solution.

Impact of the regularization parameter

In the next series of numerical experiments we test the performance of the ALM for

different values of the regularization parameter β. In these experiments 20 dB Gaus-

sian noise is added and the parameter β is equal to 10, 200 and 500 ×10−10. As we can

see, when the regularization parameter is small (Fig. 3-5 (a) and (b) and Tab. 3.2),

the impact of noise is more significant, whereas for a large regularization parameter

the absolute value of the absorption coefficient in the center of the inhomogeneity is

found less accurately (Fig. 3-5 (e) and (f )). This is reflected in the deviation factor

δ(σea, σ
r
a) which first drops from 0.97 (in the case of a small value of the regularization

parameter β = 10 × 10−1) to 0.79 (β = 200 × 10−10), but then increases slightly to

0.81 for β = 500× 10−10 (see columns 3-5 in Tab. 3.2). This suggests that there is an

optimal value of β between 10 and 500 ×10−10, for which δ(σea, σ
r
a) becomes smallest.

On the other hand, the correlation factor ρ(σea, σ
r
a) keeps increasing (improving) as
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Figure 3-5: Cross sections of the reconstructed absorption coefficient in the planes
y = 0 ((a), (c) and (e)) and z = 1 ((b), (d) and (f)) with the ALM for problem 1
with different regularization parameters. The target optical properties are σa = 0.2
cm−1 in the inclusion and σa = 0.1 cm−1 in the background. (a) and (b) correspond
to the ALM reconstruction with β = 10× 10−10; (c) and (d) correspond to the ALM
reconstruction with β = 200×10−10; (e) and (f) correspond to the ALM reconstruction
with β = 500× 10−10.
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Figure 3-6: Cross sections of the reconstructed scattering coefficient in the planes
y = 0 ((a), (c) and (e)) and z = 1 ((b), (d) and (f)) with the augmented Lagrangian
method for problem 2. The target optical properties are σs = 15 cm−1 in the inclusion
and σs = 10 cm−1 in the background. (a) and (b) correspond to the reconstruction
after 50 iterations of the ALM; (c) and (d) correspond to the reconstruction after 200
iterations of the ALM; (e) and (f) correspond to the reconstruction at convergence
(498 iterations).

β increases. It is notable that for a rather large range of values of β “reasonable”

reconstruction results can be obtained. In the cases considered in this study, values

of β up to 2000 × 10−10 allowed perturbation to be located, even though with in-

correct absolute values. It appears that for each particular application (e.g., breast,

brain or joint imaging), some preliminary studies should be performed to find optimal

regularization parameters.

3.3.3 Reconstruction of scattering coefficients

In the second example, we show the reconstruction of the scattering coefficient with

an anisotropic factor g = 0.5. We use synthetic measurements with χ = 20 dB and

β = 500 × 10−10. A large number of discrete ordinates are necessary to capture

anisotropy effects as compared to the case of problem 1 where isotropic scattering

is assumed. This leads to a total number of 5181696 constraints in the constrained
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Figure 3-7: Convergence history of E(Ûk)/E(Û0) for σs reconstruction (in log10

scale). (a) The augmented Lagrangian method, χ = 20 dB and β = 500× 10−10 dB;
(b) The augmented Lagrangian method with different initial guesses, χ = ∞ dB and
β = 300×10−10; (c) the lm-BFGS unconstrained optimization method with no noise.

optimization formulation. The results of the reconstruction are presented in Fig. 3-6

and the convergence history is given in Fig. 3-7 (a) and Tab. 3.3. We observe that

the reconstruction algorithm converges slower than for σa, which is consistent with

the results presented in chapter 2. Note that the error function E(Ûk) can actually

increase on some iterations. This can be best explained by the fact that the ALM

tries to minimize the augmented Lagrangian function LK(Σ, Û; λ̂), not only the error

function E(Ûk). The acceleration rate we obtained as compared to the unconstrained

optimization method is approximately 18.
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Iteration number 50 200 498
Signal to noise ration χ (dB) 20 20 20
Correlation ρ(σes, σ

r
s) -0.12 0.42 0.67

Deviation δ(σes, σ
r
s) 1.12 0.97 0.81

Table 3.3: Quality of reconstruction of the scattering coefficient as a function of ALM
iteration step.

Figure 3-8: Cross sections of the reconstructed scattering coefficient in the planes
y = 0 ((a), (c) and (e)) and z = 1 ((b), (d) and (f)) with the augmented Lagrangian
method for problem 2 with different initial guesses. The target optical properties
are σs = 15 cm−1 in the inclusion and σs = 10 cm−1 in the background. (a) and
(b) correspond to initial guess σ0

s = 10 cm−1; (c) and (d) correspond to initial guess
σ0
s = 11 cm−1; (e) and (f) correspond to initial guess σ0

s = 12 cm−1.

Initial guess σ0
s (cm−1) 10 11 12

Number of ALM iteration to converge 327 549 741
Correlation ρ(σes, σ

r
s) 0.69 0.66 0.62

Deviation δ(σes, σ
r
s) 0.76 1.20 1.34

Table 3.4: Quality of reconstruction of the scattering coefficient as a function of the
initial guess.
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Impact of the initial guess

We use reconstructions of the scattering coefficient to illustrate convergence of the

ALM from different initial guesses σ0
s (χ = ∞). In the first example, the initial

guess for the scattering coefficient is equal to the background value σ0
s = 10 cm−1,

in the second it is 10% higher σ0
s = 11 cm−1, and in the third it is 20% higher than

the background value, σ0
s = 12 cm−1. The results of reconstruction are presented in

Fig. 3-8 and Tab. 3.4. It can be seen that the correlation factor depends weakly on the

initial guess. It only drops by approximately 10% from 0.69 to 0.62, when the initial

guess is increased from 10 to 12 cm−1. This just expresses the fact that the location

and shape of the inhomogeneity is still rather accurately reconstructed. The absolute

values of the optical properties in the image are strongly affected by the initial guess,

which is obvious in the images as well as in the values of the deviation factor δ(σes, σ
r
s)

which increases from 0.74 to 1.34 when the initial guess is σ0
s = 12 cm−1 instead of

σ0
s = 10 cm−1. Similar results were observed for the case of absorption reconstruction.

Overall we found that the ALM will produce images with ρ(σes, σ
r
s) > 0.5 as long as

the initial guess is not more than 40% higher than the actual background value.

Impact of the mesh size

Finally, we compare the reconstructions obtained with different finite-volume meshes,

using noise-free synthetic measurement data. Images are displayed in Fig. 3-9, while

the corresponding ρ(σes, σ
r
s) and δ(σes, σ

r
s) are shown in Tab. 3.5. The images show

almost no visible differences. Indeed, refining the mesh from 6747 tetrahedrons to

15615 leads only to slight improvements in the correlation coefficient ρ(σes, σ
r
s) (from

0.69 to 0.75) and the deviation factor δ(σes, σ
r
s) (from 0.76 to 0.73). Further mesh

refinement does not improve these image quality parameters. This shows that when

the mesh is fine enough so that the average distance between the mesh points is of

the order of the scattering mean free path (1/σs), the discretization is sufficient to

capture most pertinent effects.
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Figure 3-9: Cross sections of the reconstructed scattering coefficient in the planes
y = 0 ((a), (c) and (e)) and z = 1 ((b), (d) and (f)) with the augmented Lagrangian
method for problem 2 with different meshes. The target optical properties are σs = 15
cm−1 in the inclusion and σs = 10 cm−1 in the background. (a) and (b) correspond
to mesh with 10062 tetrahedrons; (c) and (d) correspond to mesh with 15612 tetra-
hedrons; (e) and (f) correspond to mesh with 19489 tetrahedrons.

Number of finite volumes 6747 10062 15612 19489
Correlation ρ(σes, σ

r
s) 0.69 0.72 0.75 0.75

Deviation δ(σes, σ
r
s) 0.76 0.75 0.73 0.74

Table 3.5: Quality of reconstruction of the scattering coefficient as a function of the
mesh size.
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Figure 3-10: Test problem 3 setup. Cylinder height: H = 5 cm, radius r = 1.5 cm;
radius of the embedded small cylinder r = 0.5 cm. (a) source-detector layout with 24
sources (�), 24 detectors (©); (b) finite-volume mesh with 13867 tetrahedrons.

Iteration number 50 300 712
Correlation ρ(σea, σ

r
a) 0.33 0.20 0.29

Deviation δ(σea, σ
r
a) 1.14 0.99 0.96

Correlation ρ(σes, σ
r
s) 0.32 0.07 0.39

Deviation δ(σes, σ
r
s) 1.20 1.01 0.95

Table 3.6: Quality of reconstruction of the absorption and scattering coefficients as a
function of the ALM iteration step.

3.3.4 Simultaneous reconstruction of two coefficients

As a last example we present a simultaneous reconstruction of both the absorption

and scattering coefficients in highly anisotropic scattering media, with g = 0.9. In

this case, we set the regularization parameter β to 700× 10−10. The synthetic mea-

surements for this problem were generated using 80 ordinates and a finite-volume

mesh with 23793 tetrahedrons and 20 dB noise was added to the measurements.

Target optical properties represent media with a relatively high absorption and a

low scattering, for which the diffusion theory fails to describe the light propagation

accurately. The cross sections of the reconstructed absorption and scattering coeffi-

cients are presented in Fig. 3-11, and the corresponding values of ρ(σea, σ
r
a), ρ(σ

e
s, σ

r
s)

and δ(σea, σ
r
a), δ(σ

e
s, σ

r
s) are given in Tab. 3.6. As for problems 1 and 2, the parameters

ρ(σe, σr) and δ(σe, σr) are computed only in the planes z = 2.2 and z = 3.5, in which

sources and detectors are located.
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Figure 3-11: Cross sections of the reconstructed absorption and scattering coefficients
in the planes y = 0, z = 2.2 and z = 3.5 with the augmented-Lagrangian method
for problem 3. The target optical properties are σa = 1.0 cm−1, σs = 15 cm−1 in the
inclusion and σa = 0.5 cm−1, σs = 10 cm−1 in the background. (a) Reconstruction of
σa at convergence (712 iterations), left-top: cross section z = 3.5, left-bottom: cross
section z = 2.2, right: cross section y = 0. (b) Reconstruction of σs at convergence
(712 iterations).

3.4 Conclusions and remarks

We have implemented a PDE-constrained optimization method that solves inverse

problems of optical tomography using the frequency-domain radiative transport equa-

tion as the forward model. By simultaneously updating both radiance and optical

properties, the method solves the forward and inverse problems in optical tomogra-

phy all at once. In this way, the computing time is greatly reduced as compared to

traditional unconstrained optimization methods, during which one has to repeatedly

solve the forward problem many times. We tested and quantified the performance

of the algorithm for various combinations of mesh sizes, noise, regularization param-

eters, initial guesses, optical properties and measurement geometries. Besides the

speed of the code, we compared image qualities by defining a correlation coefficient

as well as a deviation factor. In the cases that involve image reconstruction from

synthetic measurement data we observe 10− to 30−fold decrease in computing time

for the constrained optimization code compared to the unconstrained optimization

code. The regularization parameter β has some influence on the computing time, but

with reasonable values of β which in our case are of order 10− 103× 10−10, the com-



71

putational time changes less than 20%. In general, reconstruction of both absorption

and scattering together took longer than reconstructions of only the scattering coef-

ficient or only the absorption coefficient. As expected the correlation coefficients and

deviation factors worsen as the signal-to-noise ratio decreases. Similarly the deviation

factor decreases substantially as the (homogeneous) initial guess is not chosen close

to the optical properties of the actual background medium. Interestingly the corre-

lation coefficients is only weakly affected by the initial guess. As long as the optical

properties are chosen within 50% of the actual background medium the correlation

coefficient changes by only 10-20%. Finally the correlation coefficient and deviation

factor do not change once the mesh is fine enough so that the average size of finite

volumes becomes less than the average scattering mean free path (1/σs).

Another positive aspect of the augmented Lagrangian method is that it main-

tains storage requirements that are comparable to requirements encountered in un-

constrained optimization methods. The augmented Lagrangian also provides the

flexibility of being easily implemented on parallel processors.

Finally, it should be noted that the constrained optimization method introduced

in this work does not require that the forward model is the frequency-domain ERT.

For example, one can also implement similar codes with the diffusion equation as the

forward model of light propagation in tissues or with a system of two ERTs as the

forward model as in the case of fluorescence tomography.
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Chapter 4

Inverse transport problem in
atmospheric remote sensing

In the previous two chapters, we have focused on the development of computational

tools to study some of the inverse transport problems in optical tomography appli-

cations. In this chapter, we will conduct some theoretical analysis on an inverse

transport problem. We will focus on a problem that arises in atmospheric remote

sensing. We show that such an inverse problem is an severely ill-posed problem.

Special attention has to be paid on inversion algorithms that are designed to do nu-

merical reconstructions just as the case in optical tomography. The presentation of

this chapter is based on reference [24].

4.1 Problem statement

The vertical concentrations of atmospheric gases such as carbon monoxide (CO), car-

bon dioxide (CO2), and ozone (O3) play a central role in the energy balance between

atmospheric absorption and emission [78, 116, 125], and thus have a strong impact

on global climate changes, air quality, and various other meteorological processes. In

recent years, spectro-radiometers in Fourier Transform Infrared Spectroscopy (FTIS)

have been widely used to monitor the concentration of atmospheric gases. An exam-

ple of such spectrometer, the Tropospheric Emission Spectrometer (TES) installed on

the EOS-Aura spacecraft, will soon measure global three-dimensional distributions of

ozone and other gases in the troposphere [28] with unprecedented accuracy. In its
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nadir mode, TES will record the spectral radiance from the Earth’s atmosphere in

the form of line integrals with respect to altitude z. Such measurements can be used

to recover the vertical concentration profile of atmospheric gases.

Mathematically, the problem can be formulated as a one-dimensional inverse

source problem of a scattering-free transport equation aiming at reconstructing the

altitude-dependent gas distribution profiles [38, 53, 94] from wavenumber-dependent

boundary radiation measurements. While a lot of work has been done on developing

numerical algorithms to address the linear inverse problem [53, 61, 168, 150], com-

paratively little is known in the literature on more mathematical questions such as

uniqueness and stability of the reconstruction. The first part of the chapter addresses

this issue.

Under suitable separability assumptions on the absorption coefficients in the trans-

port equation, we show that the gas concentrations can indeed uniquely be deter-

mined by radiation measurements –a theoretical underpinning for the reconstruction

algorithms we were not able to find in the existing literature– and give an explicit

reconstruction procedure. Moreover, we stress that the reconstruction involves the

inversion of a Laplace transform, which is known to be a severely ill-posed prob-

lem [31, 67]. As a consequence, a somewhat limited amount of information on the

profiles can be retrieved from the radiation measurements. Such limitations need to

be incorporated in realistic reconstruction methods.

An important objective of the radiation measurements is the detection of relatively

thin (compared to the size of the atmosphere) layers such as ozone or dust layers in the

Earth’s lower atmosphere (the troposphere). Such layers have an important impact

on local climate changes and global warming effects to cite a few. Because of the

severely ill-posed nature of the inversion problem, such thin layers must be modeled

specifically in the inverse problem if they are to be detected. We propose in this

paper to model such structures as thin inclusions with arbitrary (i.e., not necessarily

small) concentration contrast. We perform asymptotic expansions in the thickness

of the inclusions to characterize their main impact on the boundary measurements.

The technique follows general principles that have been used successfully in many
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other fields [9, 19, 44]. The results of the analysis are the following. The location of

the inclusions and the product of their thickness with their concentration variations

(with respect to the underlying medium assumed to be known) can be reconstructed

from moderately noisy data. Obtaining more on the inclusion, i.e., both its thickness

and its concentration, requires much more accurate data. This provides us with some

guidelines in our aim to understand what can versus what cannot be reconstructed

from measurements with a given noise level.

Let us note that the nadir measurements represent only one modality of TES.

Measurements involving directions of incidence other than the vertical one are avail-

able and could be incorporated into the model to improve its stability properties.

Although this is an important problem, it is not considered further here.

4.2 The mathematical model

We denote by L(z, ν) the radiation intensity of atmospheric gases at altitude z ∈ Z =

(0, Z), where Z is the altitude at the “top” of the atmosphere, and wavenumber ν ∈

N = [νmin, νmax], where νmin and νmax are the minimum and maximum wavenumbers

accessible in real measurements. The radiation source term at the Earth surface is

L(z = 0, ν). The volume source term of radiation is a(z, ν)B(z, ν), where a(z, ν) is the

absorption profile of a specific gas in the atmosphere andB(z, ν) is the Planck function

of black-body radiation. The measurements L(Z, ν) are the radiation intensity on top

of the atmosphere z = Z. Typically, measurements are available in the wavenumber

range of 650 to 2250 cm−1 (which corresponds to wavelengths of 15.4 and 4.4µm,

respectively). Thus, ν is in the middle of the thermal infrared region (IR). From the

atmospheric radiative transfer theory [78, 116], the transport equation satisfied by

L(z, ν) is:


∂L(z, ν)

∂z
+ a(z, ν)L(z, ν) = a(z, ν)B(z, ν), (z, ν) ∈ Z ×N ,

L(0, ν) = L0(ν), ν ∈ N .
(4.1)
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We assume that a(z, ν) and B(z, ν) are positive functions of class C0(Z × N ) and

C1(Z×N ), respectively, and that L0(ν) is a positive function of class C0(N ). As usual

C0 is the class of continuous functions and C1 the class of continuously differentiable

functions. The solution L(z, ν) is then a positive function of class C1(Z ×N ) [73].

The Planck function B(z, ν) is given by

B(z, ν) =
2hν3

c2(ehν/kT (z) − 1)
, (4.2)

where h is Planck constant, ν is the wavenumber, k is the Boltzmann constant and c

is the speed of light in a vacuum. The temperature profile T (z), assumed here to be

of class C1(Z), is given in Kelvin degrees and is thus always positive. Notice however

that T ′(z) changes sign on Z in practice. This will be important in the reconstruction

theory. Scattering has been neglected in (4.1), which is an accurate assumption in

the “clear sky” environment.

The radiation intensity at the Earth surface is related to the Planck constant of

black-body radiation by

L0(ν) = ε(ν)B(0, ν) (4.3)

where ε(ν) is the surface emissivity, which we may assume is constant at the Earth’s

surface ε(ν) = ε [116].

It is more convenient to work in the sequel with the following quantity

H(z, ν) = L(z, ν)−B(z, ν), (4.4)

modeling the departure from the black-body radiation equilibrium. One can verify

that the equation for H(z, ν), also of class C1(Z ×N ), takes the form


∂H(z, ν)

∂z
+ a(z, ν)H(z, ν) = −∂B(z, ν)

∂z
≡ S(z, ν), (z, ν) ∈ Z ×N ,

H(0, ν) = γB(0, ν), ν ∈ N ,
(4.5)
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where γ = ε−1. Upon inverting this first-order ordinary differential equation, we get

H(Z, ν) = H(0, ν)e−
R Z
0 a(ζ,ν)dζ +

∫ Z

0

S(z, ν)e−
R Z

z a(ζ,ν)dζdz, ν ∈ N . (4.6)

Let us define the optical length

α(z, ν) =

∫ Z

z

a(ζ, ν)dζ. (4.7)

We may then recast the above integral (4.6) as

H(Z, ν) = H(0, ν)e−α(0,ν) +

∫ Z

0

S(z, ν)e−α(z,ν)dz, ν ∈ N . (4.8)

This is the integral formulation, equivalent to the differential equation (4.1), as it

appears in most of the atmospheric inversion literature.

4.3 Uniqueness and ill-posedness of a simplified

model

We know that the absorption profile a(z, ν) depends on both the concentration of

atmosphere gases and their absorption properties at specific wavenumbers. To sim-

plify the presentation, we assume in this section that only one gas, such as ozone,

contributes to absorption and emission. We then have that

a(z, ν) = c(z)κ(z, ν), (4.9)

where c(z) ∈ C0(Z) is the unknown (non-negative) concentration profile for the gas

and κ(z, ν) ∈ C0(Z × N ) is the (positive) spectral absorption/emission coefficient

(also called spectral line shape). Although more complicated models of κ(z, ν) can

be considered, we focus here on the so-called Lorentzian line shape of κ(z, ν). It is
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valid in the lower atmosphere and takes the form

κ(z, ν) ≡ κL(z, ν) = Qν0

1

π

αL(z)

(ν − ν0)2 + α2
L(z)

≡ Qν0f(z, ν − ν0), (4.10)

where ν0 is the center of the band of wavenumber we are interested in and Qν0 =∫
N κ(z, ν)dν is the line strength. The function αL ∈ C0(Z) is called the Lorentz

half-width. It is roughly given by

αL(z) ∼ T (z)−1/2, z ∈ Z, (4.11)

where T (z) is the temperature profile of the atmosphere and f(z, ν−ν0) ∈ C0(Z×N )

is the shape factor of a spectral line [78]. The Lorentzian line shape describes how a

gas absorbs and emits radiance in a narrow band of wavenumbers centered at ν0.

The inverse (retrieval) problem in atmosphere imaging is to assume that the ra-

diation term B(z, ν) in (4.1) and absorption coefficient κ(z, ν) are known and to

reconstruct as much as possible about c(z) from radiation measurements L(Z, ν) =

H(Z, ν) +B(Z, ν).

4.3.1 The case of a single gas

The purpose of this section is to show that the reconstruction of c(z) from L(Z, ν)

is uniquely determined (in a slightly simplified setting) and is a severely ill-posed

problem (see [67]) in the sense that, in the absence of regularization, noise in the

data is more amplified during the inversion procedure than what would result from

an arbitrary number of differentiations.

We do not have a complete theory for general absorption coefficient κ(z, ν). Rather

we make the following assumption on the shape factor f(z, ν − ν0):

f(z, ν − ν0) = µ(ν − ν0)g(z), (4.12)

where g(z) ∈ C0(Z) is uniformly bounded from below by a positive constant and

µ(ν − ν0) ∈ C0(N ) is a positive function whose range M = µ(N − ν0) is an interval
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in R+. In the above expression (4.10) this would correspond to replacing κ by its

approximation

κL(z, ν) ≈ Qν0

1

π

αL(z)

(ν − ν0)2 + ᾱ2
, (4.13)

with µ(ν) and g(z) given by

µ(ν) =
1

π

ᾱ

ν2 + ᾱ2
, (4.14)

and

g(z) =
αL(z)

ᾱ
. (4.15)

Here ᾱ is a constant. The range of µ is given by M = [ ᾱ
π(ν̄2+ᾱ2)

, 1
πᾱ

] ⊂ R+ with

ν̄ := max(|νmin − ν0|, |νmax − ν0|).

