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Abstract

Two-photon photoacoustic tomography (TP-PAT) is a non-invasive optical molec-
ular imaging modality that aims at inferring two-photon absorption property of het-
erogeneous media from photoacoustic measurements. In this work, we analyze an
inverse problem in quantitative TP-PAT where we intend to reconstruct optical coef-
ficients in a semilinear elliptic PDE, the mathematical model for the propagation of
near infra-red photons in tissue-like optical media with two-photon absorption, from
the internal absorbed energy data. We derive uniqueness and stability results on the
reconstructions of single and multiple optical coefficients, and present some numerical
reconstruction results based on synthetic data to complement the theoretical analysis.

Key words. Photoacoustic tomography (PAT), two-photon PAT (TP-PAT), two-photon absorp-
tion, hybrid inverse problems, semilinear diffusion equation, numerical reconstruction.
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1 Introduction

Two-photon photoacoustic tomography (TP-PAT) [35, 36, 51, 53, 56, 57, 58, 60, 59] is an
imaging modality that aims at reconstructing optical properties of heterogeneous media
using the photoacoustic effect resulted from two-photon absorption. Here by two-photon
absorption we mean the phenomenon that an electron transfers to an excited state after
simultaneously absorbing two photons whose total energy exceed the electronic energy band
gap. The main motivation for developing two-photon PAT is that two-photon optical ab-
sorption can often be tuned to be associated with specific molecular signatures, such as
in stimulated Raman photoacoustic microscopy, to achieve label-free molecular imaging.
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Therefore, TP-PAT can be used to visualize particular cellular functions and molecular
processes inside biological tissues.

The principle of TP-PAT is the same as that of the regular PAT [13, 19, 38, 54], except
that the photoacoustic signals in TP-PAT are induced via two-photon absorption in addition
to the usual single-photon absorption. In TP-PAT, we send near infra-red (NIR) photons
into an optically absorbing and scattering medium, for instance a piece of biological tissue,
Ω ⊆ Rn (n ≥ 2), where they diffuse. The density of the photons, denoted by u(x), solves
the following semilinear diffusion equation:

−∇ · γ(x)∇u(x) + σ(x)u(x) + µ(x)|u|u(x) = 0, in Ω
u(x) = g(x), on ∂Ω

(1)

where γ(x) is the diffusion coefficient, σ(x) and µ(x) are respectively the single-photon and
the two-photon absorption coefficients, and the incoming NIR photon source is modelled by
the function g(x). The medium absorbs a portion of the incoming photons and heats up due
to the absorbed energy. The heating then results in thermal expansion of the medium. The
medium cools down after the photons exit. This cooling process results in contraction of the
medium. The expansion-contraction of the medium generates ultrasound waves. The process
is called the photoacoustic effect. The initial pressure field generated by the photoacoustic
effect can be written as [12, 25]

H(x) = Γ(x)
[
σ(x)u(x) + µ(x)|u|u(x)

]
, x ∈ Ω. (2)

where Γ is the Grüneisen coefficient that describes the efficiency of the photoacoustic effect.
This initial pressure field generated by single-photon and two-photon absorption processes
evolves, in the form of ultrasound, according to the classical acoustic wave equation [12, 25].

The data we measure in TP-PAT are the ultrasound signals on the surface of the medium.
From these measured data, we are interested in reconstructing information on the optical
properties of the medium. The reconstruction is usually done in two steps. In the first
step, we reconstruct the initial pressure field H in (2) from measured data. This step is the
same as that in a regular PAT, and has been studied extensively in the past decade; see, for
instance, [4, 15, 17, 24, 28, 31, 32, 33, 40, 43, 49] and references therein. In the second step
of TP-PAT, we attempt to reconstruct information on the optical coefficients, for instance,
the two-photon absorption coefficient µ, from the result of the first step inversion, i.e. the
internal datum H in (2). This is called the quantitative step in the regular PAT [3, 6, 12,
10, 18, 26, 37, 39, 42, 45, 46, 47, 61].

It is clear from (1) that the two-photon absorption strength depends quadratically, not
linearly, on the local photon density u(x). It is generally believed that events of two-photon
absorption in biological tissues can only happen when the local photon density is sufficiently
high. In fact, the main difficulty in the development of TP-PAT is to be able to measure
the ultrasound signal accurate enough such that the photoacoustic signal due to two-photon
absorption is not completely buried by noise in the data. In recent years, many experimental
research have been conducted where it is shown that the effect of two-photon absorption can
be measured accurately; see, for instance, the study on the feasibility of TP-PAT on various
liquid samples in [57, 58, 59] (solutions), [35, 59] (suspensions) and [36] (soft matter).
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Despite various experimental study of TP-PAT, a thorough mathematical and numerical
analysis of the inverse problems in the second step of TP-PAT is largely missing, not to
mention efficient reconstruction algorithms. The objective of this study is therefore to pursue
in these directions. In the rest of the paper, we first recall in Section 2 some fundamental
mathematical results on the properties of solutions to the semilinear diffusion equation (1).
We then develop in Section 3 the theory of reconstructing the absorption coefficients. In
Section 4 we analyze the linearized problem of simultaneously reconstructing the absorption
coefficients and the diffusion coefficient. Numerical simulations are provided in Section 5
to validate the mathematical analysis and demonstrate the quality of the reconstructions.
Concluding remarks are offered in Section 6.

2 The semilinear diffusion model

To prepare for the study of the inverse coefficient problems, we recall in this section some
general results on the semilinear diffusion model (1). Thanks to the absolute value operator
in the quadratic term µ|u|u in the equation, we can follow the standard theory of calculus
of variation, as well as the theory of generalized solutions to elliptic equations in diver-
gence form, to derive desired properties of the solution to the diffusion equation that we
will need in the following sections. The results we collected here are mostly minor modifica-
tions/simplifications of classical results in [2, 5, 23, 27]. We refer interested readers to these
references, and the references therein, for more technical details on these results.

We assume, in the rest of the paper, that the domain Ω is smooth and satisfies the usual
exterior cone condition [27]. We assume that all the coefficients involved are bounded in the
sense that there exist positive constants θ ∈ R and Θ ∈ R such that

0 < θ ≤ Γ(x), γ(x), σ(x), µ(x) ≤ Θ <∞, ∀x ∈ Ω̄. (3)

Unless stated otherwise, we assume also that

(γ, σ, µ) ∈ [W 1,2(Ω̄)]3, and, g(x) is the restriction of a C3(Ω̄) function on ∂Ω. (4)

where W 1,2(Ω) denotes the usual Hilbert space of L2(Ω) functions whose first weak derivative
is also in L2(Ω). Note thathere we used W 1,2(Ω) instead of H1(Ω) to avoid confusion with
the H we used to denote the internal data in (2).

Technically speaking, in some of the results we obtained below, we can relax part of the
above assumptions. However, we will address this issue at the moment. For convenience,
we define the function f(x, z) and the linear operator L,

f(x, z) = σ(x)z + µ(x)|z|z, and Lu = −∇ · γ∇u. (5)

With our assumption above, it is clear that L is uniformly elliptic, and f(x, z) is continuously
differentiable with respect to z on Ω̄×R. Moreover, fz(x, z) := ∂zf(x, z) = σ(x)+µ(x)|z| ≥
θ > 0, ∀z ∈ R.
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We start by recalling the definition of weak solutions to the semilinear diffusion equa-
tion (1). We say that u ∈ W ≡ {w|w ∈ W 1,2(Ω) and w|∂Ω = g} is a weak solution to (1)
if ∫

Ω

γ(x)∇u · ∇v + σ(x)u(x)v(x) + µ(x)|u|u(x)v(x)dx = 0, ∀v ∈ W 1,2
0 (Ω).

We first summarize the results on existence, uniqueness and regularity of the solution to (1)
in the following lemma.

Lemma 2.1. Let (γ, σ, µ) satisfy (3), and assume that g ∈ C0(∂Ω). Then there is a unique
weak solution u ∈ W 1,2(Ω) such that u ∈ Cα(Ω) ∩ C0(Ω̄) for some 0 < α < 1. If we assume
further that (γ, σ, µ) and g satisfy (4), then u ∈ W 3,2(Ω) ∩ C0(Ω̄).