The separability assumption on the shape factor is not totally unreasonable for

the Lorentzian line shape (4.10). Following (4.11) and choosing ᾱ ∼ T̄−1/2, where

T̄ the average of T (z) over Z, we obtain from realistic temperature profiles that

‖αL−ᾱ
αL

‖L∞(Z) < 0.15, which implies that at any given wavenumber ν, ‖κ(·,ν)−κL(·,ν)
κ(·,ν) ‖L∞(Z) <

0.15, where κ and κL are given by (4.10) and (4.13), respectively. The maximal error

is attained when ν = ν0 and decays quite fast away from ν0 because of the domi-

nance of the term (ν − ν0)
2 over α2

L. Therefore, the separability assumption serves

as a faithful benchmark in understanding the theoretical and numerical aspects of

reconstructions based on more detailed and accurate physical models.

We also simplify the behavior of the source terms with respect to wavenumber ν

and approximate the Planck function (4.2) as follows

B(z, ν) ≈ 2kν2

c2
T (z). (4.16)

We verify that in the infrared (IR) region of interest, this expansion is quite accurate

as hν/kT is on the order of at most 10−3 in practice. The temperature T (z) is also

assumed to be of class C1(Z).

Accounting for the above simplifications and using the change of variables ν → µ

and H(z, ν)c2/(2kν2) → D(z, µ), we obtain, still denoting by a(z, µ) and κ(z, µ)

the absorption coefficients in the new variables, that D(z, µ) satisfies the following
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equation,


∂D(z, µ)

∂z
+ a(z, µ)D(z, µ) = −∂T (z)

∂z
≡ S(z), (z, µ) ∈ Z ×M,

D(0, µ) = γT (0), µ ∈M.
(4.17)

After defining the rescaled optical length by

α(z) =

∫ Z

z

Qν0c(ζ)g(ζ)dζ, (4.18)

equation (4.17) can be inverted as

D(Z, µ) = D(0)e−µα(0) +

∫ Z

0

S(z)e−µα(z)dz, µ ∈M. (4.19)

Here D(Z, µ) is the measurement for µ ∈ M. The positive function g(z) and the

temperature profile T (z) (hence S(z)) are known a priori.

The inverse problem for (4.17) is then:

(IP) Determine the positive function c(z) ∈ C0(Z) from the measurements Dm(µ) =

D(Z, µ) for µ ∈M.

As we have already mentioned, several numerical methods have been devised for

solving the above inverse problem; see [53, 61, 168] and the monograph [150] and

references therein. Many techniques are based on Bayesian inversion techniques [61,

150]. In this paper we concentrate on the mathematical analysis of the continuous

(non-discretized) inverse problem (IP). Our main result is the following:

Theorem 4.3.1. Let us assume that S(z) is a continuous function on Z, which

vanishes at a finite (possibly zero) number of points. Then there is a unique strictly

positive function c(z) ∈ C0(Z) solving (IP).

Proof. The gas concentration profile c(z) and the quantity g(z) in (4.15) are both

positive functions on Z = (0, Z), so α′(z) = −Qν0c(z)g(z) < 0 on Z. We can then

perform the change of variables z 7→ α(z) and define the continuously differentiable

inverse map α 7→ z(α). The above inequality implies that z′(α) < 0. The transform
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(4.19) may thus be recast as

D(Z, µ) = D(0)e−µα(0) +

∫ α(0)

0

S(z(α))
∣∣∣ dz
dα

∣∣∣e−µαdα, µ ∈M. (4.20)

Here we have used that α(Z) = 0. The data D(Z, µ) is thus the Laplace transform

of the distribution

h(α) ≡ −z′(α)S(z(α)) +D(0)δ(α− α(0)) (4.21)

The above distribution has support in [0, α(0)]. Since it is compactly supported, its

Fourier transform ĥ(ζ) = 1
2π

∫
R e

iζαh(α)dα is an analytic function in ζ [181]. The

latter is known for values of ζ such that ζ = iµ, µ ∈M since then D(Z, µ) = ĥ(−iζ).

It is thus sufficient to know D(Z, µ) on a set with at least one accumulation point

to uniquely define ĥ(ζ) for all ζ ∈ C by analytic continuation [55, 156]. This in turn

uniquely defines the function h(α). Since M is an interval in our model, we can

thus reconstruct α(0), D(0), and −z′(α)S(z(α)) on (0, α(0)) from the measurements

D(Z, µ).

We now reconstruct α(z) on (0, Z) from the above measurements. We present two

similar methods. Let us first introduce the function T̃ (α) of class C1(0, α(0)) defined

by T̃ (α) = T (z(α)). We verify that −z′(α)S(z(α)) = T̃ ′(α). By integration, and since

T̃ (0) = T (Z) is known, we uniquely reconstruct T̃ (α) on (0, α(0)). Since z′(α) < 0, we

deduce that T̃ ′(α) = T ′(z(α))z′(α) and T ′(z) vanish at the same singular points (in

their respective variables). If there is no such point, then T (z) is a homeomorphism

on (0, Z) (it is bijective, continuous, and maps open sets to open sets since |T ′(z)| > 0

on the interval; it thus admits a continuous inverse) with inverse z(T ), from which

we deduce z(α) = z(T̃ (α)) on (0, Z); whence its inverse α(z). Otherwise, we call the

singular points αk and zk, 1 ≤ k ≤ N , respectively, with α(zk) = αk. We also note the

endpoints α0 = 0, αN+1 = α(0), z0 = Z, and zN+1 = 0. The points αk are determined

by the data since T̃ (α) is known, and the points zk are determined by the knowledge

of T (z). On each interval (zj+1, zj), T (z) is a homeomorphism with inverse function

z(T ) (for the same reasons as above). We thus obtain z(α) = z(T̃ (α)) on (zj+1, zj),
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whence α(z) on (αj, αj+1). Varying 0 ≤ j ≤ N , this allows us to reconstruct α(z) on

the whole interval (0, Z).

Another (very similar) way of looking at the reconstruction is to recast (4.21) for

z ∈ Z as
dz(α)

dα
= − h(α)

S(z(α))
. (4.22)

The above (nonlinear) ordinary differential equation for z(α) holds at all but possi-

bly a finite number of points in Z by assumption on S(z) and can be extended by

continuity to the whole interval since z(α) is a C1 diffeomorphism. We thus uniquely

recover the diffeomorphism z(α) from (4.22) since h(α) is continuous on (0, α(0))

as can be seen in (4.21) and provided that S(z) is a Lipschitz function (hence the

above ordinary differential equation admits a unique solution; this proof requires a

little more regularity than the previous one). This also uniquely defines its inverse

α(z). Once α is reconstructed we uniquely reconstruct c(z) by differentiating formula

(4.18). This complete the proof.

Both the analytic continuation [128] and the inversion of the Laplace transform [31]

are known to be severely ill-posed problems. The reconstruction of the concentration

profiles from the boundary measurements is therefore severely ill-posed, even if we

had access to data on M = R+ (in which case the reconstruction would still rely

on inverting a Laplace transform). In practice, this means that only a handful of

parameters modeling the concentration profile can realistically be reconstructed from

the measured data provided that those data contain only high frequency noise.

The assumption that the temperature gradient S(z) may vanish at a finite number

of points allows us to account for non-invertible temperature profiles (i.e., z(T ) may

be a multi-valued function; the assumption on S(z) implies that it can only take

a finite number of values). The temperature profiles are not invertible in practice,

see Fig.4-1(a), so we need to account for this situation. The assumption however

cannot be substantially relaxed. If S(z) vanishes on an interval, then α′(z) cannot be

reconstructed on this interval since (4.21) and (4.22) are no longer equivalent. The

measurements at z = Z provide no information on α(z) on the intervals where S(z)
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vanishes. This implies non-uniqueness of the gas profile reconstruction; see also our

numerical simulation at the end of section 4.5.1.

4.3.2 The case of multiple gases

We now extend the results obtained in the preceding section to the multiple-gas

case. Let us assume that our composite gas consists of M different species and the

absorption spectra of the composite gas contains N (N ≥ M) well-separated bands

centered at νi, i = 1, 2, ..., N , respectively. By “well-separated” we mean that for

wavenumbers ν in the jth band, we have |ν − νj| � |νk − νj|, for all k 6= j. We

assume moreover that the absorption coefficient for gas i can be written as

κi(z, ν) = Qijµ(ν − νj)ci(z)gi(z), (4.23)

where Qij is the line intensity for gas i in the wavenumber band j. Our main as-

sumption is that the function µ(ν) with range M is universal to all gases and takes

the form (4.14), i.e.,

µ(ν) =
1

π

ᾱ

ν2 + ᾱ2
, (4.24)

where ᾱ is a constant. With these assumptions we have the following (relatively

straightforward) generalization of the single gas case:

Theorem 4.3.2. Under the assumptions of Theorem 4.3.1, there exists a unique set

of positive profiles ci(z), i = 1, . . . ,M , such that D(Z, µ) ≡ Dm(Z, µ) provided that

assumption (4.23) and (4.24) hold and the matrix Qij has rank M .

Proof. With the above assumptions, we can write the total absorption map for the

composite gas in the vicinity of band j as

a(z, ν) ≡ aj(z, ν) = µ(ν − νj)
M∑
i=1

Qijci(z)gi(z). (4.25)

After defining

αj =
M∑
i=1

Qij

∫ Z

z

ci(ζ)gi(ζ)dζ, (4.26)
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we obtain a similar expression as before for the measurements Dj(Z, µ) in the jth

frequency band:

Dj(Z, µ) = D(0)e−µαj(0) +

∫ Z

0

S(z)e−µαj(z)dz. (4.27)

For the same reason as in one gas case, since α′j < 0, we can perform the change of

variables z → αj(z). Defining the inverse map αj 7→ z(αj), we obtain

Dj(Z, µ) = D(0)e−µαj(0) +

∫ αj(0)

0

S(z(αj))
∣∣∣ dz
dαj

∣∣∣e−µαjdαj. (4.28)

We can thus regard D(Z, µ) as the Laplace transform of the distribution

h(αj) ≡ D(0)δ(αj − αj(0)) + S(z(αj))
∣∣∣ dz
dαj

∣∣∣. (4.29)

Then, by the same argument as in the single gas case, we can uniquely reconstruct

αj(z). According to (4.26), we can uniquely recover

M∑
i=1

Qijci(z)gi(z) = α′j(z), j = 1, · · · , N. (4.30)

The above inversion can be performed in each of the N absorption bands, after which

we arrive at the following system of equations for ci(z)gi(z):
Q11 · · · Q1M

...
. . .

...

QN1 · · · QNM



c1g1

...

cMgM

 (z) =


α′1
...

α′N

 (z). (4.31)

Since the matrix (Qij) has rank M , the above system admits at most one solution, is

invertible whenM = N , and provides the unique solution if the source terms α′j(z) are

compatible. This implies that we can uniquely determine the concentration profiles

ci(z) from the measured data and concludes the proof.

In many practical situations, the matrix (Qij) is indeed invertible (with N = M).
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Such examples can be seen in the reference [125], where it appears that the matrix Q

is often diagonally dominant. A diagonally dominant square matrix, i.e., such that

|Qii| >
∑M

j 6=i |Qij| for all i = 1, . . . ,M , is known to be invertible [176].

4.4 Small inclusions

We have seen in earlier sections that the reconstruction of concentration profiles from

radiation measurements was a severely ill-posed problem. This implies that only

very few coefficients parameterizing the concentration can be reconstructed from the

measurements provided that noises contained in data have only high frequency com-

ponents. Therefore localized inclusions such as ozone or dust layers, whose detection

is important in many applications, may be poorly reconstructed unless their presence

is explicitly parameterized.

We proposed here to model such layers as localized inclusions of small thick-

ness and arbitrary concentration variations compared to the underlying medium that

will be assumed to be known. The problem of reconstructing localized diffusive or

absorbing inhomogeneities has been extensively studied in medical imaging prob-

lems [9, 19, 44]. We now consider such a model in profile retrieval and carry out a

similar analysis.

4.4.1 The case of a single gas

Let us start with the case of a single inclusion composed of a single gas. We assume

that the background profile c0(z) is known. The true profile is given by

c(z) = c0(z) + δc(z). (4.32)

The assumption on δc(z) is not that it is small in L∞(Z) but rather that it is small

in L1(Z) and of “small” support. We assume that δc(z) takes the (arbitrarily large)

value δc on an interval centered at z = z0 and of size δz and takes the value 0
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elsewhere:

δc(z) = δc χIz(z), Iz =
[
z0 −

δz

2
, z0 +

δz

2

]
.

Here, χIz(z) is the indicatrix function of the interval Iz.

Let us denote by α0(z) the optical length corresponding to the background profile

c0 only. We then observe from equation (4.19) that

D[c0 + δc](Z, µ) = D(0)e−µα0(0) exp
(
− µδc

∫
Iz

g(ζ)dζ
)

+

∫ Z

0

S(z)e−µα0(z) exp
(
− µδc

∫
Iz∩(z,Z)

g(ζ)dζ
)
dz. (4.33)

By hypothesis, D[c0](Z, µ) is known and we thus have access by approximating D[c0+

δc](Z, µ)−D[c0](Z, µ), to first order in δz, to the following quantity

µ 7−→ µδcδzg(z0)
[
D(0)e−µα0(0) +

∫ z0

0

S(z)e−µα0(z)dz
]
. (4.34)

Taking the ratio at two different values of µ gives a functional F(z0). It is straight-

forward to check that z0 7→ F(z0) is a smooth function. On each interval such that

F ′(z0) 6= 0 we can thus uniquely reconstruct z0 in a stable way. In practical appli-

cations, F ′(z0) may vanish at a finite number of points so that the function F(z0) is

not monotone. The point z0 is then not uniquely reconstructed. However it can be

uniquely reconstructed when we know a priori on which interval z0 belongs where

F(z0) does not vanish. Once z0 is known, we easily obtain δcδz from the above

expression.

Consequently, provided that we have a sufficiently accurate knowledge of the back-

ground and that the term δcδz is sufficiently small, we can reconstruct in a stable

way the location of the inclusion z0 and δcδz, which for want of a better word we will

call its strength. Moreover this can ideally be performed from only two measurements

corresponding to two different values of µ.

We now verify by asymptotic expansions that the first term allowing us to separate

δz from δc is of order δz3. Indeed, upon carrying out a higher-order Taylor expansion
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in (4.33) we deduce that

D[c0 + δc](Z, µ)−D[c0](Z, µ) =
(
− µδcδzg0 +

1

2
µ2g2

0δc
2δz2

−1

6
(µg′′0δc+ µ3g3

0δc
3)δz3

)[
D(0)e−µα0(0) +

∫ z0

0

S(z)e−µα0(z)dz
]

+O(δz4), (4.35)

where g0 = g(z0) and g′′0 = g′′(z0).

So when the noise in the data is of order O(δz4) or higher, we can reconstruct z0,

δz and δc as we have access to δcδz3 in the term of order O(δz3), at least provided

that g′′(z0) does not vanish. However when the noise in the data is of order O(δz3) or

larger, all we can possibly reconstruct from the measurements is the location z0 and

the product δcδz. This corresponds to knowing the total amount of ozone variation

in the layer but not the respective thickness and concentration variation. If the noise

in the data is larger than δcδz, then even this information cannot be retrieved unless

a more careful statistical model is considered.

We now consider a case where the location z0 cannot be recovered uniquely. We

deduce from (4.34) that all the information we have access to about z0 is contained

in g(z0)
(
D(0)e−µα0(0) +

∫ z0
0
S(z)e−µα0(z)dz

)
≡ G(z0). Both g(z) and S(z) are related

to the temperature profile T (z). Suppose that T (z) is constant on an interval I so

that S(z) vanishes on I. Then we verify that G(z) is constant on I, which means

that z0 cannot be reconstructed uniquely when the inclusion is located in a region of

constant temperature. Notice that the hypotheses of Theorem 4.3.1 are not satisfied

in this case. Consequently, if one tries to recover z0 by a gradient-based optimization

technique such as a Newton or Conjugate Gradient method [180], the gradient of

objective functional (for instance F(z0)) with respect to z0 will vanish for z0 ∈ I; see

the numerical simulations in section 4.5.
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4.4.2 The case of multiple gases

Let us now briefly extend the analysis in the case of M gases assuming the existence of

M (to simplify) separated wavenumber bands as described in (4.23). The asymptotic

analysis is based on formula (4.27). As in the single-gas case, we assume that the

profile for each gas is a superposition of a known background and localized variations

of arbitrary contrast. More precisely, we have

ci(z) = c0i(z) + δci(z), i = 1, · · · ,M, (4.36)

where c0i is the background concentration profile for species i and where the fluctua-

tions are modeled by

δci(z) = δci χIzi
(z), Izi

=
[
zi −

δzi
2
, zi +

δzi
2

]
, i = 1, · · · ,M.

As before, χIzi
(z) is the indicatrix function of the interval Izi

. We assume also that

all thicknesses δzi are of the same order O(δz). We assume here that each gas may

have strong fluctuations in only one layer. The generalization to multiple layers is

straightforward and is not considered. This may be accounted for in the present

theory by stipulating that several indices 1 ≤ j ≤M correspond to the same gas.

Upon inserting the above approximation into formula (4.27), we obtain

D[c01 + δc1, · · · , c0M + δcM ](Z, µ) =

D(0)e−µα
0
j (z) exp

(
− µ

M∑
i

Qijδci

∫
Izi

g(ζ)dζ
)

+

∫ Z

0

S(z)e−µα
0
j (z) exp

(
− µ

M∑
i

Qijδci

∫
Izi∩(z,Z)

g(ζ)dζ
)
dz, (4.37)

where α0
j denotes the optical length αj in (4.26) defined with the background profile.
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Upon performing a second-order Taylor expansion in the above formula, we get

Dj[c01 + δc1, · · · , c0M + δcM ](Z, µ)−Dj[c01, ..., c0M ](Z, µ)

= −µ
M∑
i=1

(
Qijδciδzigi(zi)S̄(µ, zi)

)
+µ2

M∑
i=1

(
Qijδciδzigi(zi)

)2

S̄(µ, zi) (4.38)

+µ2

M∑
i=1

M∑
i6=k=1

Qijδciδzigi(zi)Qkjδckδzkgk(zk)S̄(µ,min(zi, zk))

+O(δz3),

where we have defined the averaged source term

S̄(µ, zi) ≡
∫ zi

0

S(z)e−µα
0
j (z)dz +D(0)e−µα

0
j (0). (4.39)

Higher order terms can be obtained similarly although their expression becomes much

more cumbersome. Notice that we recover (4.34) when M = 1. Suppose that the

error in the measured data is of order O(δz2). Then we only have access to the

information

µ 7→ µ
M∑
i=1

Qijδciδzigi(zi)S̄(µ, zi). (4.40)

Assuming that the matrix (Qij)i,j is a square invertible matrix, we can reconstruct

from measurements in M well-separated bands the quantities defined by

pi ≡ µδciδzigiS̄(µ, zi). (4.41)

This information has the same structure as in the single-gas case. From a minimum

of two measurements, we can reconstruct the location zi. An accuracy of order O(δz)

in the data then allows us to reconstruct the strength of the ith inclusion δciδzi. The

same products appear in the terms proportional to δz2. Therefore an accuracy in the

data of order O(δz3) is again necessary to estimate δzi and δci separately.
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4.5 Numerical reconstructions

We present in this section several numerical simulations that illustrate the theory

developed in the preceding section. The atmosphere thickness is normalized to Z = 1.

We first concentrate on the single gas case and then consider an example with a

mixture of two gases. All the data are synthetic and the cases considered academic.

However we have chosen temperature and concentration profiles that are qualitatively

very similar to those analyzed in [38].

4.5.1 The case of a single gas

We start with the single gas model. We illustrate the predictions of the asymptotic

Figure 4-1: Profiles used in the calculation. (a) Temperature profile as a function of
z. (b) Rescaled absorption as a function of wavelength. (c) Ozone concentration as
a function of z. (d) Data D(Z, µ(ν)) as a function of wavenumber ν.

expansions that different properties of the localized inclusions can be retrieved from

the measured data depending on the noise level. The concentration profile is given
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by

c0(z) =

 3z z ∈ (0, 0.5]

3.0− 20(z − 0.75)2 z ∈ (0.5, 1.0),
(4.42)

which is a simplified model for the concentration profile of ozone in the atmosphere

below 40 kilometers. A thin inclusion is located at z0 = 0.3. The characteristics of

that inclusion are that δz = 0.06 and δc = 1.0. The temperature profile is modeled

by

T (z) = 250 + 50 sin(3πz +
π

2
), z ∈ (0, 1), (4.43)

which qualitatively resembles the observed profiles. Fig.4-1 shows the concentration

profile, the temperature distribution, the absorption line shape used in the calcula-

tions, and the solution of equation (4.17) with respect to wavenumber ν.

The location and characteristics of the inclusion are reconstructed by two methods.

In the first method, we minimize the error of the forward model to the true data by

using a full search algorithm. This can be done because only three parameters need

to be recovered in this case. More precisely we search on a 101× 101× 401 uniformly

distributed mesh for (z0, δz, δc) in the parameter space [0.25, 0.35] × [0.01, 0.11] ×

[0.80, 1.20]. We look for the minimum of the least-square error functional

E(z0, δz, δc) =

∫
M

(
D(Z, µ)−Dm(µ)

)2

dµ, (4.44)

where Dm(µ) represents the measurement data. In the numerical simulations, we

take Q0 = ᾱ = 2 × 10−2, M = 1
π
[ 1
101
, 1], which means that the wavenumbers either

belong to [1999.8, 2000] or to [2000, 2000.2] by symmetry. We use 200 wavenumbers

in each band.

We show in Fig.4-2 the distribution of the error in parameter space. In Fig.4-2(a),

we present the function at z0 = 0.3 (dashed lines), and the function at z0 = 0.3 and

δzδc = 0.06 (thick solid line). We observe that the functional varies quite substantially

in the direction of increase (or decrease) of δzδc but remains almost constant in the

orthogonal direction (i.e., along curves where δzδc is constant). Finding the curve

where δcδz is minimal can thus be achieved even with quite substantial noise in the
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data. Finding the global minimum of the functional, which is necessary to separately

reconstruct δc and δz, requires much more accurate data. Fig.4-2 (b) show that the

functional with respect to z0, the location of the inclusion, at δc and δz fixed to their

exact value, is quite well-behaved. This indicates that z0 can also be reconstructed

in quite a stable way.