Proof. This result is scattered in a few places in [2, 5] (for instance [5, Theorem 1.6.6]). We
provide a sketch of proof here. For any function w ∈ W , we define the following functional
associated with the diffusion equation (1):

I[w] =

∫
Ω

L(x, w,Dw)dx =

∫
Ω

[
1

2
γ|∇w|2 +

1

2
σw2 +

1

3
µ|w|w2

]
dx.

It is straightforward to verify that I[w] : W → R is strictly convex (thanks again to the
absolute value in the third term) and differentiable on W with

I ′[w]v =

∫
Ω

[
γ(x)∇w · ∇v + σ(x)wv + µ(x)|w|wv

]
dx.

We also verify that the function L(x, z,p) satisfies the following growth conditions:

|L(x, z,p)| ≤ C(1 + |z|3 + |p|2),

|DzL(x, z,p)| ≤ C(1 + |z|2),

|DpL(x, z,p)| ≤ C(1 + |p|),

for all x ∈ Ω, z ∈ R and p ∈ Rn. It then follows from standard results in calculus of
variations [2, 5, 23] that there exists a unique u ∈ W satisfies

I[u] = min
w∈W

I[w],

and u is the unique weak solution of (1). By Sobolev embedding, when n = 2, 3, there
exists q > n, such that u ∈ Lq(Ω). This then implies that f(x, u) ∈ Lq/2(Ω) with the
assumption (3). Let us rewrite the diffusion equation (1) as

−∇ · (γ∇u) = f(x, u), in Ω, u = g, on ∂Ω. (6)

Following standard results in [23, 27], we conclude that f ∈ Lq/2(Ω) implies u ∈ Cα(Ω)
for some 0 < α < 1, where α = α(n,Θ/θ). Moreover, when g ∈ C0(∂Ω), u ∈ C0(Ω̄). If
we assume further that (γ, σ, µ) and g satisfy (4), then f ∈ W 1,2 thanks to the fact that
u ∈ C0(Ω̄). Equation (6) then implies that u ∈ W 3,2(Ω) ∩ C0(Ω̄) [23, 27].
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We now recall the following comparison principle for the solutions to the semilinear
diffusion equation (1).

Proposition 2.2. (i) Let u, v ∈ W 1,2(Ω) ∩ C0(Ω̄) be functions such that Lu + f(x, u) ≤ 0
and Lv + f(x, v) ≥ 0 in Ω, and u ≤ v on ∂Ω. Then u ≤ v in Ω. (ii) If, in addition, Ω
satisfies the exterior cone condition or u, v ∈ W 2,2(Ω), then either u ≡ v or u < v.

Proof. For t ∈ [0, 1], let ut = tu + (1 − t)v and define a(x) =

∫ 1

0

fz(ut,x)dt. It is then

straightforward to check that a(x) ≥ θ > 0 (since fz ≥ θ > 0). With the assumption
that u ∈ C0(Ω̄) and v ∈ C0(Ω̄), we conclude that ut is bounded from above when t ∈ [0, 1].
Therefore, a(x) ≤ Λ <∞ for some Λ > 0. We also verify that f(u,x)−f(v,x) = a(x)(u−v).
Let w = u− v, we have, from the assumptions in the proposition, that

Lw + a(x)w ≤ 0, in Ω, w ≤ 0, on ∂Ω.

Since L + a is uniformly elliptic, by the weak maximum principle for weak solutions [27,
Theorem 8.1], w ≤ 0 in Ω. This then implies that u ≤ v in Ω.

If we assume in addition that u, v ∈ W 2,2(Ω), we can use the strong maximum principle
to conclude that w ≡ 0 if w(0) = 0 for some x ∈ Ω. Therefore, either w ≡ 0, in which case
u = v, or w < 0, in which case u < v. If u, v ∈ W 1,2(Ω) and Ω satisfies the exterior cone
condition, we can use [27, Theorem 8.19] to draw the same conclusion.

The above comparison principle leads to the following assertion on the solution to the
semilinear diffusion equation (1).

Proposition 2.3. Let uj be the solution to (1) with boundary condition gj, j = 1, 2. As-
sume that γ, σ, µ and {gj}2

j=1 satisfy the assumptions in (3) and (4). Then the following
statements hold: (i) if gj ≥ 0, then uj ≥ 0; (ii) supΩ uj ≤ sup∂Ω gj; (iii) if g1 > g2, then
u1(x) > u2(x) ∀x ∈ Ω.

Proof. (i) follows from the comparison principle in Proposition 2.2 and the fact that u ≡ 0 is
a solution to (1) with homogeneous Dirichlet condition g = 0. (ii) By (i), uj ≥ 0. Therefore
f(x, uj) ≥ 0. Therefore, we can have

−∇ · (γ∇uj) = −f(x, uj) ≤ 0, in Ω.

By the maximum principle, supΩ uj ≤ sup∂Ω gj. (iii) is a direct consequence of part (ii) of
Proposition 2.2.

In the study of the inverse problems in the next sections, we sometimes need the solution
to the semilinear diffusion equation to be bounded away from 0. We now prove the following
result.

Theorem 2.4. Let u be the solution to (1) generated with source g ≥ ε > 0 for some ε.
Then there exists ε′ > 0 such that u ≥ ε′ > 0.
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Proof. We follow the arguments in [1]. We again rewrite the PDE as

−∇ · γ∇u = −f(x, u), in Ω, u = g, on ∂Ω.

Then by classical gradient estimates, see for instance [29, Proposition 2.20], we know that
there exists K > 0, depending on γ, |∇γ| and Ω, such that

|u(x)− u(x0)| ≤ K|x− x0|, ∀x ∈ Ω, x0 ∈ ∂Ω.

Using the fact that g ≥ ε, we conclude from this inequality that there exists a d > 0 such
that

u(x) ≥ ε/2, ∀x ∈ Ω\Ωd,

where Ωd = {x ∈ Ω : dist(x, ∂Ω) > d}. Therefore, supΩd/2
u ≥ ε/2.

Let c(x) = σ(x) + µ(x)|u(x)|. Due to the fact that u is nonnegative and bounded from
above, we have that 0 < θ ≤ c(x) ≤ Θ(1 + sup∂Ω |g|). We then have that u solves

−∇ · γ∇u+ cu = 0, in Ω, u = g, on ∂Ω.

By the Harnack inequality (see [27, Corollary 8.21]), we have that there exists constant C,
depending on d, γ, c, Ω, and Ωd/2, such that

C inf
Ωd/2

u ≥ sup
Ωd/2

u.

Therefore, infΩd/2 u ≥
ε

2C
. The claim then follows from infΩ u ≥ min{infΩd/2 u, infΩ\Ωd u} ≥

ε

2
min{1/C, 1} ≡ ε′.

We conclude this section by the following result on the differentiability of the datum H
with respect to the coefficients in the diffusion equation. This result justifies the linearization
that we perform in Section 4.

Proposition 2.5. The datum H defined in (2) generated from an illumination g ≥ 0 on
∂Ω, viewed as the map

H[γ, σ, µ] :
(γ, σ, µ) 7→ Γ(σu+ µ|u|u)

W 1,2(Ω)× L∞(Ω)× L∞(Ω) → W 1,2(Ω)
(7)

is Fréchet differentiable when the coefficients satisfies (3) and (4). The derivative at (γ, σ, µ)
in the direction (δγ, δσ, δµ) ∈ W 1,2(Ω)× L∞(Ω)× L∞(Ω) is given byH ′γ[γ, σ, µ](δγ)

H ′σ[γ, σ, µ](δσ)
H ′µ[γ, σ, µ](δµ)

 = Γ

 σv1 + 2µuv1

δσu+ 2µ|u|v2

δσv3 + 2µ|u|v3 + δµ|u|u

 , (8)

where vj (1 ≤ j ≤ 3) is the solution to the diffusion equation

−∇ · (γ∇vj) + (σ + 2µ|u|)vj = Sj, in Ω, vj = 0, on ∂Ω (9)

with
S1 = ∇ · δγ∇u, S2 = −δσu, S3 = −δµ|u|u.
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Proof. We show here only that u is Fréchet differentiable with respect to γ, σ and µ. The
rest of the result follows from the chain rule.

Let (δγ, δσ, δµ) ∈ W 1,2(Ω)×L∞(Ω)×L∞(Ω) be such that (γ′, σ′, µ′) = (γ+δγ, σ+δσ, µ+
δµ) satisfies the bounds in (3). Let u′ be the solution to (1) with coefficients (γ′, σ′, µ′), and
define ũ = u′ − u. We then verify that ũ solves the following linear diffusion equation

−∇ · (γ∇ũ) +
[
σ + µ(u+ u′)

]
ũ = ∇ · δγ∇u′ − δσu′ − δµu′2, in Ω
ũ = 0, on ∂Ω

where we have used the fact that u ≥ 0 and u′ ≥ 0 following Proposition 2.3 (since g ≥ 0 on
∂Ω). Note also that both u and u′ are bounded from above by Proposition 2.3. Therefore,
σ+µ(u+u′) is bounded from above. Therefore, we have the following standard estimate [27]

‖ũ‖W 1,2(Ω) ≤ C1

(
‖δγ∇u′‖L2(Ω) + ‖δσu′‖L2(Ω) + ‖δµu′2‖L2(Ω)

)
≤ C′1(‖δγ‖L∞(Ω) + ‖δσ‖L∞(Ω) + ‖δµ‖L∞(Ω)). (10)

Let ˜̃u = u′ − u− (v1 + v2 + v3) with v1, v2 and v3 solutions to (9). Then we verify that˜̃u satisfies the equation

−∇ · (γ∇˜̃u) +
[
σ + 2µu

]˜̃u = ∇ · δγ∇ũ− δσũ− δµ(u′ + u)ũ, in Ω˜̃u = 0, on ∂Ω

Therefore, we have the following standard estimate

‖˜̃u‖W 1,2(Ω) ≤ C2

(
‖δγ∇ũ‖L2(Ω) + ‖δσũ‖L2(Ω) + ‖δµũ2‖L2(Ω)

)
≤ C′2

(
‖δγ‖L∞(Ω)‖∇ũ‖L2(Ω) + ‖δσ‖L∞(Ω)‖ũ‖L2(Ω) + ‖δµ‖L∞(Ω)‖ũ‖L2(Ω)

)
. (11)

We can thus combine (10) with (11) to obtain the bound

‖˜̃u‖W 1,2(Ω) ≤ C
(
‖δγ‖2

L∞(Ω) + ‖δσ‖2
L∞(Ω) + ‖δµ‖2

L∞(Ω)

)
.

This concludes the proof.

We observe from the above proof that differentiability of H with respect to σ and µ
can be proven when viewed as a map L∞(Ω) × L∞(Ω) → L∞(Ω), following the maximum

principles for solutions ũ and ˜̃u. The same thing can not be done with respect to γ since we
can not control the term ‖∇ · δγ∇u′‖L∞(Ω) with ‖δγ‖L∞(Ω) without much more restrictive
assumptions on δγ.

3 Reconstructing absorption coefficients

We now study inverse problems related to the semilinear diffusion model (1). We first
consider the case of reconstructing the absorption coefficients, assuming that the Grüneisen
coefficient Γ and the diffusion coefficient γ are both known.
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3.1 One coefficient with single datum

We now show that with one datum set, we can uniquely recover one of the two absorption
coefficients.

Proposition 3.1. Let Γ and γ be given. Assume that g ≥ ε > 0 for some ε. Let H and H̃
be the data sets corresponding to the coefficients (σ, µ) and (σ̃, µ̃) respectively. Then H = H̃
implies (u, σ + µ|u|) = (ũ, σ̃ + µ̃|ũ|) provided that all coefficients satisfy (3). Moreover, we
have

‖(σ + µ|u|)− (σ̃ + µ̃̃|u|)‖L∞(Ω) ≤ C‖H − H̃‖L∞(Ω), (12)

for some constant C.

Proof. The proof is straightforward. Let w = u− ũ. We check that w solves

−∇ · (γ∇w) = − 1

Γ
(H − H̃), in Ω, w = 0, on ∂Ω. (13)

Therefore H = H̃ implies w = 0 which is simply u = ũ. This in turn implies that
H

u
=
H̃

ũ
,

that is σ+ µ|u| = σ̃+ µ̃|ũ|. Note that the condition g ≥ ε > 0 implies that u, ũ ≥ ε′ > 0 for

some ε′ following Theorem 2.4. This makes it safe to take the ratios H/u and H̃/ũ, and to
omit the absolute values on u and ũ.

To derive the stability estimate, we first observe that

|(σ + µ|u|)− (σ̃ + µ̃|ũ|)| = 1

Γ
|H
u
− H̃

ũ
| = |H(ũ− u) + (H − H̃)u

Γuũ
|.

Using the fact that u and ũ are both bounded away from zero, and the triangle inequality,
we have, for some constants c1 and c2,

‖(σ + µ|u|)− (σ̃ + µ̃|ũ|)‖L∞(Ω) ≤ c1‖ũ− u‖L∞(Ω) + c2‖H − H̃‖L∞(Ω). (14)

On the other hand, classical theory of elliptic equations allows us to derive, from (13), the
following bound, for some constant c3,

‖u− ũ‖L∞(Ω) ≤ c3‖H − H̃‖L∞(Ω). (15)

The bound in (12) then follows by combining (14) and (15).

The above proof provides an explicit algorithm to reconstruct one of σ and µ from one
datum. Here is the procedure. We first solve

−∇ · (γ∇u) = − 1

Γ
H, in Ω, u = g, on ∂Ω (16)

for u since Γ and γ are known. We then reconstruct σ as

σ =
H

Γu
− µ|u|, (17)
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if µ is known, or reconstruct µ as

µ =
H

Γu|u|
− σ

|u|
, (18)

if σ is known.

The stability estimate (12) can be made more explicit when one of the coefficients in-
volved is known. For instance, if µ is known, then we have

|σ − σ̃| = 1

Γ

∣∣H
u
− µ|u| −

(H̃
ũ
− µ|ũ|

)∣∣ =
1

Γ

∣∣(H(ũ− u) + (H − H̃)u

uũ
− µ(|u| − |ũ|)

∣∣.
This leads to, using the triangle inequality again,

‖σ − σ̃‖L∞(Ω) ≤ c′1‖ũ− u‖L∞(Ω) + c′2‖H − H̃‖L∞(Ω).

Combining this bound with (15), we have

‖σ − σ̃‖L∞(Ω) ≤ C ′‖H − H̃‖L∞(Ω), (19)

for some constant C ′. In the same manner, we can derive

‖µ− µ̃‖L∞(Ω) ≤ C ′′‖H − H̃‖L∞(Ω), (20)

for the reconstruction of µ if σ is known in advance.

3.2 Two coefficients with two data sets

We see from the previous result that we can reconstruct σ + µ|u| when we have one datum.
If we have data generated from two different sources g1 and g2, then we can reconstruct
σ + µ|u1| and σ + µ|u2| where u1 and u2 are the solutions to the diffusion equation (1)
corresponding to g1 and g2 respectively. If we can choose g1 and g2 such that |u2| − |u1| 6= 0
anywhere, we can uniquely reconstruct the pair (σ, µ). This is the idea we have in the
following result.

Proposition 3.2. Let Γ and γ be given. Let (H1, H2) and (H̃1, H̃2) be the data sets corre-
sponding to the coefficients (σ, µ) and (σ̃, µ̃) respectively that are generated with the pair of
sources (g1, g2). Assume that gi ≥ ε > 0, i = 1, 2, and g1 − g2 ≥ ε′ > 0 for some ε and

ε′. Then (H1, H2) = (H̃1, H̃2) implies (σ, µ) = (σ̃, µ̃) provided that all coefficients involved
satisfy (3). Moreover, we have

‖σ − σ̃‖L∞(Ω) + ‖µ− µ̃‖L∞(Ω) ≤ C̃
(
‖H1 − H̃1‖L∞(Ω) + ‖H2 − H̃2‖L∞(Ω)

)
, (21)

for some constant C̃.
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Proof. Let wi = ui − ũi, i = 1, 2. Then wi solves

−∇ · (γ∇wi) = − 1

Γ
(Hi − H̃i), in Ω, wi = 0, on ∂Ω. (22)

Therefore Hi = H̃i implies ui = ũi and

σ + µ|ui| = σ̃ + µ̃|ui|.