Figure 4-2: Cross section of the error functional in the parameter space. (a) functional
at z0 = 0.3; (b) functional at δz = 0.06 and δc = 1.0.

Tab.4.1 lists the parameters recovered by the full search algorithm. The accuracy

in the recovery of δz and δc decreases as the noise level increases. The location of the

inclusion z0 and the product δzδz can be obtained satisfactorily even with a relatively

high noise level of around 1%. However, at this level of noise, the reconstruction of δz

and δc is no longer reliable with relative errors as high as 20%. In all our simulations,

a noise level of x% means that a uniformly distributed random number between −x%

and x% has been added.

As the number of parameters increases, full search algorithms are not tractable.

We have repeated the preceding reconstruction by using the Conjugate Gradient (CG)

method [180] to minimize the least square error functional (4.44),

min
z0,δz,δc

E. (4.45)

The initial guess for the parameters are z0 = 0.27, δz = 0.07 and δc = 1.2. The
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Noise z0 (error) δz (error) δc (error) δzδc (error)
0.00% 0.3000 (0.0%) 0.0600 (0.0%) 1.0000 (0.0%) 0.0600 (0.0%)
0.05% 0.3000 (0.0%) 0.0590 (1.7%) 1.0180 (1.8%) 0.0597 (0.5%)
0.10% 0.2970 (1.0%) 0.0570 (6.0%) 1.0430 (4.3%) 0.0592 (1.4%)
1.00% 0.2950 (1.7%) 0.0490 (18.%) 1.1870 (18.%) 0.0581 (3.1%)

Table 4.1: Characteristics of the inclusion reconstructed by a full search algorithm.
The true values are z0 = 0.3, δz = 0.06, δc = 1.0, hence δzδc = 0.06. The num-
bers in parentheses denote the relative error in percentage between the reconstructed
parameters and their true values.

results are list in Tab.4.2 and are very similar to those obtained with the full search

algorithm. The CG algorithm was found to be relatively robust with respect to the

choice of the initial guess.

Noise z0 (error) δz (error) δc (error) δzδc (error)
0.00% 0.3000 (0.0%) 0.0600 (0.0%) 1.0000 (0.0%) 0.0601 (0.2%)
0.05% 0.3000 (0.0%) 0.0591 (1.7%) 1.0177 (1.8%) 0.0602 (0.3%)
0.10% 0.2971 (1.0%) 0.0572 (4.7%) 1.0386 (3.9%) 0.0594 (1.0%)
1.00% 0.2952 (1.6%) 0.0492 (18.%) 1.1811 (18.%) 0.0581 (3.1%)

Table 4.2: Same as Tab. 4.1 (with the same noisy measurements) except that the
Conjugate Gradient algorithm is used in the optimization process.

Let us now consider the special case where uniqueness in the reconstruction of

z0 is not guaranteed. This happens when the temperature gradient vanishes on an

interval I including the inclusion’s location. The temperature profile is now chosen

to be

T (z) =

 250 + 50 sin(3πz + π
2
) z ∈ (0, 0.1) ∪ (0.5, 1.0)

240 z ∈ [0.1, 0.5],
(4.46)

and the background concentration profile is given by

c0(z) =

 4z z ∈ (0, 0.5]

2.5− 8(z − 0.75)2 z ∈ (0.5, 1.0).
(4.47)

A small inclusion is placed at z0 = 0.25. The width of the the inclusion is δz = 0.08

and the concentration variation δc = 1.2.

Reconstructions from data at different noise levels by the Conjugate Gradient
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method are presented in Tab.4.3. The gradients have been computed by using a

finite difference approximation. We found numerically that while we can recover

δc and δz almost perfectly with exact simulated data, the exact location z0 is not

retrieved if our initial guess lies within I. The initial guess for the data in Tab.4.3

was chosen to be z0 = 0.28, δz = 0.07, and δc = 1.0.

Noise z0 (error) δz (error) δc (error) δzδc (error)
0.00% 0.280 (12.%) 0.080 (0.0%) 1.202 (0.2%) 0.0962(0.2%)
0.05% 0.280 (12.%) 0.081 (1.3%) 1.180 (1.7%) 0.0956(0.4%)
0.10% 0.280 (12.%) 0.083 (3.8%) 1.144 (4.7%) 0.0950(1.1%)
1.00% 0.280 (12.%) 0.091 (14.%) 1.026 (15.%) 0.0933(2.8%)

Table 4.3: Characteristics of the inclusion reconstructed by the Conjugate Gradient
algorithm when the inclusion is placed in a region with vanishing temperature gra-
dient. The real values for those variables are z0 = 0.25, δz = 0.08, δc = 1.20 and
δzδc = 0.096. The numbers in parentheses denote the relative error in percentage
between the reconstructed parameters and their true values.

4.5.2 The case of two gases

Let us now consider the case of two gases. We use (4.42) and (4.47) as the back-

ground profiles for the two gases, respectively. The characteristics for the two small

inclusions are the following: (z1, δz1, δc1) = (0.30, 0.06, 1.00) and (z2, δz2, δc2) =

(0.25, 0.08, 1.20). We simulate the data using 800 wavenumbers uniformly distributed

in two band centered at ν1 = 1500 cm−1 and ν2 = 2000 cm−1, respectively. The ab-

sorption kernel has the form given in (4.13) with parameters given by ᾱ = 2× 10−2,

and (Q11, Q12, Q21, Q22) = (2.0, 1.0, 1.0, 2.0)× 10−2.

Gas zi (error) δzi (error) δci (error) δziδci (error)
i = 1 0.200 (0.0%) 0.060 (0.0%) 1.002 (0.2%) 0.0601 (0.2%)
i = 2 0.250 (0.0%) 0.081 (1.3%) 1.190 (0.8%) 0.0964 (0.4%)

Table 4.4: Characteristics of the inclusions in the two-particle model reconstructed
from noise free data. The initial guess is z1 = 0.32, δz1 = 0.05, δc1 = 0.8 and
z2 = 0.28, δz2 = 0.10, δc1 = 1.0. The numbers in parentheses denote the relative
error in percentage between the reconstructed parameters and their true values.

We perform three sets of numerical experiments with noise free data, data with

0.1% noise and data with 1% noise, respectively. The results are list in Tab.4.4,
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Tab.4.5 and Tab.4.6, respectively. The initial guess is z1 = 0.32, δz1 = 0.05, δc1 = 0.8

and z2 = 0.28, δz2 = 0.10, δc1 = 1.0. We found that the initial guess on the positions

may be chosen relatively far away from the true values, while the guess on the other

two parameters should be close to the true value in order for the CG algorithm to

converge.

Gas zi (error) δzi (error) δci (error) δziδci (error)
i = 1 0.200 (0.0%) 0.059 (1.7%) 1.012 (1.2%) 0.060 (0.5%)
i = 2 0.251 (0.4%) 0.082 (2.5%) 1.150 (4.2%) 0.094 (1.8%)

Table 4.5: Same as Tab.4.4 with 0.10% noise.

Notice in Tab.4.4 that the parameters for both inclusions are recovered very ac-

curately in the absence of noise. This is quite similar to the one particle case. The

only noticeable difference numerically is that a much wider range of wavenumbers is

necessary in the case of multiple particles to ensure convergence. This is in agreement

with theory, which indicates that the number of measurements should scale at least

linearly with the number of retrieved gas profiles.

At moderate levels of noise, we can still recover the positions of the inclusions and

their strength δcδz, but not δc and δz separately. We also observed in our simulations

that, as the noise level increases, we even loose the information about z0 and δzδc.

The only quantity which seems numerically to be accurately reconstructed is then p

introduced in (4.41).

Gas zi (error) δzi (error) δci (error) δziδci (error)
i = 1 0.204 (2.0%) 0.053 (12.%) 1.081 (8.1%) 0.057 (4.5%)
i = 2 0.261 (4.4%) 0.089 (11.%) 1.038 (14.%) 0.092 (3.8%)

Table 4.6: Same as Tab. 4.4 with 1% noise.

4.6 Conclusions and remarks

Under some separation assumptions on the spectral emission coefficient, we have

shown that the concentration profiles of single or multiple gases could uniquely be
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reconstructed from radiation measurements. Moreover we have shown that the re-

construction invokes the inversion of a Laplace transform (at best) and is therefore a

severely ill-posed problem. The assumptions on the emission coefficient necessary to

obtain an explicit formula are technical and should not modify the general conclusion

that the reconstruction problem is severely ill-posed even in more general settings.

To reconstruct localized strong fluctuations such as ozone layers in the tropo-

sphere, we have presented an asymptotic model, which assesses the type of infor-

mation that can be reconstructed based on the quality of the measured data. For

instance, we show that with moderate noise levels, we can reconstruct the location of

the inclusion and the product of its thickness with its concentration variation (with

respect to the background). We have shown that the reconstruction of both the

thickness and the concentration variation requires much more accurate data.

We have conducted numerical experiments on academic though qualitatively faith-

ful benchmarks that corroborate the theory. Our main conclusion is that the recon-

struction of the thickness and the concentration of ozone layers in the troposphere

requires extremely accurate data. In our setting, possible errors in the reconstruc-

tion of the background are treated as noise in the measured data. This assumption

certainly needs improvement. Yet the method of asymptotic expansions presented

in this chapter provides a systematic framework to evaluate the type of information

that can be retrieved on localized inclusions from measured data with a given noise

level.
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Chapter 5

Comparison of transport and
diffusion reconstructions in small
domains

Transport equations are accurate in modeling the propagation of the particles in

scattering media [62, 106, 147]. However, as we have seen in chapter 2 and chap-

ter 3, transport models are quite expensive computationally. Diffusion equations are

often preferred in practical applications in optical tomography. However, diffusion

approximations are not always valid. The objective of this chapter is to compare

reconstructions based on the diffusion equation with those based on the radiative

transport equation in media of small size. We show that in this case diffusion-based

reconstructions are in general less accurate than transport-based reconstructions. The

presentation of this chapter is based on reference [148].

5.1 Problem statement

It is generally believed that the propagation of near infra-red light in tissues is best

modeled by the radiative transport equation, which is formulated in phase space, i.e.,

the space of positions and directions, and thus computationally very expensive. One

has to discretize both the spatial and the angular variables to find numerical solutions.

To lower computational cost, it is preferable in many applications to replace the

transport equation by its diffusion approximation, which models the spatial density
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of photons.

The application of the diffusion equation in optical tomography, however, has its

limitations. Essentially, the derivation of the diffusion equation from the radiative

transport equation is only valid when the underlying tissues are highly scattering

and weakly absorbing. The diffusion approximation fails to accurately model light

propagation in regions with small or vanishing scattering coefficients, such as the

cerebrospinal fluid layers in the human head. In this case, one either has to generalize

the classical diffusion equation [23], couple diffusion with transport equations [17, 22,

59], or solve the ERT directly [1, 42, 62, 106, 147]. Another situation where diffusion

approximation does not work well, and somewhat related to the previous one, is

in modeling light propagation in media of small volumes. Examples are imaging

of rheumatoid arthritis in finger joints [92, 108, 131, 145, 184], or imaging of small

animals [35, 80, 89]. In these cases, because of the small optical distance between

sources and detectors, the diffusion approximation is too crude to approximate the

“transport” behavior of photons. How these errors in the diffusion approximation

influence optical tomographic reconstructions has not been studied yet.

The objective here is precisely to compare reconstructions based on the diffusion

equation with those based on the radiative transport equation in circumstances where

diffusion equation does not approximate the transport equation very well. Focusing

on the problem of small domains, we show that considerable differences between

reconstructions with transport and diffusion models. We show that diffusion-based

reconstructions are in general less accurate.

5.1.1 Transport and diffusion approximations

Let us recall that the radiative transport equation describes the photon density in

the phase space X = Ω × S2, i.e., as a function of both position x ∈ Ω ⊂ R3 and

propagation direction θ ∈ S2. Here Ω is the spatial domain and S2 the unit sphere

in R3. When the intensity of the light source is modulated with frequency ω, i.e., is

of the form f(x,θ)eiωt, where t is the time variable, the frequency domain radiative
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transport equation takes the form [11, 146, 147]:

(iω
v

+ θ · ∇+ σt(x)
)
u(x,θ)− σs(x)

∫
S2

k(θ · θ′)u(x,θ′)dµ(θ′) = 0 in X

u(x,θ) = f(x,θ) on Γ−,

(5.1)

where i =
√
−1 and v is the speed of light in the medium. The functions σt(x)

and σs(x) are the total absorption (extinction) coefficient and scattering coefficient,

respectively. The solution u(x,θ) is the radiant power per unit solid angle per unit

area perpendicular to the direction of propagation at x in the direction θ. The

boundary sets Γ± are defined by

Γ± = {(x,θ) ∈ ∂Ω× S2 s.t. ± θ · ν(x) > 0}, (5.2)

with ν(x) the outward unit normal to Ω at x ∈ ∂Ω. For more details on the above

radiative transport equation, see chapter 2.

The above radiative transport equation is a microscopic model for light propaga-

tion in tissues. Numerical solutions of this model are very expensive because both

spatial and angular discretizations have to be performed. It is thus preferable in

many applications to replace the transport equation by the less expensive physical-

space diffusion equation. The diffusion equation describes light propagation at the

macroscopic level, where the unknown quantity is the angularly averaged photon flux.

The approximation of the radiative transport equation by the diffusion equation

has been well-documented; see for example [58, 65]. There, it is shown that when

absorption is sufficiently low and scattering sufficiently large, the transport process

can be modeled macroscopically with the following diffusion equation:

iω

v
U(x)−∇ · D∇U + σa(x)U(x) = 0, in Ω

U + 3εL3ν(x) · D∇U = Λ(f)(x), on ∂Ω.
(5.3)

Here U(x) is the angularly-averaged photon flux at x, an approximation of the

quantity
∫
S2 u(x,θ)dθ in the transport equation. σa(x) is the absorption coeffi-
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cient which describe rate of absorption at x. It corresponds to σt(x) − σs(x) in

transport equation. The diffusion tensor D(x) is symmetric and positive definite.

It is given by D(x) = 1/(3(σa(x) + σ′s(x))) in the Henyey Greenstein case, where

σ′s(x) = (1− g)σs(x).

The operator Λ is a linear form that maps any incoming angular distribution f to

a real number. Explicit expressions can be found in [49, 58] in simple cases. In this

paper, we will always use isotropic source terms f(x,θ) = f(x) for which we obtain

Λ(f) = f .

A very important aspect in the derivation of diffusion equations is to correctly

account for photon leakage at the domain boundary [17, 58, 83]. This requires a

detailed boundary layer analysis for the transport equation [58], which shows that

leakage should be modeled by the above Robin-type boundary conditions for diffusion,

where L3 is the extrapolation length. Explicit expressions for the extrapolation length

are only known in simple cases, for instance when scattering is isotropic (g = 0), where

L3 ≈ 0.7104 [17, 49, 58].

The small parameter ε is called the transport mean free path. It is defined as

ε = 3D = 1/(σa + σ′s). The transport mean free path measures the average distance

is takes for photons to be substantially deflected from their original direction by

scattering. In the limit where the transport mean free path ε go to zero, the error

between the diffusion solution U(x) and the transport flux
∫
S2 u(x,θ)dθ is of order

ε2 in regions sufficiently far from the boundary [58].

In the time dependent case, let us note that the diffusion approximation may

not be valid for short times [58]. This implies that even in situations of highly

scattering and low absorption, the diffusion approximation may not be accurate for

high modulation frequencies ω. Numerical evidence for this statement can be found

in [72].
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5.2 Reconstruction methods

Optical tomography aims at reconstructing σa(x) and σs(x) in the transport and

diffusion equations from boundary measurements. Our goal here is to quantify the

errors in the reconstructions obtained by using the diffusion equation in situations

where it is not an accurate approximation to the radiative transport equation. To

do this, we assume that the data are generated by the physically accurate transport

model. We then consider two reconstructions.

A. Transport reconstruction. In this reconstruction, the radiative transport

equation is used as the model for light propagation. The predicted current mea-

surements at the domain boundary are then calculated using

JT (x) =

∫
S2

+

θ · ν(x)u(x,θ)dθ. (5.4)

B. Diffusion reconstruction. Here the diffusion equation is used as the light

propagation model. The predicted boundary current measurements corresponding

(5.4) is computed according to

JD(x) = −ν(x) · D∇U. (5.5)

In this paper, we focus on the reconstruction of the absorption coefficient σa only

and assume σs to be known. The reconstruction of σa is quite useful in many practical

applications, such as e.g. the monitoring of the oxygenation of tissues [177].

5.2.1 Reconstruction algorithms

As usual, we solve the reconstruction problem by minimizing the mismatch between

model predictions and measured data for several source-detector pairs:

min
σa(x)∈[σmin

a ,σmax
a ]

Fβ := F(σa) +
β

2

∫
Ω

∇σa · ∇σadx, (5.6)
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where the last term is a Tikhonov regularization functional with regularization pa-

rameter β, and where the mismatch functional is defined as

F(σa(x)) ≡ 1

2

Nq∑
q=1

‖Jq(x)− zq(x)‖2
L2(∂Ω). (5.7)

Here σmina and σmaxa are physical lower and upper bounds imposed on σa. Nq is the

number of sources used and zq(x) denotes the current measurements corresponding

to source q. As stated before, we assume that the current data zq(x) are generated

by the transport equation.

We use the limited memory BFGS algorithm that we have developed in [147] to

solve the minimization problem (5.6). To use it for the diffusion case, we use the

diffusion equation as the forward model and correspondingly modify the gradient

calculations for the objective function. We adopt a very similar adjoint state method

for the gradient calculation. We refer to [147] for details of the BFGS algorithm for

the transport reconstructions.

5.2.2 Discretization of forward models

To calculate model predictions for the minimization algorithm, we numerically solve

the radiative transport equation (5.1) by discretizing it using the discrete ordinate

method for the angular variable and a finite volume method for the spatial vari-

able [146, 147]. We refer to our earlier work [146, 147] for some numerical tests on

the finite volume discretization of the transport equation and related reconstruction

results.

The diffusion equation (5.3) is discretized by using a similar finite volume method.

Finite volume methods [68] ensure the conservation of mass (or momentum, energy)

in a discrete sense, which is important in transport and diffusion calculations. They

also have the advantage of easily handling complicated geometries by arbitrary tri-

angulations, which we need in tomographic applications.

We denote by M a mesh of Rn consisting of polyhedral bounded convex subsets
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of Rn. M covers our computational domain Ω. Let C ∈ M be a control cell, that is

an element of the mesh M, ∂C its boundary, and VC its volume. We assume that the

unknown quantity, for example U(x), is constant in C and denote the value of U(x)

on C by UC.

Integrating the diffusion equation (5.3) over cell C and using the divergence the-

orem, we obtain the following equations

−
∫
∂C

nC · D∇Udγ(x) + (σCa −
iω

v
)VCU

C = 0, (5.8)

where nC(x) denotes the outward normal to ∂C at point x ∈ ∂C, dγ(x) denotes the

surface measure on ∂C, and σCa is the value of σa on cell C.

Now we have to approximate the flux through the boundary of C, i.e., the first

integral term in equation (5.8). Let {Ci}Ii=1 be the set of neighboring cells of C. We

denote by SC,i the common edge of cell C and Ci, i.e., SC,i = ∂C ∩ ∂Ci. We then have

−
∫
∂C

nC(x) · D∇Udγ(x) = −
∑
i

∫
SC,i

nC(x) · D∇Udγ(x). (5.9)

The flux
∫
SC,i

nC(x) · D∇Udγ(x) can be approximated by various numerical schemes.

In this work, we take a first-order scheme:

F C,i := −
∫
SC,i

nC(x) · D∇Udγ(x) =
Dnn +Dnn

i

2
|SC,i|(UC − UCi)/∆, (5.10)

where |SC,i| is the measure of SC,i, ∆ is the distance between the center of C and

Ci. The notation Dnn denote the nn component of the diffusion tensor in the (τ ,n)

coordinate system on surface SC,i. In isotropic scattering case, it is just D.

When SC,i ⊂ ∂Ω, we have

F C,i := −
∫
SC,i

nC(x) · D∇Udγ(x) =
|SC,i|
nLn

(UC − f). (5.11)
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We then obtain a full discretization of the diffusion equation

∑
i

F C,i + (σCa −
iω

v
)VCU

C = 0. (5.12)

Let N denote the total number of control cells. After collecting the discretized diffu-

sion equation (5.12) on all control cells, we arrive at the following system of complex-

valued algebraic equations

AU = G, (5.13)

where A ∈ CN×N . The boundary source Λ(f)(x), which comes into the discretized

system via the flux approximation (5.10) is denoted by G.

5.3 Numerical results

We provide in this section several numerical experiments where we compare the re-

constructions with diffusion and transport equations as the models for photon prop-

agation.

5.3.1 Setup for the reconstructions

For our numerical experiments we consider the three-dimensional cylindrical domain:

Ω := {(x, z) : |x| < 1; 0 < z < 2}

with boundary ∂Ω := {(x, z) : |x| = 1; 0 < z < 2}∪{(x, z) : |x| < 1; z = 0}∪{(x, z) :

|x| < 1; z = 2}. Here for simplicity, we have used the notation x ≡ (x, y). We embed

a small cylindrical inclusion

Ωc = {(x, z) : |x− (0.5, 0)| < 0.2, 0.2 < z < 1.8},

into the domain. We show in Fig. 5-1 the XZ cross section of the domain at y = 0

and the XZ cross section at z = 1. Four point sources are placed on the surface
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Figure 5-1: XZ (y = 0) and XY (z = 1) cross-sections of the computational domain.

of the cylinder at (−1, 0, 1), (−1, 0, 1), (−1, 0, 1) and (−1, 0, 1), respectively. All

sources are isotropic such that we can use the same description in diffusion as in

transport reconstructions. We place seven layers of detectors with z-coordinate given

by zi = i ∗ 0.25, 1 ≤ i ≤ 7. On each layer, 32 detectors are uniformly distributed

on the domain boundary. We partition the domain into 19452 tetrahedral elements.

A level symmetric discrete ordinate set [113] has been used to discretize the angular

variable in the transport equation. A total number of 120 directions (corresponding

to the discretization S10) is used.

All synthetic data are generated with a discretization about twice as fine (in

spatial variables) as the discretization used in the inversions to limit the so-called

inverse crimes [54].

In the following sections, we consider reconstructions based on noisy data. Noise

is added to the synthetic data in the following manner. Let zk ∈ C be the kth exact

data. We decompose it as zk = rke
iθk , with rk a non-negative real number. Then rk

and θk are corrupted by noise as rδk = (1 + δ ∗ randkr)rk and θδk = (1 + δ ∗ randkθ)θk.

Here, randkr and randkθ for all measurements 1 ≤ k ≤ K are independent identically

distributed random variable on (−1, 1) with uniform distribution (thus with variance

2/3). The noisy kth data is then defined by zδk = rδke
iθδ

k . Note that the same value

of δ is chosen here to model noise on the phase and on the amplitude. This allows

for a simpler presentation of the effects of noise on the reconstructions. Note also

that noise is chosen multiplicative both on the phase and the intensity. Whereas

multiplicative noise on the intensity is rather classical, our choice of multiplicative
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noise on the phase may be justified as follows. What is measured in practice is the

phase shift with respect to the modulation of the source term. In the absence of

scattering, photons thus accumulate a phase equal to ωl/c, where l is the traveled

distance from the source. In practical optical tomography with modulated sources,

ω is at most 1GHz so that ω/c . 3. Since distances at on the order of a few

centimeters, phase shifts ωl/c . 0.1 in the absence of scattering are a fraction of π.

The multiplicative noise on the phase thus implies that errors on the phase shift are

larger on measurements away from the source, where phase shift is significant, than

in the vicinity of the source, where it is close to 0.

The quality of the reconstructions is measured as follows. Denote by M e and M r

the exact and reconstructed absorption coefficients, respectively. We then define the

relative l2 error between M e and M r by:

El2 =
‖M r −M e‖l2
‖M e‖l2

. (5.14)

5.3.2 Diffusive media of small size

We compare reconstructions with diffusion and transport models in media of small

size. Because the media are relatively small, the optical separation between the

sources and the detectors is also relatively small. Photons undergo only a small

number of scattering events between a source and a detector. It is well known that the

diffusion approximation to the transport equation becomes less accurate in describing

particles propagation when such small tissue volumes are considered. What we want

to study in the section is how these inaccuracies affect the tomographic reconstructions

in such media.

We consider the following setup. The background optical properties in the big

cylinder is given by σa = 0.1 cm−1, while σa = 0.2 cm−1 for the inclusion, which

is twice as high the absorption coefficient of the background. We set the scattering

coefficient σs = 100 cm−1 for the whole domain. The anisotropic factor for the

scattering kernel is g = 0.9 so that σ′s = 10 cm−1. The modulation frequency is set

to ω = 0.0 (steady state).
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Figure 5-2: Top row: XZ (y = 0) cross-sections of the reconstructed absorption
coefficients with transport equation (left), diffusion equation (middle), and their dif-
ference (right). Bottom row: same as top row but for XY (z = 1) cross sections. The
reconstruction are done with noise-free data.

We show in Fig. 5-2 cross-sections of the reconstructed absorption coefficient based

on transport and diffusion equations with noise-free transport data. To stress the

difference in the reconstruction, we also plot the difference of the reconstruction in

Fig. 5-2.

We first observe that structures in the z-direction are not well reconstructed in

either case. This is because light sources are all located on the z = 1 plane. Few

photons propagate sufficiently far along the z-direction. We have verified that adding

sources on other planes along the z-axis makes the reconstructions better, as expected.

Our second observation is that the location of the inhomogeneity is found by both

transport and diffusion reconstructions. However, the transport-based reconstruction

provides a more accurate value of the actual optical properties of the inclusion. The

diffusion reconstruction over-estimates the volumes of the absorption coefficient in

some places and under estimates the coefficients in the inclusion. This can be best

seen on the right figures in Fig. 5-2 where we plot the difference between transport-

and diffusion-based reconstructions.

Our numerical examples show that the difference between the transport and diffu-
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Figure 5-3: Quality in transport and diffusion reconstructions using data with dif-
ferent noise levels (in percentage). Left: reconstructions with scattering coefficient
σs = 100cm−1; Right: reconstructions with scattering coefficient σs = 150cm−1.

sion reconstructions becomes less prominent as noise contained in the measured data

increases. This can be seen on the left in Fig. 5-3, where we plot the quantitative

error in the reconstructions as a function of noise level. As noise level reaches a

certain value, above 12% in this case, the difference between transport and diffusion

reconstructions becomes almost indistinguishable.

We have performed a second group of simulations where we increase the back-

ground scattering coefficient to σs = 150 cm−1 so that σ′s = 15 cm−1. The reconstruc-

tion quality from noisy data is shown in Fig. 5-3. We see that although the medium

is now 50% more diffusive, reconstructions based on the diffusion approximation do

not significantly improve, because the domain still remains relatively thin optically.

For typical values of the absorption and scattering parameters in tissues, the diffusion

approximation is not very accurate in small domains such as fingers or small animals.

The last point we stress here is that transport-based reconstructions are com-

putationally much more costly than diffusion-based reconstructions. Typically, we

observe that diffusion reconstructions are about 60 times faster than transport recon-

structions. Although the computational speed really depends on how one discretize
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the problem, we have observed in most cases an acceleration factor of at least 40 in

diffusion reconstructions.

5.3.3 Effects of modulation frequency

As we have remarked before, in the frequency domain, the diffusion approximation

works only for not-to-high modulation frequency [72]. Essentially, one has to scale

the modulation frequency ω to ω/ε as one scale the absorption coefficient in order to

derive the correct diffusion approximation in the limit of small mean free paths. This

is similar to the scaling of the time variable in time-dependent case considered e.g.

in [58]. In practice, however, relatively high modulation frequencies need to be used

to obtain a significant phase shift that can be measured.

Figure 5-4: Top row: XZ (y = 0) cross-sections of reconstructed absorption coeffi-
cients with transport equation (left), diffusion equation (middle), and their difference
(right). Bottom row: same as top row but for XY (z = 1) cross sections. The re-
construction are done with noise-free data. Modulation frequency for the sources is
ω = 0.8GHz.

We consider here the same reconstructions as those of the last section though

with measured data obtained at different modulation frequencies. We show in Fig. 5-

4 reconstructions with modulation frequency of ω = 0.8 GHz. Again we observe that
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the shape on the z-direction is not well reconstructed in both cases. The location of

the inhomogeneity is found by both the transport and the diffusion reconstructions.

As in the previous section, the transport-based reconstruction provides more ac-

curate values of the actual optical properties of the inclusion. The differences of the

two have been plotted on the right figures in Fig. 5-4.

As expected, the difference between diffusion- and transport-based results in-

creases with the modulation frequency, as can be seen by comparing results in Fig. 5-4

and Fig. 5-2. This can also be seen from Fig. 5-5 where we plot the quality of re-

constructions against the modulation frequency. Four modulation frequencies has

been considered. They are 0.2 GHz, 0.4GHz, 0.6 GHz and 0.8 GHz. The quality

of transport reconstructions slightly increases as the modulation frequency increases,

but the quality of the diffusion reconstructions decreases as the modulation frequency

increases.

Figure 5-5: Quality of reconstructions as functions of modulation frequencies (in unit
of GHz). Left: reconstructions with noise-free data; Right: reconstructions with 12%
noise in the data.

As noise in the data increases, the difference between diffusion- and transport-

based reconstructions becomes smaller. We show in the right plot of Fig. 5-5 the

quality of reconstructions with 12% multiplicative noise. Although there is still a
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difference between the two reconstructions (especially in the high frequency cases),

the difference is much smaller than in the case of noise-free data.

Computationally, increasing the modulation frequency results in an increase of

the computational time used to solve the inverse problem. This is due to the fact

that modulation frequency appears on the off-diagonal elements of the matrices de-

rived from the discretization of the equations. Increasing the frequency increases the

condition number of the matrices. However, even in the high frequency situation,

we still observe that transport-based reconstructions are about 50 times slower than

diffusion-based reconstructions.

5.3.4 The impact of the extrapolation length

The choice of the extrapolation length in the diffusion equation has a significant

influence on the solution of the diffusion equation, especially near the boundary; see

for example [17, 58] and references there in. We study in this section the effect of the

extrapolation length on the quality of the reconstructions.

Figure 5-6: Top row: XZ (y = 0) cross-sections of reconstructed absorption coeffi-
cients with transport equation (left), diffusion equation (middle), and their difference
(right). Bottom row: same as top row but for XY (z = 1) cross sections. The
reconstruction are done with noise-free data.
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All simulations in this section are done with isotropic scattering. In other words,

we have set the anisotropic factor to g = 0. The scattering coefficient is set to be

σs = 10 cm−1. We show in Fig. 5-6 the reconstructions using the transport equation

and diffusion equation with extrapolation length L3 = 0. The data here are noise-free.

Figure 5-7: Quality of reconstructions as functions of extrapolation length. Left:
reconstructions with noise-free data; Right: reconstructions with 12% noise in the
data. Transport reconstructions are shown here just as a reference.

We see from Fig. 5-6 that there is a significant amount of overshooting in the diffu-

sion reconstructions. The quality of the diffusion-based reconstruction also decreases

when very large extrapolation lengths are used. In Fig. 5-7 we compare the quality of

reconstructions by diffusion equations with various extrapolation lengths. Although

the least difference between diffusion and transport reconstructions may not happen

exactly at the place of right extrapolation length, it does happen when a value close

to the right value is chosen. We thus conclude that that extrapolation length does

have a significant impact on the quality of reconstructions.

As usual, noise in the data plays a significant role. The difference between

transport-based and diffusion-based is already very small when the noise level reaches

12%. One would expect that as noise increases, the difference would become indistin-

guishable again. Computationally, we observe that transport-based reconstructions
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are still about 50 times slower than diffusion-based reconstructions again.

5.3.5 Diffusive media with void regions

The last case we want to discuss is the situation when non-scattering void regions

are present in the domain. It has been shown in various situations that when void

region presents in scattering media, diffusion equations fail to approximate transport

accurately [17, 23, 90]. Special attention has to be paid when using diffusion equations

in this situation.

Figure 5-8: XZ (y = 0) and XY (z = 1) cross-sections of the computational domain
with a void inclusion.

We again consider here the reconstruction of the absorption coefficient in the

cylinder and assume that σs(x) is known. We embed a void cylindrical inclusion

centered at (−0.5, 0) in the media. It is of the same size as the absorbing inclusion;

see Fig. 5-8 for the geometrical setting. Void means that the scattering and absorp-

tion coefficients vanish in that region. As in the last section, we set the scattering

coefficient σs = 10 cm−1, and anisotropy factor g = 0 in the rest of the domain.

In the diffusion equation, we replace the diffusion coefficient in the void region by

its surrounding diffusion coefficient. In the absence of a better guess, this is better

than evaluating the diffusion coefficient D = 1/(3σt) as being infinite, though better

choices yet may be available; see e.g. [18, 23].

We show in Fig. 5-9 results from reconstructions with noise-free data. The trans-

port reconstruction looks quite similar to the one in Fig. 5-2. The diffusion reconstruc-

tion however, looks very different. The diffusion model generates spurious absorption
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Figure 5-9: Top row: XZ (y = 0) cross-sections of reconstructed absorption coeffi-
cients with transport equation (left), diffusion equation (middle), and their difference
(right). Bottom row: same as top row but for XY (z = 1) cross sections. The recon-
struction are done with noise-free data. A void region is embedded in the domain.

at the location of the void to compensate for the wrong transport of photons in that

area. Whereas voids have little effect on the absorption reconstruction with the trans-

port model (provided that we know where the void is), they further degrade diffusion

reconstructions unless the void region is modeled appropriately; see [12, 18, 23, 59, 71].

The transport and diffusion reconstructions in the presence of a void have been

performed with different noise levels in the measured data. The quality of the re-

constructions is plotted against the noise level in Fig. 5-10. As noise increases, the

difference between transport and diffusion equations decreases. One can expect that

when the noise in the data reaches a certain level, here about 12% of multiplicative

noise, the difference between the transport and diffusion reconstructions may become

indistinguishable. Similar results for reconstructions with a background scattering

coefficient σs = 15 cm−1 are shown in the right panel of Fig. 5-10.

From the viepoint of computational cost, the transport-based reconstructions be-

come slightly faster here because of the presence of the void region. But it is far from
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Figure 5-10: Quality of transport and diffusion reconstructions using data with differ-
ent noise levels in the presence of a void. Left: reconstructions with scattering coef-
ficient σs = 10cm−1; Right: reconstructions with scattering coefficient σs = 15cm−1.
The anisotropy factor g = 0 in both cases.

being comparable to diffusion reconstructions. We still observe that transport-based

reconstructions are about 40 times slower than diffusion-based reconstructions.

5.4 Conclusions and remarks

We have conducted a comparative study of optical tomographic reconstructions based

on transport and diffusion models in media of small (optical) volume. We have

shown that diffusion-based reconstructions were significantly less accurate in such

geometries. Although both the diffusion and transport reconstructions are usually

able to locate an inhomogeneity buried in the media, transport-based reconstructions

provide more accurate values of the optical properties, in this paper the absorption,

of inclusions.

We have quantified the role on the reconstruction of such factors as the source

modulation frequency, the extrapolation length used in the diffusion model, and the

presence of void regions. Whereas increasing the source modulation frequency im-
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proves transport solutions, it usually degrades the diffusion solutions. We have seen

that poorly modeled void inclusions in the diffusion model generated spurious absorb-

ing inclusions at the void location. In each situation, we have quantified the errors

made by the transport and diffusion reconstructions.

We have characterized the effects of noise in the measured data. When multi-

plicative noise reaches a certain level, about 12% in our simulations, the transport

and diffusion reconstructions becomes almost indistinguishable. However, given that

state-of-the-art optical imaging system show noise levels of typically less than 5% or

even 1%, the benefits of transport-based reconstructions can be realized with most

of the currently available systems [89, 92, 143, 161, 177]. Computationally however,

the diffusion-based reconstructions are always extremely favorable. We have con-

sistently observed that transport-based reconstructions were about 50 times more

expensive than diffusion-based reconstructions. Because of their much more accu-

rate properties in the presence of moderate noise levels, we recommend the use of

transport-based reconstructions in small optical domains in spite of their computa-

tional cost. Applications for such reconstructions are imaging of joint diseases in

human fingers [92, 108, 131, 145, 184] and monitoring of brain activity and tumor

growth in small animals [35, 80, 89].
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Chapter 6

Generalized diffusion
approximation and its validations

There are two important cases in typical optical tomography applications where clas-

sical diffusion approximations do not work well. The first case is when the tissue

of interest is relatively small, as we have pointed out in the previous chapter. The

other case is when the highly scattering tissue is large but there are extended non-

scattering regions embedded in the tissue. Diffusion approximation does not hold in

those non-scattering regions but holds in the rest of the tissue. In this case, if one

still want to use diffusion equations, one has to modify the diffusion equation to take

into account the effect of these non-scattering regions. This is a modeling problem

and is the subject of study of this chapter. The presentation of this chapter is based

on reference [23].

6.1 Problem statement

Among other applications, optical tomography is being considered as an interest-

ing technique to image tumors in human head and monitor cerebral oxygenation in

neonates. Since the most of the tissues in human head are highly scattering and

low absorbing, one would expect that diffusion equations can be used as the light

propagation model these applications. This almost true except for the fact that there

exists in the head a thin layer filled with cerebrospinal fluid. This layer is almost

collision-less and absorption-less. Diffusion models perform very poorly in such lay-
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ers [13, 59, 90, 149]. These models have to be modified if one wants to image the

oxygenation in the head of neonates for instance.

One could certainly solve phase-space transport equations instead of the inaccu-

rate diffusion equations [85, 90]. There exists a large literature on numerical tech-

niques that allow us to use coarser schemes (modeling transport or diffusion equations)

in the regions where multiple scattering makes the simulation relatively straightfor-

ward and finer schemes in the vicinity of the clear layer where transport effects must

be calculated accurately [22, 26, 77, 112, 175].

Because clear layers are thin in practice, an alternative solution exists to solving

transport equations. Arridge and his collaborators have developed several hybrid

models that would solve a diffusion equation where the tissues are highly scattering

and model the transport behavior in the clear layer [13, 59, 149]. Similar models

were developed using an approach based on the asymptotic expansion of transport

equations by one of the authors [17, 18]. The models that come out of this research

have the following common features. 1) They are diffusion equations with matching

conditions at the boundary of the layer that account for the guiding effect of the clear

layer. 2) These matching conditions take the form of non-local interface conditions for

the photon density and current. 3) These models are quite accurate in practice, both

to solve forward and inverse problems. 4) Their computational cost is much lower

than that of full transport. 5) However it is often significantly higher than the cost

of classical diffusion and the models are quite complicated to implement in practice.

In this chapter we build on the asymptotic expansion techniques in [17, 18] to

propose a new model that accurately models the clear layer effects for a computational

cost and an implementation by finite element method that is essentially the same as

that of classical diffusion. The model is obtained by localizing the interface conditions

at the clear layer. This local interface condition models a tangential diffusion process

that accounts for the propagation of photons along the clear layer. In variational

form, this diffusion process is about as easy to solve as the classical volume diffusion

process.
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Let us start with the following steady-state linear radiative transfer equation

θ ·∇u(x,θ) + σa(x)u(x,θ) +Q(u)(x,θ) = S(x), in Ω× Sn−1

u(x,θ) = g(x,θ) on Γ− = {(x,θ) ∈ ∂Ω× Sn−1 s.t. θ · ν(x) < 0}.
(6.1)

Here, u(x,θ) is the photon flux intensity at point x ∈ Ω, where Ω is a subset in Rn,

with direction of propagation θ ∈ Sn−1, where Sn−1 is the unit sphere in Rn. The

space dimension is n = 3 in practice. In this paper we consider n = 2 because it is

computationally simpler and n = 3. The source of photons at the boundary of the

domain is given by g(x,θ) and the outward unit normal to the domain is ν(x) at

x ∈ ∂Ω. The volume source of photons is given by S(x). The absorption coefficient

is denoted by σa(x), and the scattering operator Q is defined as

Q(u)(x,θ) = σs(x)
(
u(x,θ)−

∫
Sn−1

u(x,θ′)dµ(θ′)
)
. (6.2)

Here, σs(x) is the scattering coefficient and dµ is the surface measure on Sn−1 nor-

malized so that
∫
Sn−1 dµ(θ) = 1.

In two space dimensions, we parameterize θ = (cos θ, sin θ) and have

∫
S1

u(x,θ)dµ(θ) =
1

2π

∫ 2π

0

u(x, θ)dθ,

identifying u(x,θ) with u(x, θ). In three space dimensions, we parameterize θ =

(sin θ cosφ, sin θ sinφ, cos θ) and have

∫
S2

u(x,θ)dµ(θ) =
1

4π

∫ 2π

0

∫ π

0

u(x, θ, φ) sin θdθdφ,

identifying u(x,θ) with u(x, θ, φ).

The optical tomography problem consists of reconstructing σa(x) and σs(x) from

boundary measurements u(x,θ) for x ∈ ∂Ω and θ ∈ Sn−1. This is quite a difficult

problem both in theory and in practice [11, 52, 62, 106, 130, 173]. This problem

is also very expensive computationally because the radiative transfer equations are

posed in the phase space, with a minimum of three spatial variables and two angular
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variables in practical calculations. They are therefore often replaced by their diffusion

approximation, which does not involve any angular variable.

Diffusion approximations are valid in the regime of high scattering σs � 1 and

small absorption σa � 1. We can then approximate the solution u(x,θ) by

u(x,θ) = U(x)− 1

σs(x)
θ ·∇U(x) + smaller order terms, (6.3)

where U(x) is the solution to the following diffusion equation

−∇ · D(x)∇U(x) + σa(x)U(x) = S(x) in Ω

U(x) + εnLnD(x)ν(x) ·∇U(x) = g(x) on ∂Ω,
(6.4)

where we assume that g(x,θ) = g(x) does not depend on θ to simplify, and were the

diffusion coefficient is defined by

D(x) =
1

n(σa(x) + σs(x))
, n = 2, 3. (6.5)

The extrapolation length Ln accounts for the leakage of photons at the domain bound-

ary. Approximate values are L2 = 0.8164 and L3 = 0.7104 for isotropic scatter-

ing [17, 21, 58, 118]. Diffusion equations are very well studied both mathematically

and physically and can be justified by various means [11, 58, 111].

The diffusive regime is valid in most human tissues, where absorption is relatively

small and scattering quite large, with typical values of the order of σa = 0.1cm−1

and σs = 20cm−1. This correspond to an absorption mean free path of 10cm and a

scattering mean free path of 0.05cm. Notice that D(x) and σa(x) in (6.4) are then of

comparable order.

The presence of cerebrospinal fluid in the human head prevents the use of the

classical diffusion equation (6.4). The reason is that this fluid is optically clear:

photons propagate along straight lines almost scattering-free in such fluids. This

creates a guiding effect that the diffusion equation (6.4) cannot capture. Several

works exist to understand and fix this problem [17, 18, 59, 71, 149]. The main idea
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consists of using the diffusion equation where it is valid and coupling it with local

transport in the non-scattering regions. An asymptotic analysis [18] justifies such an

approach for thin clear inclusions. Several such hybrid models have been analyzed

numerically [17]. This analysis shows the adequacy and robustness of the models.

The main difficulty is that their numerical implementation is still difficult and their

cost significantly higher than that of classical diffusion (6.4), although much lower

than that of the full transport equation (6.1). It is the objective of this paper to

further simplify the hybrid model and obtain a scheme that is both accurate and

computationally efficient.

6.2 Generalized diffusion model

Following an earlier asymptotic derivation [18], we propose here what we believe is

the simplest model that captures both the diffusive behavior outside of the clear layer

and the guiding effect within the clear layer. It is based on solving a diffusion equation

with local jump conditions at the clear layer.

6.2.1 Notation and Geometry.

The geometry of the clear layer ΩC is as follows. We define Σ as a closed smooth

surface embedded in Ω and

ΩC = {y ∈ Ω s.t. y = x + tν(x), where x ∈ Σ and |t| < L}. (6.6)

Here L is a fixed sufficiently small number and ν(x) is the outward normal to (the

volume inside) Σ at x ∈ Σ. We denote by ΣE and ΣI the outer and inner surfaces of

ΩC and assume that these surfaces are smooth; see Fig. 6-1. We define νC(x) as the

outward unit normal to ΩC at a point x ∈ ∂ΩC = ΣE ∪ ΣI . For x ∈ Σ, we define

xE = x + Lν(x) ∈ ΣE and xI = x− Lν(x) ∈ ΣI . (6.7)
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θ = (cos θ, sin θ)

Figure 6-1: Local geometry of the clear layer.