Collecting the results for both data sets, we have(
1 |u1|
1 |u2|

)(
σ
µ

)
=

(
1 |u1|
1 |u2|

)(
σ̃
µ̃

)
. (23)

When g1 and g2 satisfy the requirements stated in the proposition, we have u1−u2 ≥ ε′ > 0

for some ε′. Therefore, the matrix

(
1 |u1|
1 |u2|

)
is invertible. We can then remove this matrix

in (23) to show that (σ, µ) = (σ̃, µ̃).

To get the stability estimate in (21), we first verify that

(σ − σ̃) + (µ− µ̃)|ui| =
Hi

ui
− H̃i

ũi
− µ̃(|ui| − |ũi|), i = 1, 2.

This leads to,

(
1 |u1|
1 |u2|

)(
σ − σ̃
µ− µ̃

)
=


H1

u1

− H̃1

ũ1

− µ̃(|u1| − |ũ1|)

H2

u2

− H̃2

ũ2

− µ̃(|u2| − |ũ2|)

 .

Therefore, we have

(
σ − σ̃
µ− µ̃

)
=

(
1 |u1|
1 |u2|

)−1


H1(ũ1 − u1) + (H1 − H̃1)u1

u1ũ1

− µ̃(|u1| − |ũ1|)

H2(ũ2 − u2) + (H2 − H̃2)u2

u2ũ2

− µ̃(|u2| − |ũ2|)

 .

It then follows that

‖σ − σ̃‖L∞(Ω) + ‖µ− µ̃‖L∞(Ω)

≤ c
(
‖H1 − H̃1‖L∞(Ω) + ‖H2 − H̃2‖L∞(Ω) + ‖u1 − ũ1‖L∞(Ω) + ‖u2 − ũ2‖L∞(Ω)

)
. (24)

Meanwhile, we have, from (22),

‖ui − ũi‖L∞(Ω) ≤ c′‖Hi − H̃i‖L∞(Ω), i = 1, 2. (25)

The bound in (21) then follows from (24) and (25).
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4 Reconstructing absorption and diffusion coefficients

We now study inverse problems where we intend to reconstruct more than the absorption
coefficients. We start with a non-uniqueness result on the simultaneous reconstruction of all
four coefficients Γ, γ, σ, and µ.

4.1 Non-uniqueness in reconstructing (Γ, γ, σ, µ)

Let us assume for the moment that γ1/2 ∈ C2(Ω). We introduce the following Liouville
transform

v =
√
γu. (26)

We then verify that the semilinear diffusion equation (1) is transformed into the following
equation under the Liouville transform:

∆v −
(

∆γ1/2

γ1/2
+
σ

γ
+

µ

γ3/2
|v|
)
v = 0, in Ω, v = γ1/2g, on ∂Ω (27)

and the datum H is transformed into

H(x) = Γ(x)

(
σ

γ1/2
v(x) +

µ

γ
v2(x)

)
. (28)

Let us now define the following functionals:

α =
∆γ1/2

γ1/2
+
σ

γ
, β =

µ

γ3/2
, ζ1 = Γ

σ

γ1/2
, ζ2 = Γ

µ

γ
. (29)

The following result says that once (α, β, ζ1) or (α, β, ζ2) is known, introducing new data
would not bring in new information.

Theorem 4.1. Let γ1/2|∂Ω be given and assume that γ1/2 ∈ C2(Ω). Assume that either
(α, β, ζ1) or (α, β, ζ2) is known, and H is among the data used to determine them. Then for

any given new illumination g̃, the corresponding datum H̃ is uniquely determined by (g̃, H).

Proof. Let us first rewrite the datum as H = ζ1v+ζ2v
2. When α and β are known, we know

the solution v of (27) for any given g. If ζ1 is also known, we know also ζ1v. We therefore
can form the ratio

H̃ − ζ1ṽ

H − ζ1v
=
ζ2ṽ

2

ζ2v2
=
ṽ2

v2
.

We then find H̃ as H̃ =
ṽ2

v2
(H − ζ1v) + ζ1ṽ. If ζ1 is not known but ζ2 is known, we can form

the ratio
H̃ − ζ2ṽ

2

H − ζ2v2
=
ζ1ṽ

ζ1v
=
ṽ

v
.

This gives H̃ =
ṽ

v
(H − ζ2v

2) + ζ2ṽ
2. The proof is complete.
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The above theorem says that we can at most reconstruct the triplet (α, β, ζ1) or the
triplet (α, β, ζ2). Neither triplet would allow the unique determination of the four coefficients
(Γ, γ, σ, µ). Once one of the triplets is determined, adding more data is not helpful in terms
of uniqueness of reconstructions.

Similar non-uniqueness results were proved in the case of the regular PAT [9, 10]. In
that case, it was also shown that if the Grüneisen coefficient Γ is known, for instance from
multi-spectral measurements [11, 39], one can uniquely reconstruct the absorption coefficient
and the diffusion coefficient simultaneously. In the rest of this section, we consider this case,
that is, Γ is known, for our TP-PAT model.

4.2 Linearized reconstruction of (γ, σ, µ)

We study the problem of reconstructing (γ, σ, µ), assuming Γ is known, in linearized setting
following the general theory of overdetermined elliptic systems developed in [21, 48]. For the
sake of the readability of the presentation below, we collect some necessary terminologies
in the theory of overdetermined elliptic systems in Appendix A. We refer interested readers
to [8, 34, 55] for overviews of the theory in the context of hybrid inverse problems and
references therein for more technical details on the theory. Our presentation below follows
mainly [8].

We linearize the nonlinear inverse problem around background coefficients (γ, σ, µ), as-
suming that we have access to data collected from J different illumination sources {gj}Jj=1.
We denote by (δγ, δσ, δµ) the perturbations to the coefficients. Let uj be the solution to (1)
with source gj and the background coefficients. We then denote by δuj the perturbation to
solution uj. Following the calculations in Proposition 2.5, we have, for 1 ≤ j ≤ J ,

−∇ · (δγ∇uj)−∇ · (γ∇δuj) + δσuj + δµ|uj|uj + (σ + 2µ|uj|)δuj = 0, in Ω (30)

δσuj + δµ|uj|uj + (σ + 2µ|uj|)δuj = δHj/Γ, in Ω (31)

To simplify our analysis, we rewrite the above system into, 1 ≤ j ≤ J ,

−∇ · (δγ∇uj)−∇ · (γ∇δuj) = −δHj/Γ, in Ω (32)

ujδσ + |uj|ujδµ+ (σ + 2µ|uj|)δuj = +δHj/Γ, in Ω (33)

This is a system of 2J differential equations for J + 3 unknowns {δγ, δσ, δµ, δu1, . . . , δuJ}.
To supplement the above system with appropriate boundary conditions, we first observe

that the boundary conditions for the solutions {δuj}Jj=1 are given already. They are ho-
mogeneous Dirichlet conditions since g does not change when the coefficients change. The
boundary conditions for (δγ, δσ, δµ) are what need to be determined. In the case of single-
photon PAT, it has been shown that one needs to have γ|∂Ω known to have uniqueness in
the reconstruction [9, 45]. This is also expected in our case. We therefore take δγ|∂Ω = φ1

for some known φ1. The boundary conditions for σ and µ are given by the data. In fact, on
the boundary, u = g. Therefore, we have, from (33) which holds on ∂Ω, that

gjδσ + |gj|gjδµ = δHj/Γ, on ∂Ω.

12



If we have two perturbed data sets {δH1, δH2} with g1 and g2 sufficiently different, we can
then uniquely reconstruct (δσ|∂Ω, δµ|∂Ω):

δσ|∂Ω =
δH1|g2|g2 − δH2|g1|g1

Γg1g2(|g2| − |g1|)
≡ φ2, δµ|∂Ω =

δH2g1 − δH1g2

Γg1g2(|g2| − |g1|)
≡ φ3.

Therefore, we have the following Dirichlet boundary condition for the unknowns

(δγ, δσ, δµ, δu1, . . . , δuJ) = (φ1, φ2, φ3, 0, · · · , 0). (34)

Let us introduce v = (δγ, δσ, δµ, δu1, . . . , δuJ), S = (−δH1, δH1, . . . ,−δHJ , δHJ)/Γ, and
φ = (φ1, φ2, φ3, 0, · · · , 0). We can then write the linearized system of equations (32)-(33)
and the corresponding boundary conditions into the form of

A(x, D)v = S, in Ω B(x, D)v = φ, on ∂Ω (35)

where A is a matrix differential operator of size M ×N , M = 2J and N = 3 + J , while B
is the identity operator. The symbol of A is given as

A(x, iξ) =


−iV1 · ξ −∆u1 0 0 γ|ξ|2 − iξ · ∇γ . . . 0

0 u1 |u1|u1 σ + 2µ|u1| . . . 0
...