It is useful to see xE and xI as functions of x ∈ Σ. Notice that the outward normal

to ΩC at xE ∈ ΣE is νC(xE) = ν(x) and the outward normal at xI ∈ ΣI is νC(xI) =

−ν(x).

The solution operator to the radiative transfer equation in ΩC is denoted by RC .

Let us define

ΓC± = {(x,θ) ∈ ∂ΩC × Sn−1 s.t. ± θ · νC(x) > 0},

and consider the problem inside the layer

θ ·∇v(x,θ) + σa(x)v(x,θ) +Q(v)(x,θ) = 0, in ΩC × Sn−1

v(x,θ) = g(x,θ) on ΓC−.

We then defineRC as the operator that maps g(x,θ) on ΓC− to v(x,θ)|ΓC
+

= RCg(x,θ),

the restriction to the transport solution v(x,θ) to the outgoing surface (in the phase

space) ΓC+. Such an operator is well defined in suitably chosen weighted Lp spaces [58].

We now define the operator RC
1 by

RC
1 = RC − I, (6.8)



122

where the near-identity operator I is defined from ΓC− to ΓC+ by

Iu(x,θ) =

 u(x + 2Lν(x),θ), when x ∈ ΣI

u(x− 2Lν(x),θ), when x ∈ ΣE.

This near-identity operator I is merely a translation from the inner boundary to the

outer boundary and vice versa. This is an approximation to what happens to most

photons that cross the clear layer: since the clear layer is optically thin (because σs

is small in ΩC) and most photons reach the clear layer at xI with an incidence angle

far from orthogonal to ν(x), they do not propagate for a long time in the clear layer

and exit it at a point near xE. For those relatively rare photons that reach the clear

layer with a direction almost orthogonal to ν(x), the exit point will no longer be xE.

This behavior is captured by RC
1 and modifies the local current equilibrium.

6.2.2 Generalized diffusion equation with non-local interface

conditions.

It was shown [18, p.1687] that a good approximation of u(x,θ), the solution to (6.1),

was given by U(x) solution of

−∇ · D(x)∇U(x) + σa(x)U(x) = S(x) in Ω\ΩC

U(x) + εnLnD(x)ν(x) ·∇U(x) = g(x) on ∂Ω

U(xE) = U(xI) on Σ

ν(x) · D(xE)∇U(xE)− ν(x) · D(xI)∇U(xI) = KU(x) on Σ,

(6.9)

where the integral operator K is given by

KU(x) =

∫
Γ+(xE)

θ · νC(xE)(RC
1 U)(xE,θ)dµ(θ)

+

∫
Γ+(xI)

θ · νC(xI)(RC
1 U)(xI ,θ)dµ(θ).

(6.10)

We have defined Γ+(x) = {θ ∈ Sn−1 s.t. θ · νC(x) > 0} and have implicitly used

that xE and xI defined in (6.7) are functions of x ∈ Σ. Notice that this diffusion
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problem is posed on Ω\ΩC . What happens inside the layer ΩC is modeled by the

operator RC
1 in the definition of K. The two jump conditions in (6.9) indicate the

boundary conditions satisfied by U at the boundary ∂ΩC . It was shown [18] that the

above problem (6.9) was well-posed provided that the thickness of the layer L was

sufficiently small. Numerical simulations based on (6.9) and on similar generalized

diffusion models [17, 18] have shown the accuracy of the approximation.

The physical interpretation of the jump conditions is the following. The jump

of the total flux vanishes, U(xE) = U(xI), because the clear layer is not sufficiently

thick to modify this equilibrium. However, it is sufficiently large to modify the current

balance. The difference of currents crossing the interfaces of the clear layer is balanced

by the current of photons inside the clear layer. The latter is modeled by KU(x).

As a minor remark, let us mention that the asymptotic expansion [18] involves an

additional Jacobian term corresponding to the map I. Since I is near-identity, we

have replaced the Jacobian by 1. Accounting for this Jacobian does not change the

limiting equations that will be obtained below.

6.2.3 Localization of the interface conditions.

We now aim at further simplifying (6.9) by replacing the nonlocal operator K in

(6.10) by its local approximation. In doing so, we will model the clear layer ΩC by a

local jump condition for the diffusion solution at Σ. We assume that the clear layer

is totally non-scattering, i.e. that σs(x) = 0 for x ∈ ΩC . This assumption is fairly

accurate in practice. All the results we present below are not significantly modified

when the layer is weakly scattering; see our remarks at the end of the section.

Let us consider the two-dimensional case n = 2. Let (x,θ) ∈ ΓC+. We define

t(x, θ) as the time it takes to travel from ΓC− to x in direction −θ (with unit speed).

We also define x = x(x, θ) = x − t(x, θ)θ, the starting point on ΓC−. Since the clear

layer is non-scattering, we obtain by solving the free transport equation along its

characteristics that

RCU(x, θ) = e−σat(x,θ)U(x),
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assuming that absorption is constant in ΩC . Let us consider a point xI ∈ ΣI such

that x(xI , θ) ∈ ΣE for all θ such that νC(xI) · θ > 0. This means that the photons

reaching xI all come from the other interface ΣE. We then have that the contribution

to the current of photons crossing ΣI is given by

J I =

∫
Γ+(xI)

θ · νC(xI)(RC
1 U)(xI ,θ)dµ(θ)

=
1

2π

∫ π

0

sin θ
(
e−σat(xI ,θ)U(xI)− U(xE)

)
dθ,

where θ is chosen so that 0 ≤ θ ≤ π spans ΓC−(xI). Notice that both xI and xE

belong to ΣE. Locally around xE we can parameterize ΣE by the arc-length distance

s(xI) ≡ s(θ,xE) to xE. When the curvature of Σ is positive, all points xI are close

to xE since the clear layer is thin. We can thus use the Taylor expansion

U(xI) = U(xE) + s(θ;xE)
∂U

∂s
(xE) +

1

2
s2(θ;xE)

∂2U

∂s2
(xE) + smaller terms

= U(xE) +
∂

∂s

(s2(θ;xE)

2

∂U

∂s

)
(xE) + smaller terms.

(6.11)

Similarly, we have

e−σat(xI ,θ) = 1− σat(x
I , θ) + smaller terms. (6.12)

We finally obtain the following approximation

J I = −σIa(xI)U(xE) + bI(xE)
∂U

∂s
(xE) + dI(xE)

∂2U

∂s2
(xE) + . . .

= −σIa(xI)U(xE) +
∂

∂s

(
dI(xE)

∂U

∂s

)
(xE) + . . . ,

(6.13)

where

σIa(x
I) = σa

1

2π

∫ π

0

t(xI , θ) sin θdθ

bI(xE) =
1

2π

∫ π

0

s(θ;xE) sin θdθ

dI(xE) =
1

2π

∫ π

0

1

2
s2(θ;xE) sin θdθ.

(6.14)

Notice that bI vanishes when the surface Σ is symmetrical about x since then
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s(π − θ;xE) = −s(θ;xE). This justifies that the asymptotic expansion is pushed to

second order in (6.11). The local approximation to the contribution KU(xE)−J I can

be obtained in a similar manner. Its calculation is slightly more complicated since it

involves two contributions coming from photons that entered ΩC through ΣI and ΣE.

Adding the contributions from the two layer boundaries and sending the thickness

of the clear layer to zero (thus identifying xE and xI with x ∈ Σ), we obtain that

KU(x) =
∂

∂s

(
dC(x)

∂U

∂s

)
(x)− σCa (x)U(x) + smaller terms. (6.15)

The diffusion coefficient dC is positive and the absorption coefficient σCa is non-

negative. This implies that the asymptotic limit of the operator K is negative in the

sense that neglecting smaller order terms and integrating by parts,
∫

Σ
(KU)(x)U(x)dS(x) ≤

0 for smooth functions U(x), where dS(x) is the surface measure on Σ.

The above procedure can be generalized to the three dimensional case without

any theoretical difficulty, although the local parameterization of the surfaces ΣE and

ΣI and the calculation of the travel times t(x, θ, φ) and currents in (6.10) become

more complicated.

6.2.4 Tangential diffusion coefficient for circular layers.

In the rest of this paper, we assume that the surface Σ is a circle of radius R in two

space dimensions n = 2 and a sphere of radius R in three space dimensions n = 3;

see Fig. 6-2. We also assume to simplify that the clear layer is non-absorbing, i.e.

σa(x) = 0 in ΩC . We then obtain that

KU(xE) = dC∆⊥U(xE) + small terms, (6.16)

where ∆⊥ is the Laplace-Beltrami operator for the sphere when n = 3 (i.e., the

Laplace operator in the tangent plane to the sphere) and ∆⊥ = ∂2

∂s2
for the circle
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when n = 2. The diffusion coefficient is given in two space dimensions by

dC = dCex−ex + dCex−in + dCin−ex,

dCex−ex =
1

2π

∫ θ0

0

sin θ(R + L)2(2θ)2dθ

dCex−in =
1

2π

∫ π/2

θ0

sin θ(R− L)2
(
θ − arccos

(R + L

R− L
cos θ

))2

dθ

dCin−ex =
1

2π

∫ π/2

0

sin θ(R + L)2
(
− θ + arccos

(R− L

R + L
cos θ

))2

dθ.

(6.17)

Here, θ0 is the limiting angle below which incident particles enter the clear layer

through the upper surface and exit it through the same upper surface. It is defined

by

θ0 = arccos
(R− L

R + L

)
. (6.18)

The three components of dC are the contributions of photons that exit (enter) the clear

layer through the upper (upper) surface (dCex−ex), the upper (lower) surface (dCex−in),

and the lower (upper) surface (dCin−ex), respectively. Thus dCin−ex is given by dI(xE) in

(6.14) and the two other contributions correspond to the photons crossing the clear

layer through ΣE.

A similar expression can be calculated for the tangential diffusion coefficient in

three space dimensions. We have not reproduced this lengthy expression here.

6.2.5 Generalized diffusion model with local interface condi-

tions.

With these approximations, the generalized diffusion model takes then the following

form in the limit of vanishing thickness of the clear layer:

−∇ · D(x)∇U(x) + σa(x)U(x) = S(x) in Ω\Σ

U(x) + εnLnD(x)ν(x) ·∇U(x) = g(x) on ∂Ω

U(x+) = U(x−) on Σ

ν(x) · D(x+)∇U(x+)− ν(x) · D(x−)∇U(x−) = dC∆⊥U(x) on Σ.

(6.19)
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For x ∈ Σ, we have defined x± = x ± 0ν(x). This equation is much simpler to

solve than (6.9) because the jump conditions are now local on Σ. Notice that we have

replaced xE and xI by x since the layer is sufficiently thin. Also the diffusion equation

is now posed on Ω\Σ instead of Ω\ΩC . The flux of photons U(x) is continuous across

the interface Σ. The current ν ·∇U is however discontinuous and its jump is given

by dC∆⊥U(x), which is also continuous since only derivatives along the interface Σ

are considered.

The numerical implementation of (6.19) is also relatively straightforward. Indeed

let us consider the variational formulation of (6.19). Upon multiplying (6.19) by a

test function w(x) and integrating by parts using the Gauss formula, we obtain that∫
Ω

(
D(x)∇U(x) ·∇w(x) + σa(x)U(x)w(x)

)
dx

+

∫
Σ

dC∇⊥U(x) ·∇⊥w(x)dS(x) +

∫
∂Ω

1

εnLn
U(x)w(x)dS(x)

=

∫
Ω

S(x)w(x)dx +

∫
∂Ω

1

εnLn
g(x)w(x)dS(x).

(6.20)

Here ∇⊥ is the gradient operator along the surface Σ and dS is the surface measure

on Σ and ∂Ω. Since the diffusion coefficients D(x) and dC(x) are positive, we obtain

that the above equation is well-posed. Moreover its discretization by finite element

method (Galerkin projection) is straightforward thanks to the variational formulation

(6.20) [39]. A similar variational formulation was also used to solve (6.9) [17]. Notice

that (6.19) is however considerably simpler to solve as the calculation and integration

of the response operator RC
1 in (6.10) is replaced by a single tangential diffusion

coefficient dC .

6.2.6 Remarks on the mathematical model.

The derivation of (6.19) can be justified rigorously by using the asymptotic expansions

and techniques developed in an earlier work [18]. We present the main results below

and refer to that work for additional details.

Denoting by ε the mean free path, i.e., the main distance of propagation of the

photons between successive collisions, the scaling of the clear layer such that the
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operator KU is of order O(1) is given by L2| lnL| ≈ ε. Discarding logarithmic terms,

this means that the clear layer must be approximately of size
√
ε � ε. When the

clear layer is much smaller than
√
ε, the guiding effects can be neglected as a first

approximation and classical diffusion equations (6.4) are asymptotically valid. When

the clear layer is much larger than
√
ε, it is too large for the diffusion equilibrium

U(xE) = U(xI) to hold. In effect, a nonlocal equilibrium arises, which imposes

that the flux of photons is asymptotically constant inside the layer. This case was

analyzed [17, 18] both theoretically and numerically.

When the clear layer has the correct scaling, L2| lnL| ≈ ε, and the curvature of

the surface Σ is uniformly positive (is a uniformly positive definite matrix in three

space dimensions), we can show [18] that the error between u(x,θ) and U(x) is of

order
√
ε. The error is no longer of order ε as in the case of classical diffusion [58].

For typical mean free paths of order 10−3-10−2, the error will therefore possibly be of

the order of a few percents. To further quantify this error term, we propose several

numerical simulations in the following section.

When the clear layer is no longer scattering-free, the distance traveled by the

photons when they cross the clear layer decreases as fewer photons travel collision-less

parallel to the layer boundary. This implies that the tangential diffusion coefficient

also decreases. However the final form of the generalized diffusion equation is not

modified by weakly scattering layers. In the limit of strongly scattering layers, the

tangential diffusion coefficient vanishes. This simply corresponds to the validity of

classical diffusion, where the interface conditions are continuity of the flux intensity

and current.

More general geometries such as oscillatory clear layers can also be considered [149].

Oscillations will also reduce the value of the tangential diffusion coefficient as photons

are forced to exit the clear layer more rapidly by the geometry. Although further the-

oretical and numerical studies are necessary to adapt the proposed method to more

complex geometries, we believe that the tangential diffusion process is a rather stable

limiting process to model the guiding effect in clear and not-so-clear layers. All we

have to do is to find an average surface Σ and then the tangential diffusion coefficient
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that generalizes (6.14).

Let us finally mention that we restrict ourselves here to the steady-state transport

equation with isotropic scattering. The generalization of the results presented below

to anisotropic scattering is straightforward as long as the diffusion approximation can

be justified. Time dependent and frequency harmonic equations also can be treated

similarly so long as the variations in time of the source terms are slow compared with

the characteristic mean free time, i.e., the mean time between successive collisions of

the photons with the underlying medium. For time dependent equations, the term

c−1 ∂u
∂t

need be added in front of (6.1), (6.4), and the main result (6.19). In the

time harmonic case, c−1iωu is added instead. Here c is the light speed and ω the

modulation frequency of the source term.

6.3 Validation of the model with forward simula-

tions

In this section we solve (6.19) numerically and compare its solution to the transport

solution u(x,θ) obtained by a Monte Carlo algorithm. Numerical simulations are per-

formed both for the two and three dimensional problems with circular and spherical

clear layers, respectively.

We assume that S(x) = 0 and that g(x) = δ(x−x0), where x0 ∈ ∂Ω is a point on

the boundary of the domain where a constant source emits light isotropically. The

transport and diffusion solutions are compared by looking at the exiting currents at

the boundary of the domain ∂Ω\{x0}. The transport and diffusion currents are given

by

JT (x) =

∫
Sn−1

θ · ν(x)u(x,θ)dµ(θ), JD(x) = −D(x)ν(x) ·∇U(x), (6.21)

respectively. These currents correspond to the information that is available in physical

experiments.
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Figure 6-2: Geometry of the two-dimensional setting and cross-section of the geometry
of the three-dimensional setting with azimuthal symmetry.

6.3.1 Two dimensional numerical simulations.

In two space dimensions, the domain Ω is the unit disc Ω = {x ∈ R2, |x| < 1}. The

surface Σ modeling the clear layer is a circle of radius R. Photons enter the domain

at the point x0 = (0,−1). In the numerical experiments we have chosen R = 0.65.

The thickness of the clear layer is given by h = 2L; see Fig. 6-2. We consider several

values of h. The scattering cross section σs(x) is chosen constant and equal to 102

in Ω\ΩC and vanishes in ΩC . This implies that the total size of the domain is of

the order of 100 mean free paths. In all our simulations the mean free path is 0.01.

We assume that there is no absorption to simplify. In the absence of clear layer, the

problem would be very much in the regime of validity of diffusion.

The transport equation (6.1) is solved by Monte Carlo method [167]. Particles

start at x0 with uniformly chosen initial direction and propagate inside the domain

until they exit it. The outgoing current JT is calculated accordingly. A number of

particles of 8 107 has been used to obtain a sufficiently small statistical variance.

The generalized diffusion model (6.19) is solved by Fourier decomposition after

passage to polar coordinates. The jump of derivatives at the clear layer can easily

be accounted for in this setting. We thus obtain a quasi-analytic expression for JD.

This is the reason why we have chosen circular clear layers.
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The current at the domain boundary is discretized into 2×36 cells of size 5 degrees

each (or π/36). Cell 1 corresponds to the vicinity of the source and cell 36 corresponds

to the vicinity of the upper point (0, 1). The symmetry about x = 0 is used in the

calculations. The number of particles is such that at least 15 103 particles exit though

each cell. This ensures a statistical relative error of less than 10−2 by the law of large

numbers, which is below or comparable to the error expected from the diffusion model

for a mean free path of 10−2. The lowest density is obviously obtained in the upper

cell 36 and in the absence of clear layers. The corresponding diffusive flux is obtained

by averaging the flux given by the Fourier expansion in each cell.

We now compare the transport and diffusion exiting currents of photons for several

sizes of the clear layer. The thickness of the clear layer varies between 1 and 7 mean

free paths. According to theory clear layers of the order of the mean free path are too

small to significantly modify the solution obtained in the absence of clear layer. Clear

layers on the order of the square root of the mean free path (10 here) however have

a significant effect on the solution. Because the mean free path here is still relatively

large (in the sense that its square root is not very small) we start seeing effects for

clear layers of roughly 2− 3 mean free paths.

h 0.01 0.02 0.03 0.04 0.05 0.06 0.07
dCex−ex 0.0064 0.026 0.058 0.10 0.16 0.23 0.32
dCin−ex 0.0029 0.0093 0.018 0.028 0.039 0.051 0.062
dCin−in 0.0031 0.011 0.021 0.036 0.053 0.073 0.096
dCtheory 0.0124 0.0455 0.0971 0.166 0.253 0.355 0.475
dCbest fit 0.0129 0.0465 0.0983 0.167 0.253 0.356 0.474

EGDM (%) 1.17 1.56 1.43 1.09 0.81 0.56 0.60
EBF (%) 0.73 0.65 0.57 0.49 0.46 0.47 0.46
EDI (%) 3.3 10.2 17.7 24.5 30.2 35.3 39.8
EDI2 (%) 5.7 11.8 18.2 17.8 18.1 17.9 17.8

Table 6.1: Tangential diffusion coefficients and relative root mean square error (L2

norm) between the Monte Carlo simulations and the various diffusion models for sev-
eral thicknesses of the clear layer. The errors EGDM, EBF, EDI, and EDI2 represent
the relative root mean square error (in percentage) between the Monte Carlo sim-
ulations and the generalized diffusion model obtained using dCtheory, the generalized
diffusion model obtained by best fit, the classical diffusion equation, and the general-
ized diffusion model with tangential diffusion coefficient 1.5 times larger than dCtheory,
respectively.
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Tab. 6.1 present the results of the numerical experiments. For thicknesses h

between 1 and 7 mean free paths, the tangential diffusion coefficient defined in (6.17)

is given in row 4 and its three components in rows 1 to 3. The coefficient obtained by

best fitting (in the least-square sense) the generalized diffusion model to the Monte

Carlo data on the outgoing density between angles 60 and 180 (cells 12 to 36) is given

in row 5. We observe that the theoretical coefficient is quite close to the best fit. This

is confirmed by looking at the errors made by the different models. The relative L2

norm between the Monte Carlo simulations and the various models between cells 12

and 36 is given in rows 6 to 9 for the generalized diffusion model, the best fit from data,

the classical diffusion model with no clear layer (i.e., the diffusion coefficient is taken

constant and equal to 1/200 on the whole domain), and a generalized diffusion model

where the tangential diffusion coefficient has been chosen very large, respectively.

By very large, we mean a tangential diffusion coefficient 1.5 times larger than its

theoretical value. This solution corresponds to overestimating the guiding effect of

the clear layer as we would obtain by using a diffusion approximation with a large

diffusion coefficient given by (6.5) inside the clear layer. It is known that the correct

solution is then not obtained [17, 18, 71, 149]. The different models are also compared

in Figure 6-3 for four different thicknesses h. The viewgraphs confirm the error

estimates of Tab. 6.1.

6.3.2 Interpretation of results.

Let us first state that the generalized diffusion model successfully deals with the

guiding effects caused by the presence of a clear layer. The relative root mean square

error between transport and this diffusion model does not exceed two percents. The

accuracy degrades in the vicinity of the source term (not shown) but this is classical

of diffusion approximations and is independent of the clear layer. The diffusion model

obtained from (6.17) is almost as accurate as the best fit model. Classical diffusion,

where the clear layer is replaced by a diffusive medium, is accurate when the clear

layer is thin. However the error becomes unacceptable in practice (about 10%) even

for thicknesses of the order of two mean free paths. The guiding effect is neglected
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and the upward propagation of photons is clearly underestimated. The opposite effect

arises when the tangential diffusion coefficient is chosen too large. As we have already

mentioned, this is similar to using the diffusion model (6.5) also inside the clear layer,

which gives higher a diffusion coefficient than is physically correct and overestimates

the guiding effect.

Let us conclude with a short comment on the theoretical diffusion coefficient. It

is not difficult to show that asymptotically as h → 0, dCex−ex is a term of order h2

whereas the other contributions dCin−ex and dCin−in are terms of order h2| lnh| � h2. We

have observed this behavior numerically for values of h of order 10−4−10−3. However

in the cases shown here, where the mean free path is of order 10−2, the term dCex−ex,

although asymptotically smaller than the other contributions, actually dominates in

the calculation of the theoretical diffusion coefficient.