...
...

...
...

...
−iVJ · ξ −∆uJ 0 0 0 . . . γ|ξ|2 − iξ · ∇γ

0 uJ |uJ |uJ 0 . . . σ + 2µ|uJ |

 , (36)

with Vj = ∇uj, 1 ≤ j ≤ J and ξ ∈ Sn−1.

It is straightforward to check that if we take the associated Douglis-Nirenberg numbers
as

{si}2J
i=1 = (0,−2, . . . , 0,−2), {tj}J+3

j=1 = (1, 2, 2, 2, . . . , 2), (37)

the principal part of A is simply A itself with the −iξ · ∇γ and −∆uj (1 ≤ j ≤ J) terms
removed.

In three-dimensional case, we can establish the following result.

Theorem 4.2. Let n = 3. Assume that the background coefficients γ ∈ C4(Ω), σ ∈ C2(Ω),
and µ ∈ C1(Ω) satisfy the bounds in (3). Then, there exists a set of J ≥ n+ 1 illuminations
{gj}Jj=1 such that A is elliptic. Moreover, the corresponding elliptic system (A,B), with
boundary condition (34), satisfies the Lopatinskii criterion.

Proof. Let us first rewrite the principal symbol A0 as

A0(x, iξ) =


−iV1 · ξ 0 0 γ|ξ|2 . . . 0

iV1·ξ
γ|ξ|2 (σ + 2µ|u1|)u1 u1 |u1|u1 0 . . . 0

...
...

...
...

...
...

−iVJ · ξ 0 0 0 . . . γ|ξ|2
iVJ ·ξ
γ|ξ|2 (σ + 2µ|uJ |)uJ uJ |uJ |uJ 0 . . . 0

 .
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It is then straightforward to check that A0(x, iξ) is of full-rank as long as the following
sub-matrix is of full-rank:

Ã0(x, iξ) =

 iV1·ξ
γ|ξ|2 (σ + 2µ|u1|)u1 u1 |u1|u1

...
...

...

iVJ ·ξ
γ|ξ|2 (σ + 2µ|uJ |)uJ uJ |uJ |uJ

 .

To simplify the calculation, we introduce Σj = σ+2µ|uj|, F̂j = Vj ·ξ. We also eliminate

the non-zero common factor
i

γ|ξ|2
from the first column and uj from each row. Without

loss of generality, we check the determinant of first 3 (since J ≥ n + 1 = 4) rows of the
simplified version of the submatrix Ã0(x, iξ). This determinant is given as

det(Ã0) = F̂1
Σ1

u1

(|u3| − |u2|) + F̂2
Σ2

u2

(|u1| − |u3|) + F̂3
Σ3

u3

(|u2| − |u1|)

=
Σ1Σ2Σ3

u1u2u3

(
F̂1
u3u2(|u3| − |u2|)

Σ3Σ2

+ F̂2
u1u3(|u1| − |u3|)

Σ1Σ3

+ F̂3
u2u1(|u2| − |u1|)

Σ2Σ1

)
.

With the assumptions on the background coefficients, we can take uj to be the complex
geometric optics solution constructed following Theorem 6.6 (in Appendix B) for ρj with
boundary condition gj. Then we have

F̂k
uiuj(|ui| − |uj|)

ΣiΣj

=
uiuj(|ui| − |uj|)

ΣiΣj

∇uk · ξ = uiujuk
(|ui| − |uj|)

ΣiΣj

(ρk + O(1)) · ξ.

This gives us,

det(Ã0) ∼
(

Σ1(|u2| − |u3|)ρ1 + Σ2(|u3| − |u1|)ρ2 + Σ3(|u1| − |u2|)ρ3

)
· ξ. (38)

Let us define αk = Σk(|ui| − |uj|) with (k, i, j) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. Then we have
α1 + α2 + α3 = 0. Let (e1, e2, e3) an orthonormal basis for R3. Then ξ =

∑3
k=1 ckek with

|c1|2 + |c2|2 + |c3|2 = 1. We take

ρ1 = β1

(
τ1e1 + iτ̃1e2

)
,

ρ2 = β2

(
τ2e2 + iτ̃2e3

)
,

ρ3 = β3

(
τ3e3 + iτ̃3e1

)
,

where |τk| = |τ̃k|, ∀1 ≤ k ≤ 3. It is straightforward to verify that ρk·ρk = 0, |ρk| =
√

2|τk||βk|
for all 1 ≤ k ≤ 3. We now deduce from (38) that det(Ã0) ∼ �R + i�I where

�R = α1τ1β1c1 + α2τ2β2c2 + α3τ3β3c3, �I = α1τ̃1β1c2 + α2τ̃2c3 + α3τ̃3β3c1.

Take β1 = β2 = β3, τk = τ̃k = 1, 1 ≤ k ≤ 3. Then det(A0) 6= 0 unless c1 = c2 = c3. [ This is
because if det(A0) = 0, we have �R = 0, �I = 0, and a1 + a2 + a3 = 0. That is 1 1 1

c1 c2 c3

c2 c3 c1

α1

α2

α3

 =

0
0
0

 .
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This contradicts the construction of {αk}3
k=1]. Let us now take

ρ4 = 2ρ3.

Then the submatrix formed by u1, u2 and u4 will have full rank when c1 = c2 = c3. Therefore
the submatrix formed by u1, u2, u3 and u4 is of full rank for any ξ.

To show that (A,B) satisfies the Lopatinskii criterion given in Definition 6.4 for a set of
well chosen uj, we first observe that since B = I, we have, from the definition in (55),

{ηj}J+3
j=1 = {−1, · · · ,−1} (39)

with the selection of the Douglis-Nirenberg numbers {si}2J
i=1 and {tj}J+3

j=1 in (37), and the
principal part of B has components B0,11 = 1 and B0,k` = 0 otherwise. Therefore, the system
of differential equations in (56) and (57) takes the following form

(Vj · ζ − iVj · ν
d

dz
)δγ(z)− γ(−|ζ|2 +

d2

dz2
)δuj(z) = 0, z > 0 (40)

ujδσ(z) + |uj|ujδµ(z) + (σ + 2µ|uj|)δuj(z) = 0, z > 0 (41)

δγ = 0, z = 0 (42)

where γ, σ, µ, uj and Vj (1 ≤ j ≤ J , are all evaluated at y ∈ ∂Ω. We first deduce from (41)
that, for 1 ≤ j ≤ J ,

δuj = − uj
Σj

δσ − |uj|uj
Σj

δµ, z > 0.

Plugging this into (40), we obtain that, for 1 ≤ j ≤ J ,

(Vj · ζ − iVj · ν
d

dz
)δγ + γ(−|ζ|2 +

d2

dz2
)

(
uj
Σj

δσ +
|uj|uj

Σj

δµ

)
= 0, z > 0.

Without loss of generality, we consider the system formed by u1, u2, u3. Let F̃j = Vj · ν,

pj =
uj
Σj

and qj =
u2j
Σj

. We look for eigenvalues of the system as the root of

det

F̂1 − iλF̃1 p1γ(λ2 − |ζ|2) q1γ(λ2 − |ζ|2)

F̂2 − iλF̃2 p2γ(λ2 − |ζ|2) q2γ(λ2 − |ζ|2)

F̂3 − iλF̃3 p3γ(λ2 − |ζ|2) q3γ(λ2 − |ζ|2)

 = 0.

We observe first that the above equation admits two repeated roots λ2,3 = ±|ζ|. Besides
that, we have another root

λ1 = −i F̂1(p2q3 − p3q2) + F̂2(p3q1 − p1q3) + F̂3(p1q2 − p2q1)

F̃1(p2q3 − p3q2) + F̃2(p3q1 − p1q3) + F̃3(p1q2 − p2q1)
.