6.3.3 Three dimensional numerical simulations.

Let us now consider the three-dimensional case. The domain is now a sphere of radius

1, the clear layer a corona of thickness h centered at R = 0.65, and the source is at

position (0, 0,−1). The transport equations are still solved by Monte Carlo method

and the diffusion equation by projection onto spherical harmonics.

We did not estimate the theoretical tangential diffusion coefficients that general-

izes (6.17) to the three-dimensional case. This coefficient could certainly be calculated

analytically or computed numerically by assessing how far photons can go on average

by crossing the clear layer. Rather we would like to stress another advantage we see

in (6.19) as a model in optical tomography, where the photon measurements at the

boundary are used to image the diffusion and absorption properties of the domain

on the other side of the clear layer (i.e., close to the origin (0, 0, 0)). We claim that

the clear layer can be modeled by a possibly spatially dependent tangential diffusion

coefficient provided that we have an a priori knowledge of its location. In other words

we claim that the inverse problem based on simulating the full clear layer (in trans-

port then) and the inverse problem based on replacing the clear layer by a tangential

diffusion process (with a priori unknown strength) will give similar reconstructions.
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This of course comes at the expense of also reconstructing the value of the tangential

diffusion coefficient from the measured data. This claim corresponds to showing that

the best diffusion fit yields a good approximation to the transport solution. We have

seen that this is the case in two dimensions.

We now present results that confirm that this is also the case in three dimensions.

The number of particles used in the calculations in 2 107. Such calculations are already

quite long because particles stay longer inside the domain in three dimensions than

in two dimensions. Moreover the number of particles exiting the domain in the

upper part of the sphere is also smaller than in two dimensions. This renders our

numerical simulations less accurate than in two dimensions. This has the advantage

at least of mimicking more closely noisy measurements and thus we consider them

as an interesting benchmark. The numerical results are presented in Fig. 6-4. They

certainly show that validity of (6.19) as an accurate model to simulate the guiding

effect. The root mean square error between the transport solution and the best fit

generalized diffusion model is of the order of 2−3%. This error is moreover mostly due

to random fluctuations. Other diffusion models that do not correctly account for this

effect introduce too large errors to be really considered as practical for the purpose

of inversion of physical properties from boundary measurements [17, 18, 71, 149].

For instance classical diffusion is our simulations is as far as 50% off the transport

solution.

6.4 Conclusions and remarks

We propose a generalized diffusion model that accounts for the multiple scattering

of photons in highly scattering media (classical diffusion regime) and well as for the

near-collision-less propagation of the same photons in clear layers (purely transport

regime resulting in a guiding effect).

This model can be mathematically derived from the phase space radiative trans-

port equation as a small mean-free-path limit. It captures the guiding effect of pho-

tons in the clear layer quite well. Moreover it has almost the same cost as classical
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diffusion, which completely fails to model the clear layer effects, and a lower cost

than previously derived generalized diffusion equations, which are already much less

expensive than full transport solutions. The reason for this lower cost is that the

nonlocal interface conditions of the latter diffusion models are replaced by their best

local approximation. This best local approximation takes the form of a tangential

diffusion process.

The strength of this diffusion process can be calculated analytically or numerically

provided that one has access to the geometry of the clear layer. When this geometry

is unknown or only partially known, we have shown numerically that the diffusion

process that best fits the impact of the clear layer gives boundary measurements that

are visually indistinguishable from the measurements obtained by solving the full

transport equations. We believe that the generalized diffusion model can thus safely

be used in optical tomography as an accurate approximation of the forward model.

The analysis in this chapter tells us that if we know the location and geometry

of the clear layer, we can use the generalized diffusion model to replace the radiative

transport model of light propagation. In practice, if one does not know the informa-

tion about the clear layers, can one still use the generalized diffusion equation? We

will give partial answer to this question in next chapter.



136

60 80 100 120 140 160
0.0

2.0x10-5

4.0x10-5

6.0x10-5

8.0x10-5

1.0x10-4

1.2x10-4

1.4x10-4

125 130 135 140 145

2.0x10
-5

4.0x10
-5

6.0x10
-5

 

 

 

 

C
ur

re
nt

Angle
60 80 100 120 140 160

0.0

2.0x10-5

4.0x10-5

6.0x10-5

8.0x10-5

1.0x10-4

1.2x10-4

1.4x10-4

125 130 135 140 145

1.6x10
-5

2.4x10
-5

3.2x10
-5

4.0x10
-5

 

 

 
 

C
ur

re
nt

Angle

60 80 100 120 140 160
0.0

2.0x10
-5

4.0x10
-5

6.0x10
-5

8.0x10
-5

1.0x10
-4

1.2x10
-4

1.4x10
-4

125 130 135 140 145

1.8x10-5

2.4x10-5

3.0x10-5

3.6x10-5

  

 

 

 

C
ur

re
nt

Current
60 80 100 120 140 160

0.0

2.0x10-5

4.0x10-5

6.0x10-5

8.0x10-5

1.0x10-4

1.2x10-4

1.4x10-4

125 130 135 140 145
1.2x10-5

1.6x10-5

2.0x10-5

2.4x10-5

2.8x10-5

 

 

 

 

 

C
ur

re
nt

Angle

Figure 6-3: Plots of the current between cells 14 (70 degrees) and 36 (180 degrees)
at the boundary of the unit disc (two-dimensional simulation) for the Monte Carlo
solution and the different diffusion models. The thickness of the clear layer in mean
free path is 2, 3, 5, and 7 for the top-left, top-right, bottom-left, bottom-right figures,
respectively. In each sub-figure, the Monte Carlo simulation is represented by solid
circles, the classical diffusion by empty circles, the generalized diffusion model with
theoretical tangential diffusion coefficient by the sold line, the generalized diffusion
model with best fit by the dash-dotted lines, and the generalized model with large
tangential diffusion coefficient by the dotted line. The inset represents a magnification
of the above results between angles 125 and 145.
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Figure 6-4: Plots of the current between cells 15 (75 degrees) and 32 (160 degrees)
at the boundary of the unit sphere (three-dimensional simulation with azimuthal
symmetry) for the Monte Carlo solution and the different diffusion models. The
thickness of the clear layer in mean free path is 1, 2, 4, and 6 for the top-left, top-
right, bottom-left, bottom-right figures, respectively. In each sub-figure, the Monte
Carlo simulation is represented by solid circles, the classical diffusion by empty circles,
the generalized diffusion model with theoretical tangential diffusion coefficient by the
sold line, the generalized diffusion model with best fit by the dash-dotted lines, and
the generalized model with large tangential diffusion coefficient by the dotted line.
The inset represents a magnification of the above results between angles 125 and 145.
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Chapter 7

Surface identifications by shape
sensitivity analysis and the level
set method

We continue our analysis on the generalized diffusion model in this chapter. As we

have seen before, a tangential diffusion supported on a co-dimension one surface cor-

rectly account for the effect of extended non-scattering regions in highly scattering

media. A natural question then to ask is: if we don’t know a priori where those non-

scattering region locates, can we detect them from boundary measurements? This

problem reduces to the reconstruction of the singular surface in the generalized diffu-

sion model from boundary measurements, which will be the problem to be analyzed

in this chapter. The presentation of this chapter is based on reference [25].

7.1 The singular surface problem

The identification of unknown surfaces or interfaces in physical problems governed by

partial differential equations has been an active field of research recently [20, 69, 98].

Apart from the fields of shape optimization and optimal design [7, 137], such problems

emerge in applications such as optical tomography [20, 64], inverse scattering [117,

159] and, more generally, parameter identification in partial differential equations [47].

Most works in the current literature deal with the reconstruction of interfaces that

separate regions with different contrasts from boundary or far-field measurements,
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typically interfaces across which one of the constitutive parameters in the partial

differential equation jumps.

In the inverse interface problem we discuss here, the role of the interface is not

to separate regions with different physical coefficients but rather to be the support

of a tangential diffusion process as we have seen in the previous chapter. Such a

process may also model thin areas characterized by very high values of the diffusion

coefficient, as in the modeling of cracks of thickness ε� 1 and conductivity of order

ε−1 in impedance tomography, as shown in [95].

In the absence of general analytic formulae, the inverse interface problem is usu-

ally solved by minimizing an objective function that measures the mismatch between

the model predictions and the measurements. A central element in the minimization

procedure is the calculation of the gradient of the objective function with respect

to the variations in the shape of the interface. This is the shape sensitivity analy-

sis [84, 166]. Another important element in the minimization procedure is a numerical

tool that is used to advect the interface once a suitable descent direction has been ob-

tained by shape sensitivity analysis. As in the pioneering work by Santosa [159] and

subsequent works mentioned in the review paper [40], the level set method [40, 135]

may be used to that purpose. This chapter generalizes the combination of a shape

sensitivity analysis and level set method to the reconstruction of surfaces supporting

singular diffusion processes from boundary measurements.

7.1.1 Forward model

Let Ω ⊂ Rn (n = 2, 3) be a domain with Lipschitz boundary Γ(≡ ∂Ω) and Σ ⊂ Ω

a closed, non self-intersecting, interface of class C2 embedded in Ω and separating it

into interior (ΩI) and exterior (ΩE) parts, so that we may write Ω = ΩI ∪ΩE∪Σ. We

also require that Σ stay away from ∂Ω, i.e., d(Σ,Γ) > C for some positive constant

C. The geometry of interest is depicted in Fig. 7-1 in the two-dimensional setting.

We consider the following elliptic partial differential equation in Ω with interface
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condition on Σ:

−∇ · D(x)∇u(x) + a(x)u(x) = 0 in Ω\Σ,

D(x)ν(x) · ∇u(x) = g(x) on Γ,

[u] = 0 on Σ,

[n · D∇u] = −∇⊥ · d(x)∇⊥u(x) on Σ.

(7.1)

The scalar (to simplify) diffusion coefficients D(x) and d(x) are uniformly positive;

the absorption coefficient a(x) is assumed to be smooth and bounded from above

and below by positive constants, i.e., 0 < c1 < a(x) < c2 < ∞; n(x) is the outward

unit normal vector to ΩI at x ∈ Σ and ν(x) is the outward unit outer normal

vector to Ω at x ∈ Γ. The tangential differential operator ∇⊥ is the restriction

of ∇ to Σ, so that for a sufficiently smooth function φ(x) defined on Ω, we have

∇⊥φ(x) = ∇φ(x) − (n(x) · ∇φ(x))n(x) for x ∈ Σ. The symbol ∇⊥ · ∇⊥ denotes

the Laplace-Beltrami operator on Σ. The jump conditions across the interface Σ are

defined by

[u] = u(x+)− u(x−), [n · D∇u] = n · D∇u(x+)− n · D∇u(x−),

with

u(x±) = lim
t→0+

u
(
x± tn(x)

)
, ∇u(x±) = lim

t→0+

∇u
(
x± tn(x)

)
.

Equation (7.1) models a background diffusion-absorption process in the domain

Ω with a tangential diffusion process supported on the surface Σ [23, 95].

The problem described in (7.1) is well-posed in the following Hilbert space:

H1
Σ(Ω) :=

{
u(x) : u ∈ H1(Ω), such that

∫
Σ

|∇⊥u|2dσ <∞
}
, (7.2)

where H1(Ω) is the usual Sobolev space of L2 functions in the domain Ω whose

first-order partial derivatives also in L2(Ω) [5, 58]. In other words, H1
Σ(Ω) consists

of functions in H1(Ω) with tangential gradient on Σ in L2(Σ). One can verify that
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Figure 7-1: Geometric setting of the problem in the two-dimensional setting with
Ω = ΩI ∪ ΩE ∪ Σ.

H1
Σ(Ω) is a Hilbert space equipped with the scalar product:

(u, v)H1
Σ

=

∫
Ω

(uv +∇u · ∇v)dx +

∫
Σ

∇⊥u · ∇⊥vdσ(x),

where dσ(x) denote the Lebesgue measure on Σ, and a natural norm

‖u‖H1
Σ

=
√

(u, u)H1
Σ
.

Upon multiplying (7.1) by a test function φ(x) ∈ H1
Σ(Ω) and integrating by parts, we

obtain that

S(u, φ) = fg(φ), (7.3)

where the bilinear form S(·, ·) is defined by

S(u, φ) :=

∫
Ω

D(x)∇u(x) · ∇φ(x)dx +

∫
Ω

a(x)u(x)φ(x)dx

+

∫
Σ

d(x)∇⊥u(x) · ∇⊥φ(x)dσ(x), (7.4)

and the linear form fg(φ) by

fg(φ) :=

∫
Γ

g(x)φ(x)dσ(x).
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Note that S is symmetric, i.e., S(u, φ) = S(φ, u). Because the diffusion coefficients

D(x) and d(x) and the absorption coefficient a(x) are positive and bounded, one

can verify that the bilinear form S is coercive. It then follows from Lax-Milgram

theory [57, 76] that if g ∈ H−1/2(Γ), then (7.1) admits a unique solution u ∈ H1
Σ with

trace on Γ, u|Γ ∈ H1/2(Γ); see also [20].

7.1.2 Inverse surface problem

A practically useful inverse problem related to equation (7.1) consists of reconstruct-

ing the interface Σ from knowledge of u at the boundary Γ. The Neumann to Dirichlet

(NtD) operator, which maps the incoming flux g to u on the boundary [96] is defined

as:

ΛΣ :
H−1/2(Γ) 7−→ H1/2(Γ)

g(Γ) 7−→ u|Γ.

This operator obviously depends on the geometry of Σ. The inverse interface problem

of (7.1) may then be formulated as:

(IP) Determine the interface Σ from knowledge of the Neumann to Dirich-

let operator ΛΣ.

If all the other coefficients in (7.1) are known, it is shown in [20] that knowledge

of the local Neumann to Dirichlet map uniquely determines the interface Σ. Let

us denote by Γg ⊂ Γ the part of the boundary where non-zero boundary current

are applied and measurements are taken. In other words, we replace the boundary

condition of (7.1) by

D(x)ν(x) · ∇u(x) =

 g(x), on Γg

0, on Γ\Γg.

Denoting by Λ
Γg

Σ the local Neumann to Dirichlet operator for the new problem, which

implies that u is measured only on Γg. Then we have the following uniqueness result:

Proposition 7.1.1 ([20]). Let Λ
Γg

Σ1
and Λ

Γg

Σ2
be the local NtD maps associated with

interfaces Σ1 and Σ2, respectively. Suppose that the functions D(x), d(x) and a(x)
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are known and satisfy the above mentioned regularity assumptions. Then Λ
Γg

Σ1
= Λ

Γg

Σ2

implies that Σ1 = Σ2.

The objective of this paper is to design a numerical method to reconstruct the

singular interface Σ from knowledge of ΛΣ or Λ
Γg

Σ . Our method is based on classi-

cal numerical optimization techniques. We convert the reconstruction problem to a

regularized nonlinear least square problem:

Fα(Σ) :=
1

2

∥∥u− uδm
∥∥2

L2(Γ)
+ α

∫
Σ

dσ(x) → min
Σ∈Π

. (7.5)

Here uδm denotes a noisy measurement of u on the domain boundary Γ with noise level

δ, while Π denotes the space of admissible surfaces Σ. The first term in the objective

functional Fα(Σ) evaluates the discrepancy between the measured and predicted data,

while the second term is a regularization term with parameter α. The choice of set Π

is critical to the existence of minimizers to the functional Fα(Σ). If we assume that Π

consists of interfaces such that
∫

Σ
dσ(x) is the n− 1 dimensional Hausdorff measure

of Σ, which turns out to be the perimeter of the inner domain ΩI in two dimensions,

we can then view the reconstruction of Σ as the identification of the domain ΩI

penalized by its perimeter. By techniques such as those of [8, 56], the existence of

minimizer to functional Fα should follow from the lower semicontinuity of Fα(Σ) with

respect to ΩI (thus Σ) in either the space of sets with finite parameter or the space

of simply-connected, Hausdorff measurable compact sets. For our analysis below,

we need interfaces that are at least of class C2 such that the mean curvature of the

interfaces can be defined in the classical way. It is however not clear to us so far that

a minimizer of Fα exists in such a class of interfaces. Our analysis in the following

sections are thus based on the assumption that a regular minimizer does exists.

In many applications, such as the reconstruction of clear layers in optical tomog-

raphy, we may have a priori information about the location of the singular interface,

whence constraints on the size of Π, which may simplify the inverse problem. We do

not consider this situation here.
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7.1.3 Comparison with the reconstruction of inclusions

It is instructive to compare the reconstruction of singular surfaces as they are de-

scribed in the preceding section with the more classical problem of the reconstruc-

tion of interfaces separating regions characterized by different diffusion coefficients;

see [98, 117, 159]. In the latter works, the inclusion is characterized by a constant dif-

fusion coefficient that differs from the constant background diffusion coefficient. The

inclusion is then reconstructed by minimizing the functional (7.5). The construction

of velocity fields allowing us to minimize (7.5) is not modified when the inclusion’s and

background diffusion coefficients are allowed to be (not necessarily constant) smooth

functions, so long as the difference between these functions does not vanish. More

precisely, we consider the following model for the inclusions:

−∇ · D(x)∇u(x) + a(x)u(x) = 0 in Ω

D(x)ν(x) · ∇u(x) = g(x) on Γ

[u] = 0 on Σ

[n · D∇u] = 0 on Σ,

(7.6)

where the diffusion coefficient D(x) jumps across the interface Σ

D(x) =

 D0(x) + δD(x) ≡ DI(x), x ∈ ΩI

D0(x) ≡ DE(x), x ∈ ΩE,
(7.7)

with D(x) uniformly bounded from above and below by positive constants and δD(x)

strictly positive or strictly negative. The case where D0 and δD are constant has been

studied in [98, 117, 159]. The behavior of the solution u(x) to (7.1) with d(x) > 0

is very similar to the behavior of solution of model (7.6) with δD(x) > 0. In section

7.5, we will give a more quantitative numerical comparison between the two models.
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7.2 Shape sensitivity analysis

In order to solve the surface reconstruction problem by minimization of the functional

Fα(Σ) in (7.5), it is essential to compute the variation of Fα(Σ) with respect to a small

perturbation in Σ. This involves computing the sensitivity of the diffusion solution

with respect to deformations in the shape. This is the shape sensitivity analysis

described in the shape optimization literature [166].

The main novelty of the paper is to carry out the shape sensitivity analysis in

the presence of a singular interface. Unlike the model (7.6) treated in [98, 117, 159],

the current jumps across the interface Σ in (7.1). This significantly modifies the

shape sensitivity analysis and the important relationship between shape and material

derivatives; see below. Let us also mention that many geometries have been addressed

in the shape optimization literature [60, 70, 165, 166]. Because of the specificity of

problem (7.1), none of them may be applied directly, although similarities in the

methodology and mathematical machinery are easily drawn.

The framework for the shape sensitivity analysis is the following. We perturb the

interface Σ according to the map Ft : Rn → Rn (the parameter t ∈ R+ is a small

positive real number) defined by:

Ft(x) = x + tV(x), x ∈ Rn. (7.8)

Here V(x) : Rn 7→ Rn is a vector field of class C1 with compact support in the domain

Ω so that each point on the boundary of Ω remains invariant under the perturbation

Ft. We denote this as V ∈ C1
0(Ω; Rn). Under this perturbation, points x ∈ Ω are

mapped to x + tV(x). However, the whole domain Ω remains invariant in the sense

that Ω = Ft(Ω).

We denote by Σt the image of Σ under the perturbation, and denote by ut(x) the

solution of problem (7.1) with Σ replaced by the perturbed interface Σt. The variation

of u with respect to variations in the interface Σ is called the shape derivative of u

with respect to Σ. More precisely:
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Definition 7.2.1 (Shape derivative). Let u ∈ H1
Σ and ut ∈ H1

Σt
be solutions of

problem (7.1) with interface Σ and Σt, respectively. Assume that V ∈ C1
0(Ω; Rn) be a

vector field given in (7.8). If the limit

u′(Σ;V) := lim
t→0

ut − u

t
(7.9)

exists in the strong (weak) topology of some Banach space of functions B(Ω), then we

call u′(Σ;V) the strong (weak) shape derivative of u in direction V.

We refer to Rem. 7.2.9 below for a remark on the choice of a Banach space and

a topology. The calculation of u′(Σ;V) is greatly simplified by the introduction of a

material derivative [166]:

Definition 7.2.2 (Material derivative). Let u ∈ H1
Σ, ut ∈ H1

Σt
and V be given as in

definition 7.2.1, and define ut = ut ◦ Ft. If the limit

u̇(Σ;V) := lim
t→0

ut − u

t
(7.10)

exists in the strong (weak) topology of some Banach space of functions B(Ω), we call

u̇(Σ;V) the strong (weak) material derivative of u in direction V.

We also refer to Rem. 7.2.9 for the choice of a Banach space and a topology.

The material derivative thus quantifies the variations of u with respect to changes in

the geometry for a moving (Lagrangian) coordinate system. The shape and material

derivatives introduced in Defs. 7.2.1 and 7.2.2, respectively, are not independent from

each other. More precisely, we have [166]:

u′(Σ;V) = u̇(Σ;V)−V · ∇u, (7.11)

provided that both u̇(Σ;V) and V · ∇u make sense. This relation tells us that in

order to compute the shape derivative of u, we can compute the material derivative

first and then use (7.11) to obtain the shape derivative.
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7.2.1 The material derivatives

Before we compute the material derivatives of u for model (7.1), we need to introduce

some notation. We will denote by (·, ·)(X) the inner product of space L2(X):

(x, y)(X) :=

∫
X

x · ydµ,

with dµ the Lebesgue measure on a domain X. For any vector quantity Y on the

interface, we use Ynn ≡ (n ·Y)n and Y⊥ ≡ Y − (n ·Y)n to denote the normal and

tangential components of Y, respectively.

We now examine the variations of the solution to the diffusion equation (7.1) when

the interface Σt varies. We first observe that ut satisfies the following relation:

(D∇ut,∇φt)(Ω) + (aut, φt)(Ω) + (d∇⊥ut,∇⊥φt)(Σt) = fg(φt), (7.12)

for all φt ∈ H1
Σt

(Ω). We introduce

Jt = det(DFt) and At = DF−1
t DF−∗

t , (7.13)

with the superscript ∗ denoting the transpose operation and superscript −∗ denoting

the transpose of the inverse. The Jacobi matrix of the transformation Ft is denoted

by DFt. The strong continuity of the (matrix) functions Jt, At, and Ft and the

following identities can be verified [166]

(∇ut) ◦ Ft = (DF−∗
t )∇ut , Jt|t=0 = 1 , At|t=0 = I (7.14)

d

dt
Ft|t=0 = V ,

d

dt
(DFt)|t=0 = DV,

d

dt
(DF−1

t )|t=0 = −DV (7.15)

J ′0 ≡
dJt
dt
|t=0 = ∇ ·V, A′

0 ≡
dAt

dt
|t=0 = −(DV + (DV)∗). (7.16)

Here I is the identity matrix.

We now replace ∇⊥ut on the interface Σ by ∇u+
t − (nt · ∇u+

t )nt. We could also

replace it by ∇u−t − (nt · ∇u−t )nt and will show that the final result does not depend
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on the chosen expression, as it should; see for example (7.34) below. We thus recast

(7.12) as

(D∇ut,∇φt)(Ω) + (aut, φt)(Ω) + (d∇u+
t ,∇φ+

t )(Σt)

− (dnt · ∇u+
t ,nt · ∇φ+

t )(Σt) = fg(φt). (7.17)

Performing the change of variables x 7→ Ft(x) in the above equality yields

St(u
t, φt) = fg(φ

t), (7.18)

where φt = φt ◦ Ft and St(u
t, φt) are given by

St(u
t, φt) ≡ (DFtJtAt∇ut,∇φt)(Ω) + (aFtJtu

t, φt)(Ω)

+ (dFtωtAt∇u+t,∇φ+t)(Σ) − (dFtπtAtn · ∇u+t,Atn · ∇φ+t)(Σ), (7.19)

with DFt ≡ D◦Ft, aFt ≡ a◦Ft and dFt ≡ d◦Ft. The functions ωt and πt are defined

as

ωt = Jt‖DF−∗
t · n‖Rn , πt =

Jt
‖DF−∗

t · n‖Rn

(7.20)

with ‖ · ‖Rn denoting the Euclidean norm in Rn, and verify

ω0 = 1, π0 = 1 (7.21)

ω′0 ≡
dωt
dt
|t=0 = ∇ ·V − n∗DVn ≡ divΣV (7.22)

π′0 ≡
dπt
dt
|t=0 = ∇ ·V + n∗DVn. (7.23)

Choosing the test function φt in (7.3), we then deduce from (7.18) and (7.3) that

S(u, φt) = St(u
t, φt). (7.24)
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On the other hand, we have for all φ, ψ ∈ H1
Σ(Ω), the following result

St(ψ, φ)− S(ψ, φ) = ((DFt −D)JtAt∇ψ,∇φ)(Ω) + (D(JtAt − I)∇ψ,∇φ)(Ω)+

((aFt − a)Jtψ, φ)(Ω) + (a(Jt − 1)ψ, φ)(Ω) + ((dFt − d)ωtAt∇ψ+,∇φ+)(Σ)

+ (d(ωtAt − I)∇ψ+,∇φ+)(Σ) − ((dFt − d)πtAtn · ∇ψ+,Atn · ∇φ+)(Σ)

− (d(πtAt − I)n · ∇ψ+,Atn · ∇φ)(Σ) − (dn · ∇ψ+, (At − I)n · ∇φ+)(Σ), (7.25)

which implies that

|St(ψ, φ)− S(ψ, φ)| ≤ C1(t)

2
(‖∇ψ‖2

L2(Ω) + ‖∇φ‖2
L2(Ω)) +

C2(t)

2
(‖ψ‖2

L2(Ω) + ‖φ‖2
L2(Ω))

+
C3(t)

2
(‖∇ψ+‖2

L2(Σ) + ‖∇φ+‖2
L2(Σ)) +

C4(t)

2
(‖n · ∇ψ+‖2

L2(Σ) + ‖n · ∇φ+‖2
L2(Σ)),

(7.26)

with C1(t), C2(t), C3(t) and C4(t) given by

C1(t) = ‖(DFt −D)JtAt‖L∞(Ω) + ‖D(JtAt − I)‖L∞(Ω),

C2(t) = ‖(aFt − a)Jt‖L∞(Ω) + ‖a(Jt − 1)‖L∞(Ω),

C3(t) = ‖(dFt − d)ωtAt‖L∞(Ω) + ‖d(ωtAt − I)‖L∞(Ω),

C4(t) = ‖(dFt − d)πtAt‖L∞(Ω)‖At‖L∞(Ω)

+‖d(πtAt − I)‖L∞(Ω)‖At‖L∞(Ω) + ‖At − I‖L∞(Ω).

(7.27)

Here the norms ‖ · ‖L2 and ‖ · ‖L∞ are the usual ones defined on vector (matrix)

functions. Because of the strong continuity of At, Jt, ωt and πt (as functions of t),

we deduce the following result on St:

Lemma 7.2.3. The bilinear form St is continuous with respect to the perturbation

parameter t in (7.8) at t = 0, which means

lim
t→0+

St(·, ·) = S(·, ·). (7.28)
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Let us recast the identity (7.24) as the following relation

T1 + T2 + T3 − T4 − T5 = 0 (7.29)

where the terms Tk are given by

T1 =
(DFt −D

t
JtAt∇ut +DJtAt

∇ut −∇u
t

+DJtAt − I

t
∇u,∇φt

)
(Ω)

T2 =
(aFt − a

t
Jtu

t + aJt
ut − u

t
+ a

Jt − 1

t
u, φt

)
(Ω)

T3 =
(dFt − d

t
ωtAt∇u+t + d

ωtAt − I

t
∇u+t + d

∇u+t −∇u+

t
,∇φ+t

)
(Σ)

T4 =
(dFt − d

t
πtAtn · ∇u+t + d

πtAt − I

t
n · ∇u+t,Atn · ∇φ+t

)
(Σ)

T5 =
(
d
n · ∇u+t − n · ∇u+

t
,Atn · ∇φ+t

)
(Σ)

+
(
dn · ∇u+,

At − I

t
n · ∇φ+t

)
(Σ)
.

Thanks to the continuity of St at t = 0, we can take a limit t → 0 in (7.29) and

obtain the following equation for the material derivative of u:

(V·∇D∇u,∇φ)(Ω)+(D∇u̇,∇φ)(Ω)+(D(J ′0I+A′
0)∇u,∇φ)(Ω)+(V·∇au, φ)(Ω)+(au̇, φ)(Ω)

+(aJ ′0u, φ)(Ω)+(V⊥·∇⊥d∇u+,∇φ+)(Σ)+(d(ω′0I+A′
0)∇u+,∇φ+)(Σ)+(d∇u̇+,∇φ+)(Σ)

− (V⊥ · ∇⊥dn · ∇u+,n · ∇φ+)(Σ) − (d(π′0I + A′
0)n · ∇u+,n · ∇φ+)(Σ)

− (dn · ∇u̇+,n · ∇φ+)(Σ) − (dn · ∇u+,A′
0n · ∇φ+)(Σ) = 0. (7.30)

Using the expressions for A′
0, J

′
0, ω

′
0 and π′0, we can show that the following simplifi-

cations are possible:

(d(ω′0I + A′
0)∇u+,∇φ+)(Σ) − (d(π′0I + A′

0)n · ∇u+,n · ∇φ+)(Σ)

− (dn · ∇u+,A′
0n · ∇φ+)(Σ) = (ddivΣV∇⊥u,∇⊥φ)(Σ) + (dA′

0∇⊥u,∇⊥φ)(Σ), (7.31)

where we have replaced ∇u+ − (n · ∇u+)n by ∇⊥u. The quantity divΣV is defined
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in (7.22). It can also be shown that

(V⊥ · ∇⊥d∇u+,∇φ+)(Σ) − (V⊥ · ∇⊥dn · ∇u+,n · ∇φ+)(Σ)

= (V⊥ · ∇⊥d∇⊥u,∇⊥φ)(Σ), (7.32)

and

(d∇u̇+,∇φ+)(Σ) − (dn · ∇u̇+,n · ∇φ+)(Σ) = (d∇⊥u̇,∇⊥φ)(Σ). (7.33)

We can thus simplify (7.30) as

S(u̇, φ) = −(V · ∇D∇u,∇φ)(Ω) − (D(J ′0I + A′
0)∇u,∇φ)(Ω) − (∇ · (aV)u, φ)(Ω)

− (V⊥ · ∇⊥d∇⊥u,∇⊥φ)(Σ) − (ddivΣV∇⊥u,∇⊥φ)(Σ) − (dA′
0∇⊥u,∇⊥φ)(Σ). (7.34)

We summarize the above results in the following theorem:

Theorem 7.2.4. Let D(x), a(x) and d(x) be functions of class C1. Then the material

derivative u̇ ∈ H1
Σ(Ω) of the solution u ∈ H1

Σ(Ω) to (7.1) in direction V is the unique

solution to (7.34). Moreover, we verify that

[u̇] = 0, on Σ. (7.35)

The condition (7.35) comes from the third identity in (7.1).

7.2.2 The shape derivative

The shape derivative of u can be computed by using (7.11). However, before we

proceed to computing it, we stress that u′ can no longer be an element of H1
Σ. The

jump of the normal derivative of u across the interface Σ causes a discontinuity of

the tangential derivative of u′ across the interface according to formula (7.11), i.e.,

∇⊥u
′(x+) 6= ∇⊥u

′(x−). Let us introduce the following Hilbert space

Z1
Σ(Ω) :=

{
v(x) : v ∈ H1(ΩI)⊗H1(ΩE), s.t.

∫
Σ

|∇⊥v
+|2dσ +

∫
Σ

[v]2dσ <∞
}
.

(7.36)
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We also define κ(x) as the mean curvature of Σ (seen as a n− 1 manifold embedded

in Rn) at x ∈ Σ. We now state the main result of this paper, which allows us to

characterize the shape derivative of u:

Theorem 7.2.5. Assume that D(x), a(x) and d(x) are functions of class C1. Then

the shape derivative u′ ∈ Z1
Σ(Ω) of the solution u ∈ H1

Σ(Ω) to (7.1) in direction V, is

the unique solution of

(D∇u′,∇φ)(Ω) + (au′, φ)(Ω) + (d∇⊥u
′+,∇⊥φ)(Σ)

= −(ddivΣV⊥∇⊥u,∇⊥φ)(Σ) − (dκVn∇⊥u,∇⊥φ)(Σ)

− (V⊥ · ∇⊥d∇⊥u,∇⊥φ)(Σ) + (V · ∇u+,∇⊥ · d∇⊥φ)(Σ)

− (dA′
0∇⊥u,∇⊥φ)(Σ) + (V⊥ · ∇⊥φ,∇ · d∇⊥u)(Σ), (7.37)

for all φ ∈ H1
Σ(Ω). Moreover, the jump of u′ across Σ is given by

[u′] = −[V · ∇u]. (7.38)

We remark that thanks to the above jump conditions, (7.37) still holds if the

following substitutions are performed:

(d∇⊥u
′+,∇⊥φ)(Σ) → (d∇⊥u

′−,∇⊥φ)(Σ)

(V · ∇u+,∇⊥ · d∇⊥φ)(Σ) → (V · ∇u−,∇⊥ · d∇⊥φ)(Σ).
(7.39)

We also remark that the source term (right-hand side) in (7.37) only involves terms

defined on Σ. This is natural, for all other constitutive parameters of (7.1) are kept

independent of t, and should be contrasted with the results obtained in (7.34) for the

material derivative in Lagrangian coordinates.

Proof of Theorem 7.2.5. First, replacing u̇ in (7.35) by u′ + V · ∇u yields the jump
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condition of u′ across the interface, (7.38). Similar replacements in (7.34) lead to

(D∇u′,∇φ)(Ω) + (au′, φ)(Ω) + (d∇⊥u
′+,∇⊥φ)(Σ) = −(D∇(V · ∇u),∇φ)(Ω)

− ((V · ∇D)∇u,∇φ)(Ω) − (D(J ′0I + A′
0)∇u,∇φ)(Ω) − (aV · ∇u, φ)(Ω)

− (∇ · (aV)u, φ)(Ω) − ((V⊥ · ∇⊥d)∇⊥u,∇⊥φ)(Σ) − (ddivΣV∇⊥u,∇⊥φ)(Σ)

− (d∇⊥(V · ∇u+),∇⊥φ)(Σ) − (dA′
0∇⊥u,∇⊥φ)(Σ). (7.40)

We then verify by integrations by parts that

(D(J ′0I + A′
0)∇u,∇φ)(Ω) = (D∇ ·V∇u,∇φ)(Ω) − (D∇(V · ∇u),∇φ)(Ω)

+ (D(V · ∇)∇u,∇φ)(Ω) − (D(∇u · ∇)V,∇φ)(Ω). (7.41)

This implies the following:

(D∇(V · ∇u),∇φ)(Ω) + (V · ∇D∇u,∇φ)(Ω) + (D(J ′0I + A′
0)∇u,∇φ)(Ω)

= (∇ · (D∇u),V · ∇φ)(Ω) − (V⊥ · ∇⊥φ,∇ · d∇⊥u)(Σ). (7.42)

The terms on the boundary Γ = ∂Ω vanish because V has compact support in Ω.

Thanks to the above identity, (7.40) may be recast as

(D∇u′,∇φ)(Ω) + (au′, φ)(Ω) + (d∇⊥u
′+,∇⊥φ)(Σ)

= −(∇ · (D∇u),V · ∇φ)(Ω) − (V · ∇au, φ)(Ω) − (aV · ∇u, φ)(Ω) − (aJ ′0u, φ)(Ω)

− ((V⊥ · ∇⊥d)∇⊥u,∇⊥φ)(Σ) − (ddivΣV∇⊥u,∇⊥φ)(Σ) + (V · ∇u+),∇⊥ · d∇⊥φ)(Σ)

− (dA′
0∇⊥u,∇⊥φ)(Σ) + (V⊥ · ∇⊥φ,∇ · d∇⊥u)(Σ). (7.43)

Further integrations by parts in (7.1) allow us to show that

−(∇ · (D∇u),V · ∇φ)(Ω) − (V · ∇au, φ)(Ω) − (aV · ∇u, φ)(Ω) − (aJ ′0u, φ)(Ω) = 0.

These lengthy calculations and combined with the following result [166, proposition
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2.57]

divΣV = divΣV⊥ + κVn

finally yield (7.37).

Remark 7.2.6. In some applications (including the analysis of clear layers in optical

tomography [18, 23]), it may be necessary to generalize the above calculations to the

situation where the tangential diffusion coefficient d depends on the geometry of the

interface; for instance via its curvature. In that case, we have to impose that d(x),

assumed to be known, is shape differentiable with respect to Σt. Theorem 7.2.5 then

still holds provided that we add the term −(d′∇⊥u,∇⊥φ)Σ to the right hand side

in (7.37). Although this may not be as relevant practically, similar generalizations

are possible to the case where D(x) and a(x) also depend on the geometry of the

interface.

The calculation of the material and shape derivatives of the solution u to (7.1) can

also be done with model (7.6). We provide the following result without detailing its

derivation. Similar results when D and δD are constant can be found in [98, 117, 166].

Theorem 7.2.7. Assume that D(x) and a(x) are functions of class C1. Then the

material derivative u̇ ∈ H1 of the solution u to equation (7.6) is the unique solution

to

(D∇u̇,∇φ)(Ω) + (au̇, φ)(Ω)

= −(V · ∇D∇u,∇φ)(Ω) − (DA′
0∇u,∇φ)(Ω) − (∇ · (aV)u, φ)(Ω) (7.44)

for all φ ∈ H1
Σ(Ω). The shape derivative of u′ ∈ H1 of u ∈ H1 then satisfies

(D∇u′,∇φ)(Ω) + (au′, φ)(Ω) = −(δDVn∇⊥u,∇⊥φ)(Σ) (7.45)

for all φ ∈ H1
Σ(Ω).

The proof of this theorem is very similar to that of Thm. 7.2.5 except that we
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have to replace identity (7.42) by

(D∇(V · ∇u),∇φ)(Ω) + ((J ′0I + A′
0)D∇u,∇φ)(Ω) + (V · ∇D∇u,∇φ)(Ω)

= (∇ · (D∇u),V · ∇φ)(Ω) + (δDVn∇⊥u,∇⊥φ)(Σ). (7.46)

Remark 7.2.8. The method based on the map in (7.8) that we have adopted in the

paper is not the only choice for shape sensitivity analysis. An a priori more general

method called the speed (or velocity) method consists of defining the transform Ft

by Ft = X(x, t) with X(x, t) the solution of the following equation:

Ẋ(t,x) = V(t,X(t,x)),

X(0,x) = x.
(7.47)

It has been shown that the velocity method and the transform method used in this

paper are actually equivalent in the sense that under sufficient regularity conditions,

it is possible to associate a unique velocity field to a given transform Ft and vice

versa [166, sec. 2.9].

Remark 7.2.9. The calculations obtained in the preceding two sections show that

the Banach space B(Ω) may be chosen as the Hilbert H1
Σ(Ω) in the definition 7.2.2 of

the material derivative for model (7.1) and as H1(Ω) for model (7.6); this is because

[u̇] = 0 across Σ. In both cases, thanks to estimates of the form Ck(t) ≤ Ct for a

constant C in (7.27), we can show that convergence occurs for the strong topology.

The definition of the space B(Ω) in definition 7.2.1 is the same for model (7.6).

It is however more complicated for model (7.1). Because u′ jumps across Σ, it is

not an element of H1(Ω), let alone H1
Σ(Ω). We can however choose B(Ω) = L2(Ω)

and observe that convergence in (7.9) is strong in that space. The singular interface

model (7.1) introduces singularities that are not present in the inclusion model (7.6).
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7.3 Choosing the direction of descent

The analysis presented in the last section enables us to compute the sensitivity of the

error functional (7.48) to geometric changes in the interface. Since the vector field

V(x) in (7.8) has compact support, the boundary Γ stays unaffected by perturbations

in the interface. We can thus obtain the Eulerian derivative of the error functional as

dFα(Σ) := lim
t→0

Fα(Σt)−Fα(Σ)

t
= (u− uδm, u

′)(Γ) + α(κ(x), Vn)(Σ). (7.48)

The second term comes from [98, 166]:

( d
dt

∫
Σt

dσt(x)
)∣∣∣

Σ
=

∫
Σ

κ(x)Vndσ(x). (7.49)

We recall that κ(x) is the mean curvature of the interface Σ at x ∈ Σ.

Since we want the error functional (7.5) to decrease as the interface moves, we

need to find a vector field V such that dFα(Σ) ≤ 0. Let us denote by w the solution

to the following adjoint equation

−∇ · D(x)∇w(x) + a(x)w(x) = 0 in Ω\Σ

D(x)ν(x) · ∇w(x) = u− uδm on Γ

[w] = 0 on Σ

[n · D∇w] = −∇⊥ · d(x)∇⊥w(x) on Σ.

(7.50)

Upon multiplying (7.50) by u′, performing an integration by parts and taking into

account the fact that u′ jumps across the interface, we obtain that

(D∇w,∇u′)(Ω) + (aw, u′)(Ω) + (d∇⊥w,∇⊥u
′+)(Σ)

= (u− uδm, u
′)(Γ) − ([u′],Dn · ∇w−)(Σ). (7.51)

We also observe that the solution of (7.50) belongs to H1
Σ. Replacing the test function
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φ in (7.37) by w, we obtain

(D∇u′,∇w)(Ω) + (au′, w)(Ω) + (d∇⊥u
′+,∇⊥w)(Σ)

= −(ddivΣV⊥∇⊥u,∇⊥w)(Σ) − (dκVn∇⊥u,∇⊥w)(Σ) + (V · ∇u+,∇⊥ · d∇⊥w)(Σ)

− (V⊥ · ∇⊥d∇⊥u,∇⊥w)(Σ) − (dA′
0∇⊥u,∇⊥w)(Σ) + (V⊥ · ∇⊥w,∇ · d∇⊥u)(Σ).

(7.52)

The above equations (7.51) and (7.52) imply that

(u− uδm, u
′)(Γ) = ([u′],Dn · ∇w−)(Σ) − (ddivΣV⊥∇⊥u,∇⊥w)(Σ)

− (dκVn∇⊥u,∇⊥w)(Σ) − (V⊥ · ∇⊥d∇⊥u,∇⊥w)(Σ) + (V · ∇u+,∇⊥ · d∇⊥w)(Σ)

− (dA′
0∇⊥u,∇⊥w)(Σ) + (V⊥ · ∇⊥w,∇ · d∇⊥u)(Σ). (7.53)

Since the tangential component of V does not affect the evolution of the inter-

face [160, 166], we can assume that the vector field V|Σ is normal to Σ, i.e., V⊥|Σ = 0.

Then a combination of (7.48) and (7.53) yields

dFα(Σ) = (Vn∇⊥ · d∇⊥u,n · ∇w−)(Σ) + (Vnn · ∇u+,∇⊥ · d∇⊥w)(Σ)

− (Vndκ∇⊥u,∇⊥w)(Σ) + (ακ, Vn)(Σ). (7.54)

Using the interface conditions in (7.1) and (7.50) we can further simplify the above

equality as

dFα(Σ) = (Vn,−dκ∇⊥u · ∇⊥w− n · ∇u+n · D∇w+ + n · ∇u−n · D∇w+ + ακ)(Σ).

(7.55)

It remains to choose V such that dFα(Σ) ≤ 0. For the singular surface model

(7.1) and the model of inclusion (7.6), we show the following result.

Proposition 7.3.1. For the model in (7.1), the functional Fα(Σ) given in (7.5) will
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not increase if the interface moves according to a vector field characterized by

Vn = dκ∇⊥u · ∇⊥w + n · ∇u+n · D∇w+ − n · ∇u−n · D∇w− − ακ, (7.56)

where u and w solve (7.1) and (7.50), respectively. For the model given by (7.6), the

functional Fα(Σ) (7.5) is non-increasing if the interface Σ moves in the direction

Vn = −
(
δD∇⊥u · ∇⊥w + ακ

)
, (7.57)

where u solves (7.6) and w solves the adjoint problem:

−∇ · D(x)∇w(x) + a(x)w(x) = 0 in Ω

D(x)ν(x) · ∇w(x) = u− uδm on Γ

[w] = 0 on Σ

[n · D∇w] = 0 on Σ,

(7.58)

with the diffusion coefficient D(x) given by (7.7).

Note that (7.57) is the well-known result for the inverse obstacle problem obtained

by shape sensitivity analysis [29, 98, 117, 159]. Allowing the diffusion coefficient D to

be spatially dependent in model (7.6) does not modify the choice of a velocity field.

In the inverse problem for singular surfaces, both the geometry of the surface (via its

mean curvature κ) and the tangential diffusion process it carries, enter non-trivially

in the choice of the vector field given in (7.56).