Moreover, the eigenvectors corresponding to λ2,3 are of the form

π2,3 =

0
x
y
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with x and y arbitrary. Therefore, δγ(z) = cei|λ1|z. Using the boundary condition δγ(0) = 0
and the decay condition δγ(z) → 0 as z → ∞, we conclude that δγ(z) ≡ 0. This in turn
implies, from (41), that δσ(z) ≡ 0 and δµ(z) ≡ 0. The proof is complete.

For the set of Douglis-Nirenberg numbers {si} and {tj} in (37), as well as the parameters
{ηk} given in (39), we defined the function space, parameterized by ` > n+ 1

2
,

W` = W `−s1,2(Ω)× . . .×W `−s2J ,2(Ω)×W `−η1− 1
2
,2(∂Ω)× . . .W `−η3− 1

2
,2(∂Ω).

We have the following uniqueness and stability result.

Theorem 4.3. Under the same conditions of Theorem 4.2, let {δHj}Jj=1 and {δ̃Hj}Jj=1 be

the data sets generated with (δγ, δσ, δµ) and (δ̃γ, δ̃σ, δ̃µ) respectively. Assume that the data

are such that (S, φ) ∈ W` and (S̃, φ̃) ∈ W`. Then there exists a set of J ≥ n + 1 boundary

illuminations, {gj}Jj=1, such that {δHj}Jj=1 = {δ̃Hj}Jj=1 (resp. (S, φ) = (S̃, φ̃)) implies

(δγ, δσ, δµ) = (δ̃γ, δ̃σ, δ̃µ) (resp. v = ṽ) if δγ|∂Ω = δ̃γ|∂Ω. Moreover, the following stability
estimate holds:

J+3∑
j=1

‖vj − ṽj‖W `+tj ,2(Ω) ≤ C
( 2J∑
i=1

‖Si − S̃i‖W `−si,2(Ω) +
3∑

k=1

‖φk − φ̃k‖W `−ηk−
1
2 ,2(∂Ω)

)
, (43)

for all ` > n+ 1
2
.

Proof. We start with the uniqueness result. Let δHj = 0, 1 ≤ j ≤ 3, we then have that

ujδσ + |uj|ujδµ+ (σ + 2µ|uj|)δuj = 0, 1 ≤ j ≤ 3.

We can eliminate the variables δσ and δµ to have, with E = {(1, 2, 3), (2, 3, 1), (3, 1, 2)},∑
(i,j,k)∈E

uiuj(uj − ui)(σ + 2µ|uk|)δuk = 0. (44)

Let G be the Green function corresponding to the operator −∇ · γ∇ with the homogeneous
Dirichlet boundary condition. We can then write (44) as, using δγ|∂Ω = 0 as well as δuj |∂Ω =
0, ∑

(i,j,k)∈E

uiuj(uj − ui)(σ + 2µ|uk|)
∫

Ω

δγ(y)∇uk(y) · ∇G(x; y)dy = 0.

Take uk to be the complex geometric optics solution we constructed in Theorem 6.6 with
complex vector ρk, using the fact that uk ∼ eρk·x(1 + ϕk) (and ϕk decays as |ρk|−1) and
∇uk = uk(ρk +O(1)), we can rewrite the above equation as, for |ρk| sufficiently large,∑

(i,j,k)∈E

uiuj(uj − ui)(σ + 2µ|uk|)
∫

Ω

δγ(y)uk(y)ρk · ∇G(x; y)dy = 0.
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Even though it is not necessary here, but if we select ρk such that <ρk < 0 and |<ρk| is
sufficiently large, then we can simplify the above equation further to∫

Ω

δγ(y)v(x; y) · ∇G(x; y)dy = 0. (45)

with v the vector given by

v =
∑

(i,j,k)∈E

σ(x)
(
uiuj(uj − ui)

)
(x)uk(y)ρk. (46)

We now need the following lemma.

Lemma 4.4. Let v be such that: (i) there exists c > 0 such that |v| ≥ c > 0 for a.e. x ∈ Ω;
and (ii) v ∈ [W 1,∞(Ω)]n at least. Then (45) implies that δγ ≡ 0.

Proof. Let u be the solution to

−∇ · γ∇u−∇ · (δγv) = 0, in Ω, u = 0, on ∂Ω (47)

Then

u(x) =

∫
Ω

δγ(y)v(x; y) · ∇G(x; y)dy.

Therefore (45) implies that u ≡ 0. Therefore

−∇ · δγv = 0, in Ω, δγ = 0, on ∂Ω. (48)

This is a transport equation for δγ that admits the unique solution δγ ≡ 0 with the vector
field v satisfying the assumed requirements; see for instance [9, 14, 16, 20, 30] and references
therein.

It is straightforward to check that we can select {ρj}3
j=1 such that the vector field v

defined in (46) satisfies the requirement in Lemma 4.4. We then conclude that δγ ≡ 0.

The conditions assumed on the background coefficients ensure the ellipticity of the system
as proven in Theorem 4.2. The stability result then follows from (58); see more discussions
in [8] and references therein. Note that the simplification inthe last term in (43) is due to

the fact that φk = φ̃k = 0 when 4 ≤ k ≤ J + 3. Note also that the following simplification
can be made in (43):

2J∑
i=1

‖Si − S̃i‖W `−si,2(Ω) ≤ 2
J∑
i=1

‖δHj − δ̃Hj‖W `+2,2(Ω).

The proof is complete.
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5 Numerical simulations

We present in this section some preliminary numerical reconstruction results using synthetic
internal data. We restrict ourselves to two-dimensional settings only to simplify the compu-
tation. The spatial domain of the reconstruction is the square Ω = (1, 1)2. All the equations
in Ω are discretized with a first-order finite element method on triangular meshes. In all
the simulations in this section, reconstructions are performed on a finite element mesh with
about 6000 triangular elements. The nonlinear system resulted from the discretization of
the diffusion equation (1) is solved using a quasi-Newton method as implemented in [44].

To generate synthetic data for inversion, we solve (1) using the true coefficients. We
performed reconstructions using both noiseless and noisy synthetic data. For the noisy
data, we added additive random noise to the data by simply multiplying each datum by
(1 +
√

3ε× 10−2random) with random a uniformly distributed random variable taking values
in [1, 1], ε being the noise level (i.e. the size of the variance in percentage).

We will focus on the reconstruction of the absorption coefficients σ and µ. We present
reconstruction results from two different numerical methods.

Direct Algorithm. The first method we use is motivated from the method of proofs of
Propositions 3.1 and 3.2. When we have J ≥ 2 data sets {Hj}Jj=1 from J illuminations
{gj}Jj=1, we first reconstruct, for each j, u∗j as the solutions to

−∇ · (γ∇u∗j) = −
H∗j
Γ

in Ω, u∗j = gj on ∂Ω.

We then reconstruct σ + µ|u∗j | =
Hj
Γu∗j

. Collecting this quantity from all data, we have, for

each point x ∈ Ω, 1 |u∗1|
...

...
1 |u∗J |

(σ
µ

)
=


H∗1
Γu∗1
...
H∗J
Γu∗J

 .

We then reconstruct (σ, µ) by solving this small linear system, in least square sense, at each
point x ∈ Ω. Therefore, the main computational cost of this algorithm lies in the numerical
solution of the J linear equations for {u∗j}.

Least-Square Algorithm. The second reconstruction method that we will use is based
on numerical optimization. This method searches for the unknown coefficient by minimizing
the objective functional

Φ(σ, µ) ≡ 1

2

J∑
j=1

∫
Ω

(Γσuj + Γµ|uj|uj −H∗j )2dx + κR(σ, µ), (49)

where we use the functional R(σ, µ) = 1
2

(∫
Ω
|∇σ|2dx +

∫
Ω
|∇µ|2dx

)
together with the pa-

rameter κ to add regularization mechanism in the reconstructions. We use the BFGS quasi-
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Newton method that we developed in [44] to solve this minimization problem. It is straight-
forward to check, following Proposition 2.5, that the gradient of the functional Φ(σ, µ) with
respect to σ and µ are given respectively by

Φ′σ[σ, µ](δσ) =

∫
Ω

{
J∑
j=1

[
zjΓuj + vjuj

]
δσ + κ∇σ · ∇δσ

}
dx (50)

Φ′µ[σ, µ](δµ) =

∫
Ω

{
J∑
j=1

[
zjΓ|uj|uj + vj|uj|uj

]
δµ+ κ∇µ · ∇δµ

}
dx (51)

where zj = Γ(σuj + µ|uj|uj)−H∗j and vj solves

−∇ · γ∇vj + (σ + 2µ|uj|)vj = −zjΓ(σ + 2µ|uj|), in Ω, vj = 0, on ∂Ω (52)

Therefore, in each iteration of the optimization algorithm, we need to solve J semilinear
diffusion equations for {uj}Jj=1 and then J adjoint linear elliptic equations for {vj}Jj=1 to
evaluate the gradients of the objective function with respect to the unknowns.

Figure 1: The true coefficients, γ (left), σ (middle), µ (right), used to generate synthetic
data for the reconstructions.

Figure 2: The absorption coefficient µ reconstructed using synthetic data containing different
levels (ε = 0, 1, 2, 5 from left to right) of noises. The Direct Algorithm is used in the
reconstructions.

Experiment I. We start with a set of numerical experiments on the reconstruction of the
two-photon absorption coefficient µ assuming that the single-photon absorption coefficient
σ is known. We use data collected from four different sources {gj}4

j=1, {Hj}4
j=1. We perform
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reconstructions using the Direct Algorithm. In Fig. 2 we show the reconstruction results
from noisy synthetic data with noise levels ε = 0, ε = 1, ε = 2, and ε = 5. The true
coefficients used to generate the data are shown in Fig. 1.

To measure the quality of the reconstruction, we use the relative L2 error. This error is
defined as the ratio between (i) the L2 norm of the difference between the reconstructed co-
efficient and the true coefficient and (ii) the L2 norm of the true coefficient, expressed in per-
centage. The relative L2 errors in the reconstructions of µ in Fig 2 are 0.00%, 2.45%,4.98%,
and 12.23% for ε = 0, ε = 1, ε = 2 and ε = 5 respectively.

Figure 3: Same as in Fig. 2 except that the reconstructions are performed with the Least-
Square Algorithm.

Experiment II. One of the main limitations on the Direct Algorithm is that it requires
the use of illumination sources that are positive everywhere on the boundary. This is difficult
to implement in practical applications. The Least-Square Algorithm, however, does not have
such requirement on the optical sources (but it is computationally more expensive). Here we
repeat the simulations in Experiment I with the Least-Square Algorithm. The reconstruction
results are shown in Fig 3. We observe that, with the same (not exactly the same since the
realizations of the noise are different) data sets, the reconstructions from the two different
algorithms are of very similar quality. The relative L2 errors for the reconstructions in Fig 3
are 0.00%, 2.44%,4.62%, and 9.36% respectively for the four cases.

Experiment III. In the third set of numerical experiments, we study the simultaneous
reconstructions of the single-photon and two-photon absorption coefficients, σ and µ. We
again use data collected from four different sources. In Fig. 4, we show the reconstructions
from data containing different noise levels using the Direct Algorithm. The relative L2

error in the reconstructions of (σ, µ) are (0.00%, 0.00%), (0.79%, 2.76%),(1.56%, 5.55%), and
(3.91%, 13.71%) respectively for data with noise levels ε = 0, ε = 1, ε = 2 and ε = 5.

Experiment IV. We now repeat the simulations in Experiment III with the Least-Square
Algorithm. The results are shown in Fig. 5. The relative L2 errors in the reconstructions are
now (0.22%, 2.38%), (1.21%, 6.43%),(2.34%, 10.98%), (5.64%, 22.06%) respectively for data
with noise levels ε = 0, ε = 1, ε = 2, and ε = 5. The quality of the reconstructions is slightly
lower than, but still comparable to, that in the reconstructions in Experiment III.
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Figure 4: The absorption coefficient pair σ (top row) and µ (bottom row) reconstructed
using the Direct Algorithm with data at different noise levels (ε = 0, 1, 2, 5 from left to
right).

Figure 5: The same as in Fig. 4 except that the reconstructions are performed using the
Least-Square Algorithm.
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We observe from the above simulation results that, in general, the quality of the recon-
structions is very high. When we have the illumination sources that satisfy the positivity
requirement on the whole boundary of the domain, the Direct Algorithm provides an effi-
cient and robust reconstruction method. The Least-Square Algorithm is less efficient but
is as robust in terms of the quality of the reconstructions. The reconstructions with the
Least-Square Algorithm are done for a fixed regularization parameter that we selected by a
couple of trial-error test. It is by no means the optimal regularization parameter that can
be selected through more sophisticated algorithms [22]. However, this is an issue that we
think is not important at the current stage of this project. Therefore, we did not pursue
further in this direction.

6 Conclusion and further remarks

We studied in this paper inverse problems in quantitative photoacoustic tomography with
two-photon absorption. We derived uniqueness and stability results in the reconstruction of
single-photon and two-photon absorption coefficients, and proposed explicit reconstruction
methods in this case with well-selected illumination sources. We also studied the inverse
problem of reconstructing the diffusion coefficient in addition to the absorption coefficients
and obtained partial results on the uniqueness and stability of the reconstructions for the
linearized problem. We presented some numerical studies based on the explicit reconstruc-
tion procedures as well as numerical optimization techniques to demonstrate the type of
quality that can be achieved in reasonably controlled environments (where noise strength in
the data is moderate).

Our focus in this paper is to study the mathematical properties of the inverse problems.
There are many issues that have to be address in the future. Mathematically, it would be
nice to generalize the uniqueness and stability results in Section 4, on multiple coefficient re-
constructions in linearized settings, to the full nonlinear problem. Computationally, detailed
numerical analysis, in three-dimensional setting, need to be performed to quantify the errors
in the reconstructions in practically relevant scenarios. It is especially important to perform
reconstructions starting from acoustic data directly to see how sensitive the reconstruction
of the two-photon absorption coefficient is with respect to noise in the acoustic data. On
the modeling side, it is very interesting to see if the current study can be generalized to
radiative transport type models for photon propagation.
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Appendix A: Terminologies in overdetermined elliptic

systems

We recall here, very briefly, some terminologies and notations related to overdetermined
linear elliptic systems, following the presentation in [8, 55]. Let M, M̃,N be three positive
integers such that M > N . we consider the following system of M differential equations for
N variables {v1, · · · , vN} with M̃ boundary conditions:

A(x, D)v = S, in Ω (53)

B(x, D)v = φ, on ∂Ω (54)

Here A(x, D) is a matrix differential operator whose (i, j) element, denoted by Aij(x, D)
(1 ≤ i ≤ M , 1 ≤ j ≤ N), is a polynomial in D for any x ∈ Ω. B(x, D) is a matrix

differential operator whose (k, `) element, denoted by Bk`(x, D) (1 ≤ k ≤ M̃ , 1 ≤ ` ≤ N),
is a polynomial in D for any x ∈ ∂Ω.

We associate an integer si (1 ≤ i ≤ M) to row i of A and an integer tj to column j
(1 ≤ j ≤ N) of A.

Definition 6.1. We call the integers {si}Mi=1 and {tj}Nj=1 the Douglis-Nirenberg numbers
associated to A if: (a) si ≤ 0, 1 ≤ i ≤ M ; (b) when si + tj ≥ 0, the order of Aij(x, D) is
not greater than si + tj; and (c) when si + tj < 0, Aij(x, D) = 0.

Definition 6.2. The principal part of A, denoted by A0, is defined as the part of A such
that the degree of A0,ij(x, D) is exactly si + tj.

We say that A is elliptic, in the sense of Douglis-Nirenberg, if the matrix A0(x, ξ) is of
rank N for all ξ ∈ Sn−1 and all x ∈ Ω.

Let bk` be the order of Bk` and define

ηk = max
1≤`≤N

(bk` − t`), 1 ≤ k ≤ M̃. (55)

Definition 6.3. The principal part of B, denoted by B0, is defined as the part of B such
that the order of B0,k` is exactly ηk + t`.