7.4 Level set implementation

Once the direction of descent has been chosen, we need an efficient way to move the

interface along that direction. We use here the level set method [135, 138] to do so.

The level set method represents interfaces as the zero level sets of level set functions

and then moves of the interfaces implicitly by solving a Hamilton-Jacobi equation for

the level set functions. The application of the level set method to shape optimization
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problem has been pioneered in [159] and further studied in [7, 29, 47, 98]. We refer

to the recent monographs [135, 136, 163] and their references therein for a detailed

account of the method and its many applications.

7.4.1 Representing and moving interfaces

Let Σt be an evolution interface in Ω ⊂ Rn viewed as the zero level set of a function

ψ(x, t):

Σt := {x : x ∈ Ω, such that ψ(x, t) = 0}.

To track the position of the interface Σt, we evaluate the derivative of ψ(x(t), t) = 0

with respect to t to obtain

∂ψ

∂t
+ ẋ(t) · ∇ψ =

∂ψ

∂t
+ V · ∇ψ = 0, (7.59)

where V is the velocity field at the interface. Since the tangential velocity does not

affect the evolution of the interface [160], we can choose V⊥ = 0. Using the fact that

the normal vector of the interface can be written as n(x) = ∇ψ/|∇ψ|, we arrive at

∂ψ

∂t
+ Vn|∇ψ| = 0. (7.60)

This is a nonlinear transport equation of the Hamilton-Jacobi form. Let us now

suppose that we know an approximate position for the interface and the normal

velocity Vn at a given “time step”. Then by solving this Hamilton-Jacobi equation,

we can compute the position of the interface at the following “time step”.

7.4.2 Implementation of the level set method

The level set method is implemented numerically as follows. We focus on the two-

dimensional setting to simplify the calculations.

Algorithm:

L1. We choose an initial level set function ψ0(x), such that the interface can be
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represented as Σ0 = {x : x ∈ Ω, ψ0(x) = 0}, and set k = 0;

L2. We solve the state equation (7.1) (resp. (7.6)) with the interface Σk = {x : x ∈

Ω, ψk(x) = 0};

L3. We compare the solution with given measurements. If a stopping criteria is

satisfied, we stop the calculation. Otherwise:

L4. We solve the adjoint equation (7.50) (resp. 7.58)) to compute the normal ve-

locity Vn on Σk by (7.56) (resp. (7.57)). We extend the velocity field to a

computational tube around Σ by using (7.64) below;

L5. We move the interface Σk to a new interface Σk+1 by updating the Hamilton-

Jacobi equation (7.60) by one time step ∆t;

L6. We re-initialize the level set function according to equation (7.67) if necessary;

L7. We set k := k + 1 and go back to step L2.

Here are additional details about the implementation. The Hamilton-Jacobi equa-

tion (7.60) has been discretized by using the following first-order scheme [135]

ψn+1
i,j − ψni,j

∆t
+ max(V n

i,j, 0)H+ + min(V n
i,j, 0)H− = 0, (7.61)

where the superscript n and subscript i, j denote time and space grid point, respec-

tively. The numerical Hamiltonians H+ and H− are given by

H+ =
√

max(a, 0)2 + min(b, 0)2 + max(c, 0)2 + min(d, 0)2

H− =
√

min(a, 0)2 + max(b, 0)2 + min(c, 0)2 + max(d, 0)2
(7.62)

with

a ≡ D−
x ψ

n
i,j :=

ψn
i,j−ψn

i−1,j

∆x
, b ≡ D+

x ψ
n
i,j :=

ψn
i+1,j−ψn

i,j

∆x
,

c ≡ D−
y ψ

n
i,j :=

ψn
i,j−ψn

i,j−1

∆y
, d ≡ D+

y ψ
n
i,j :=

ψn
i,j+1−ψn

i,j

∆y
.

(7.63)

The time step ∆t is chosen so small as to satisfy the CFL stability condition. The

surface Σk is updated to Σk+1 after each iteration of the Hamilton-Jacobi equation

and the vector field is updated according to (7.56).



161

The vector field Vn in (7.56) is only defined at the interface Σ. We need to extend

it in the neighborhood of Σ to solve the Hamilton Jacobi equations. This is done by

using the following two way extrapolation equation [50]

Vt + S(ψ)
∇ψ
|∇ψ|

· ∇V = 0, (7.64)

where the sign function is defined as

S(ψ) =


−1 if ψ < 0

0 if ψ = 0

+1 if ψ > 0.

(7.65)

A detailed discussion can be found in reference [135, P.76]. The equation (7.64) is

solved as follows [140]:

V n+1
ij − V n

ij

∆t
+ max(Sijn

x
ij, 0)D−

x V
n
ij + min(Sijn

x
ij, 0)D+

x V
n
ij

+ max(Sijn
y
ij, 0)D−

y V
n
ij + min(Sijn

y
ij, 0)D+

y V
n
ij = 0, (7.66)

over a time interval of roughly 5−10 times ∆t, where D±
x V

n
ij and D±

y V
n
ij are finite dif-

ferences defined as in (7.63). The sign function S(ψ) is approximated by ψ√
ψ2+δ2

with

δ a small regularization parameter. The directions n̂ = (nx, ny) = ( ψx√
ψ2

x+ψ2
y

, ψy√
ψ2

x+ψ2
y

)

are computed by a central difference scheme.

Finally, we comment on the re-initialization process (step L6 in the above algo-

rithm). The level set function may become very flat or very steep near the interface

Σ. To avoid this, we replace the level set function ψ(x, t) by d(x, t) which is the value

of the signed distance from x to Σ. The quantity d(x, t) satisfies the Eikonal equation

|∇d| = 1, and is the steady state solution of the following re-initialization equation

∂ψ

∂t
+ S(ψ0)(|∇ψ| − 1) = 0 in Ω× (0,+∞)

ψ(x, t) = ψ0 in Ω× {0}.
(7.67)
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A stationary solution of (7.67) is obtained by choosing t large enough; see [135, 171].

Here we approximate the function S(ψ0) by ψ0√
ψ2

0+|∇ψ0|2∆x2
as suggested in [140]. The

numerical scheme for equation (7.67) is given by [140, p.427]:

ψn+1
ij − ψnij

∆t
+ max(Sij, 0)(H+ − 1) + min(Sij, 0)(H− − 1), (7.68)

where H± are defined as in (7.62). In the examples shown in the next section, we

reinitialize the level set function every ten time steps.

7.5 Numerical simulations

In this section, we numerically invert the singular surface problem (7.1) and the in-

clusion’s support problem (7.6) by using shape derivative analysis and the level set

method. We consider the two-dimensional setting and the domain Ω = (−1, 1) ×

(−1, 1). This domain is discretized by a uniform 401 × 401 grid on which all the

Hamilton-Jacobi equations are solved by using the finite difference schemes described

above and the elliptic equations (7.1) and (7.50) during the iterative process are

solved by the finite element method on rectangular elements [39] and a nonlinear

conjugate gradient solver. All the numerical minimizations of the error functional

(7.48) presented in this paper are performed with the optimal choice of the regular-

ization parameter α obtained by the Morozov discrepancy principle [67].

The synthetic data are calculated by solving (7.1) and (7.50) by a finite element

method on an unstructured triangulation with approximately the same number of

nodes as the uniform grid mentioned above. The only common nodes of the two

set of meshes are the boundary nodes where the measurements are taken. We have

checked that the systematic error between the solutions on the uniform mesh and the

fined unstructured mesh is far below 0.05%. The synthetic measurements have been

obtained by a different numerical procedure than what is being used in the reconstruc-

tion algorithm to limit the occurence of “inverse crimes”, where the minimization of

the un-penalized functional (7.48) with α = 0 may return the correct answer for the
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wrong reasons; see [54] for an account of this problem.

In all simulations, we have chosen the diffusion coefficients to be (D, d)=(1.0, 0.3)

in model (7.1) and (D0, δD)=(1.0, 3.0) in model (7.6). The absorption coefficient

a = 0 in both models. The values taken by these parameters have a significant

impact on the reconstruction. This will be discussed briefly at the end of this section.

7.5.1 Reconstructions of ellipses

We start with the simple example where ΩI is an ellipse. Note that in real applications

such as optical imaging of human brain, we may be allowed to approximate clear layers

by such simple convex interfaces. The ellipse we want to reconstruct is given in polar

coordinate by

Σ =
{

(r, θ) : (
r cos θ

a
)2 + (

r sin θ

b
)2 = 1

}
, (7.69)

with a and b the semi-major and semi-minor axis length, respectively. We test our

algorithm with different values for (a, b).

To characterize the error in the reconstruction, we introduce the following Fourier

decomposition of r(θ):

r(θ) =
N∑

k=−N

cke
−ikθ, (7.70)

where we have chosen N = 20 in the following calculations. The complexity of the

curve will be measured by the magnitude of the Fourier coefficients ck and their decay

rate as k increases. Let c̃k be the Fourier coefficients of a reconstructed interface. We

then define the ε0 and ε−1 errors between the original and the reconstructed interfaces

as

ε0 =
( N∑
k=−N

|ck − c̃k|2
)1/2

, and ε−1 =
( N∑
k=−N

(1 + k2)−1|ck − c̃k|2
)1/2

, (7.71)

respectively.

The reconstruction results from different additive noise levels in the case (a, b) =

(0.8, 0.4) are given in Fig. 7-2. The left column of Fig. 7-2 shows the reconstructions
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Figure 7-2: Reconstruction of the elliptic interface (7.69) with synthetic data at
different noise levels for full (top row) and local (bottom row; see text for description)
Neumann to Dirichlet measurements. We have (a, b) = (0.8, 0.4). The reconstructions
in (a) and (c) are done with the model in (7.1), while those in (b) and (d) are done
with the model in (7.6). The lines in the pictures denote real interfaces (solid),
reconstructions from data with 0.5% additive noise (dashed), reconstructions from
data with 1% additive noise (dash-dotted) and reconstructions from data with 2%
additive noise (dotted), respectively. The initial guess is given by the circle Σ0 =
{(r, θ) : (r cos θ)2 + (r sin θ)2 = 0.82} in all the simulations.

for the model (7.1) from full and local Neumann-to-Dirichlet measurements. In the

latter case, measurements are only taken on the left side (x = −1) of the boundary.

We have used the MATLAB contour function to plot the zero level set (characterizing

the interface Σ) of the level set function. All the simulations have been implemented

in Fortran 77. The same reconstructions have been performed for the model (7.6)

and the results are show in the right column of Fig. 7-2.

We list in Tab. 7.1 and Tab. 7.2 the errors in the reconstructions of ellipses of

different aspect ratios using model (7.1) with full and partial Neumann to Dirichlet

measurements, respectively. Note that the closer the aspect ratio b
a

is to 1.0, the

less Fourier modes are needed to accurately represent r(θ). From these tables we see
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Cases 0.5% 1.0% 2.0%
(x0, y0) (0.001, 0.000) (-0.001, -0.002) (-0.001, -0.001)

(a, b) = (0.8, 0.4) ε0 0.037 0.057 0.078
ε−1 0.008 0.011 0.015

(x0, y0) (0.002, 0.000) (-0.002, 0.002) (-0.003, 0.001)
(a, b) = (0.8, 0.6) ε0 0.011 0.020 0.031

ε−1 0.003 0.004 0.006
(x0, y0) (-0.000, -0.002) (0.017, 0.006) (0.000, 0.009)

(a, b) = (0.8, 0.8) ε0 0.005 0.015 0.017
ε−1 0.001 0.004 0.004

Table 7.1: Errors in the reconstructions of ellipses (7.69) with different values of
(a, b) using model (7.1) with full measurements. The center of original interfaces
(x0, y0) = (0, 0).

Cases 0.5% 1.0% 2.0%
(x0, y0) (-0.039, -0.013) (-0.047, -0.017) (-0.057, -0.016)

(a, b) = (0.8, 0.4) ε0 0.076 0.098 0.104
ε−1 0.018 0.026 0.040

(x0, y0) (-0.015, 0.008) (-0.013, 0.008) (0.013, 0.009)
(a, b) = (0.8, 0.6) ε0 0.035 0.052 0.076

ε−1 0.014 0.018 0.020
(x0, y0) (-0.030, 0.010) (-0.031, 0.006) (-0.045, 0.004)

(a, b) = (0.8, 0.8) ε0 0.019 0.029 0.048
ε−1 0.007 0.011 0.019

Table 7.2: Same as Tab. 7.1 except that the reconstructions are obtained from partial
measurements.

that as the aspect ratio increases, the reconstructions get more and more sensitive to

the presence of noise in the data. In the reconstructions from full data, the center

of the curves is relatively stably reconstructed even in the presence of significant

noise. In the case of local measurements on part of the boundary, the reconstructed

center of the ellipse is biased towards the part of the boundary where the boundary

measurements are taken.

7.5.2 Reconstruction of more complicated surfaces

The reconstructions in the above section are all done with ellipses, which are con-

vex interfaces. The Fourier coefficients of those interfaces decay relatively fast as k
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increases. The reconstruction of such curves is thus not very difficult because the su-

perposition of very few low-order Fourier modes can approximate the original interface

quite accurately and those low-order Fourier modes can be stably reconstructed from

data with even moderately high noise level. We now reconstruct more complicated

interfaces the representation of which require higher-order Fourier modes. Since high

order modes are more sensitive to the presence of noise in the data, we expect such

interfaces to be harder to reconstruct. For simplicity, we reconstruct here star-shaped

interfaces given by

Σ = {(r, θ) : r2 + 0.3r sin(Nθ) = 0.62}. (7.72)

Several choices for N are considered in the reconstructions below.

Figure 7-3: Reconstruction of the star-shaped interface (7.72) from synthetic data
with different noise levels in the case of full (top row) and local (bottom row) Neumann
to Dirichlet measurements. The interface parameter is N = 3. The reconstructions
in (a) and (c) are for model (7.1), while those in (b) and (d) are for model (7.6).
The lines in the pictures denote real interfaces (solid), reconstructions with 0.1%
noise (dashed), reconstructions with 0.3% noise (dash-dotted) and reconstructions
with 0.5% noise (dotted), respectively. The initial guess is the circle Σ0 = {(r, θ) :
(r cos θ)2 + (r sin θ)2 = 0.82}.
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Figure 7-4: Same as in Fig. 7-3 except that N = 5.

We show in Figs. 7-3 and 7-4 reconstructions with N = 3 and N = 5, respectively,

using synthetic data at different noise levels for full (top row) and local (bottom row)

Neumann to Dirichlet measurements. Again, we use only the left side (x = −1) of

the boundary for the local measurements.

The latter reconstructions are more sensitive to noise in the data than those in

the preceding section although the centers of the interfaces are always relatively well

reconstructed when full measurements are available.

Cases 0.5% 1.0% 2.0%
Full (0.000, 0.0110) (-0.005, 0.017) (-0.003, 0.022)

Model (7.1), N = 3
Local (-0.029, -0.015) (-0.046, -0.023) (-0.053, -0.031)
Full (-0.001, 0.003) (-0.003, -0.017) (-0.013, -0.046)

Model (7.6), N = 3
Local (-0.054, -0.028) (-0.056, -0.028) (-0.063, -0.031)
Full (0.000, -0.007) (0.001, -0.018) (0.002, -0.018)

Model (7.1), N = 5
Local (-0.061, 0.013) (-0.067, 0.019) (-0.084, 0.018)
Full (0.010, -0.006) (0.012, -0.012) (0.017, -0.015)

Model (7.6), N = 5
Local (-0.065, +0.022) (-0.099, 0.022) (-0.081, 0.021)

Table 7.3: Reconstructed centers for the cases presented in Figs. 7-3 (N = 3) and
7-4 (N = 5).
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Figure 7-5: Errors in the reconstructions of (7.72) for different noise levels and differ-
ent parameters N . Upper left: ε0 and N = 3; Upper right: ε−1 and N = 3; Bottom
left: ε0 and N = 5; Bottom right: ε−1 and N = 5.

We observe in our numerical experiments that the ratios of the parameters, d/D

and D0/δD, have important effects on the reconstruction results. The bigger the ratio,

the more stable the reconstruction. This is simply because the effect of the interface

on the boundary measurements increases. Note however that when the ratio d/δD is

large, the conjugate gradient method used to calculate the solution of (7.1) converges

very slowly. This is because the conditioning number of the finite element matrix

in model (7.1) significantly increases when the ratio increases. For this reason, we

have chosen the values (D, d)=(1.0, 0.3) to save computational time. Larger values

of d would require to find an efficient preconditioner if solutions are to be obtained

in a reasonable computational time. Indeed our simulations, based on the Morozov

discrepancy principle [67] to find the optimal regularization parameter α, are very

demanding computationally.
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7.6 Conclusions and remarks

We have considered the reconstruction of singular surfaces in diffusion models arising

in optical and electrical impedance tomography. We have performed a shape sen-

sitivity analysis to describe the effects of variations in the surface on the boundary

measurements. We have obtained that such effects primarily depended on the mean

curvature of surface and the value of the tangential diffusion process supported on the

surface. This is in contrast to the classical case of discontinuous diffusion coefficients

across an interface.

We have introduced a level set method to evolve the surface so as to minimize

an error functional. We have shown numerically that the reconstruction of the low-

order Fourier modes of the interface can be achieved quite accurately from moderately

noisy data. Higher frequency modes require less noisy data. The reconstructions can

be done from either full or local Neumann to Dirichlet measurements although full

measurements obviously provide more accurate reconstructions.

The major drawback of the current method is that it requires the diffusion coeffi-

cient d(x) to be known. Generalizations, for instance along the lines of the works [47],

to reconstructions of both the interface and the tangential diffusion coefficient need

to be addressed. Note that in such a context, the coefficient d(x) will depend on the

geometric properties of the interface Σ (see Rem. 7.2.6 and [18, 23, 95]).
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Chapter 8

Summary

We have studied in this thesis some direct and inverse problems related to the trans-

port and diffusion equations. We focused on the applications of the inverse problems

in optical tomography and atmospheric remote sensing.

In chapter 2 we formulated the inverse problem in optical tomography as a regu-

larized least square problem based on the frequency-domain radiative transport equa-

tion. The transport equation is used as the forward model of light propagation in

biological tissues. In the inversion procedure, the forward model is discretized by

using a spatial finite volume method and a angular discrete ordinates method. We

solve the regularized least square problem by using a limited-memory Quasi-Newton

method with BFGS type updating rule for the Hessian matrix, and have incorporated

positivity constraints and L∞ bounds on the optical parameters. Numerical recon-

structions based on synthetic data provide results that are in agreement with the

expected reconstructions. Notably, the crosstalk between the two optical parameters

is significantly reduced in frequency-domain reconstructions.

To speed up the reconstructions, we have implemented in chapter 3 an augmented

Lagrangian method to solves inverse problems of optical tomography. The method

formulates inverse transport problems as PDE-constrained optimization problems. By

simultaneously updating both radiance and optical properties, the method solves the

forward and inverse problems in optical tomography all at once. In this way, the com-

puting time is greatly reduced as compared to traditional unconstrained optimization

methods, during which one has to repeatedly solve the forward problem many times.
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We tested and quantified the performance of the algorithm for various combinations

of mesh sizes, noise, regularization parameters, initial guesses, optical properties and

measurement geometries. In the cases that involve image reconstruction from syn-

thetic measurement data we observe 10− to 30−fold decrease in computing time for

the constrained optimization code compared to the unconstrained optimization code.

In chapter 4 we consider an inverse transport problem in atmospheric remote

sensing where we try to reconstruct the concentration profiles of atmospheric gases

from wavenumber-dependent boundary radiation measurement taken by space-borne

infrared spectrometer. We showed in simplified situations that although the prob-

lem does admit a unique solution, it is severely ill-posed. Because of the severe

ill-posedness, instead of attempting to reconstruct the whole concentration profile,

one should really focus on feature reconstruction. We proposed an explicit procedure

based on asymptotic analysis to reconstruct localized structures in the profile.

When scattering is extremely high and absorption is extremely low, transport-

based reconstructions are computationally very expensive. Diffusion models are pre-

ferred in this case to serve as the forward model of light propagations. In many

practical problems where diffusion equations are used, the conditions for diffusion

approximation to be accurate are however not very well satisfied. In chapter 5 we

have performed detail comparison between diffusion and transport-based reconstruc-

tions in those situations to characterize the errors we made in reconstructions when

diffusion approximation are used. We found that factors such as size of the media to

be reconstructed, void regions, modulation frequency and extrapolation length play

huge roles in the quality of reconstructed image if classical diffusion equations are

used as the forward model of light propagation. If the transport equations are be-

lieved to be the right models for light propagation, then the error one made by using

the diffusion equation can be quite high. We thus propose to use transport equations

in those situations.

In chapter 6, we propose a generalized diffusion model that accounts for the mul-

tiple scattering of photons in highly scattering media (classical diffusion regime) and

well as for the near-collision-less propagation of the same photons in clear layers
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(purely transport regime resulting in a guiding effect). This model can be mathe-

matically derived from the phase space radiative transport equation as a small mean-

free-path limit. It captures the guiding effect of photons in the clear layer quite well.

Moreover it has almost the same cost as classical diffusion, which completely fails

to model the clear layer effects, and a lower cost than previously derived generalized

diffusion equations, which are already much less expensive than full transport solu-

tions. The reason for this lower cost is that the nonlocal interface conditions of the

latter diffusion models are replaced by their best local approximation. This best local

approximation takes the form of a tangential diffusion process. The strength of this

diffusion process can be calculated analytically or numerically provided that one has

access to the geometry of the clear layer. When this geometry is unknown or only

partially known, we have shown numerically that the diffusion process that best fits

the impact of the clear layer gives boundary measurements that are visually indistin-

guishable from the measurements obtained by solving the full transport equations.

We believe that the generalized diffusion model can thus safely be used in optical

tomography as an accurate approximation of the forward model.

In chapter 7, we considered the reconstruction of singular surfaces in the general-

ized diffusion equations. We have performed a shape sensitivity analysis to describe

the effects of variations in the surface on the boundary measurements. We have ob-

tained that such effects primarily depended on the mean curvature of surface and the

value of the tangential diffusion process supported on the surface. This is in contrast

to the classical case of discontinuous diffusion coefficients across an interface.

We have introduced a level set method to evolve the surface so as to minimize

an error functional. We have shown numerically that the reconstruction of the low-

order Fourier modes of the interface can be achieved quite accurately from moderately

noisy data. Higher frequency modes require less noisy data. The reconstructions can

be done from either full or local Neumann to Dirichlet measurements although full

measurements obviously provide more accurate reconstructions.
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