Let B0(x, D) be the principal part of B. Fix y ∈ ∂Ω, and let ν be the inward unit normal
vector at y. Let ζ ∈ Sn−1 be a vector such that ζ · ν = 0 and |ζ| 6= 0. We consider on the
half line y + zν, z > 0 the system of ordinary equations

A0(y, iζ + ν
d

dz
)ũ(z) = 0, z > 0, (56)

B0(y, iζ + ν
d

dz
)ũ(z) = 0, z = 0. (57)

Definition 6.4. If for any y ∈ ∂Ω, the only solution to the system (56)-(57) such that
ũ(z)→ 0 as z →∞ is ũ ≡ 0, then we say that (A,B) satisfies the Lopatinskii criterion.
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It is well-established that [8, 48, 55] when (A,B) satisfies the Lopatinskii criterion, the
system (53)-(54) can be solved up to possibly a finite dimensional subspace. Moreover, a
general a priori stability estimate can be established for the system. Define the function
space

W` = W `−s1,2(Ω)× . . .×W `−sM ,2(Ω)×W `−η1− 1
2
,2(∂Ω)× . . .W `−σ

M̃
− 1

2
,2(∂Ω),

for some ` > n+ 1
2
. Then it can be shown that, if (S, φ) ∈ W`,

N∑
j=1

‖vj‖W `+tj ,2(Ω) ≤ C
( M∑
i=1

‖Si‖W `−si,2(Ω) +
M̃∑
i=1

‖φi‖W `−ηi−
1
2 ,2(∂Ω)

)
+ C̃

∑
tj>0

‖vj‖L2(Ω), (58)

provided that all the quantities involved are regular enough. The last term in the estimate
can be dropped when uniqueness of the solution can be proven. More details on this theory
can be found in [8] and references therein.

Appendix B: CGO solutions to equation (1)

This appendix is devoted to the construction of complex geometric optics (CGO) solu-
tions [50, 52] to our model equation (1). We restrict the construction to the three-dimensional
setting (n = 3). We start by revisiting CGO solutions to the classical diffusion problem that
was first developed in [50]:

−∇ · (γ∇u) + σu = 0, in Ω (59)

with the assumption that γ ∈ C2(Ω) and σ ∈ C1(Ω). Let u∗ be a solution to this equation,
then the Liouville transform defined in (26) shows that ũ∗ =

√
γu∗ solves

∆ũ∗ −
(∆
√
γ

√
γ

+
σ

γ

)
ũ∗ = 0, in Ω. (60)

The following result is well-known.

Theorem 6.5 ([7, 50, 52]). Let γ ∈ C4(Ω) and σ ∈ C2(Ω). For any ρ ∈ Cn such that
ρ · ρ = 0 and |ρ| sufficiently large, there is a function g such that the solution to (60), with
the boundary condition ũ∗|∂Ω = g, takes the form

ũ∗ = eρ·x(1 + ϕ(x)), (61)

with ϕ(x) satisfying the estimate

|ρ|‖ϕ‖W 2,2(Ω) + ‖ϕ‖W 3,2(Ω) ≤ C

∥∥∥∥∆
√
γ

√
γ

+
σ

γ

∥∥∥∥
W 2,2(Ω)

. (62)
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The function ũ∗ is called a complex geometric optics solution to (60) and

u∗ = γ−1/2eρ·x(1 + ϕ(x)) (63)

is a complex geometric optics solution to (59). With the regularity assumption on γ and (62),
it is easy to verify that

∇u∗ ∼ u∗(ρ +O(1)). (64)

We now show, using the Newton-Kantorovich method [41], that we can construct a CGO
solution to our semilinear diffusion model that is very close, in W 3,2(Ω), to u∗ for some ρ.

Theorem 6.6. Let γ ∈ C4(Ω), σ ∈ C2(Ω) and µ ∈ C1(Ω). Let ρ ∈ Cn be such that ρ ·ρ = 0
and |ρ| sufficiently large. Assume further that ρ and Ω satisfy

− κ̃|ρ| ≤ <(ρ · x) ≤ −κ|ρ|, ∀x ∈ Ω̄, (65)

for some 0 < κ < κ̃ <∞. Then, there exists a function g such that the solution to (1) takes
the form

u(x) = u∗(x) + v(x), (66)

with v such that
‖v‖W 3,2(Ω) ≤ ce−κ

′κ|ρ|, (67)

for some constant c and some κ′ ∈ (1, 2).

Proof. Let us first remark that since Ω is a bounded domain, the assumption in (65) is
nothing more than the constraint that <(ρ) ≤ c0 < 0 for some c0. Moreover, the assumption
in (65) allows us to bound the CGO solution u∗ and its gradient as

‖u∗‖L∞(Ω) ≤ ce−κ|ρ|, (68)

‖∇u∗‖L∞(Ω) ≤ ce−κ|ρ|(|ρ|+ 1). (69)

Let P(x, D) be the differential operator defined in (1). We verify that, with the assump-
tions on the coefficients involved, P ′u∗ , the linearization of P at u∗, P ′u∗ := −∇·γ∇+σ+2µ|u∗|,
admits a bounded inverse as a linear map from W 3,2(Ω) to W 1,2(Ω).

We observe from the construction that u∗ is away from 0. Therefore, there exists a
constant r > 0 such that the ball Br(u∗) (in the W 3,2(Ω) metric) contains functions that are
away from 0. Let u1 ∈ Br(u∗), u2 ∈ Br(u∗) and v ∈ W 3,2(Ω) be given, we check that

P ′u1v − P
′
u2
v = 2µ(|u1| − |u2|)v. (70)

This leads to

‖P ′u1v − P
′
u2
v‖L2(Ω) = ‖2µ(|u1| − |u2|)v‖L2(Ω) ≤ c‖u1 − u2‖W 3,2(Ω)‖v‖W 3,2(Ω). (71)
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We can also bound ‖∇(P ′u1v − P
′
u2
v)‖L2(Ω) as follows. We first verify that

‖∇(P ′u1v − P
′
u2
v)‖L2(Ω) = 2‖∇

(
µ(|u1| − |u2|)v

)
‖L2(Ω)

≤ ‖µ(|u1| − |u2|)∇v‖L2(Ω) + ‖∇
(
µ(|u1| − |u2|)

)
v‖L2(Ω)

≤ ‖µ(|u1| − |u2|)‖L∞(Ω)‖∇v‖L2(Ω) + ‖∇
(
µ(|u1| − |u2|)

)
‖L∞(Ω)‖v‖L2(Ω)

≤ C‖v‖W 3,2(Ω)

(
‖u1 − u2‖L∞(Ω) + ‖∇

(
µ(|u1| − |u2|

)
‖L∞(Ω)

)
. (72)

We then perform the expansion, using the fact that |uj| > 0 (j = 1, 2),

∇
(
µ(|u1| − |u2|)

)
= (|u1| − |u2|)∇µ+ µ<

( u1

|u1|
∇(ū1 − ū2) + (

u1

|u1|
− u2

|u2|
)∇ū2

)
.

This gives us the bound

‖∇
(
µ(|u1| − |u2|)

)
‖L∞(Ω) ≤ c1‖u1 − u2‖L∞(Ω) + c2‖∇(u1 − u2)‖L∞(Ω). (73)

We can then combine (72) with (73) and use Sobolev embedding, for instance [27, Corollary
7.11], to conclude that

‖∇(P ′u1v − P
′
u2
v)‖L2(Ω) ≤ C‖u1 − u2‖W 3,2(Ω)‖v‖W 3,2(Ω). (74)

We then have, from the bounds in (71) and (74), the following bound on the operator
norm of P ′u1 − P

′
u2

by

‖P ′u1 − P
′
u2
‖
L
(
W 3,2(Ω),W 1,2(Ω)

) ≤ c‖u1 − u2‖W 3,2(Ω). (75)

Let w be the solution to P ′u∗(x, D)w = P(x, D)u∗ (such that w = (P ′u∗)
−1P(x, D)u∗), that

is,
−∇ · γ∇w + (σ + 2µ|u∗|)w = µ|u∗|u∗, in Ω, w = 0, on ∂Ω. (76)

It then follows from classical elliptic theory that

‖(P ′u∗)
−1P(x, D)u∗‖W 3,2(Ω) ≤ c‖|u∗|u∗‖W 1,2(Ω) ≤ c̃e−2κ|ρ|(|ρ|+ 1) ≤ ˜̃ce−κ

′κ|ρ|, (77)

for some κ′ ∈ (1, 2), where the last step comes from the bounds in (68) and (69).

It then follows from the Newton-Kantorovich theorem [41] that, when |ρ| is sufficiently
large, there exists a solution to (1) in the ball of radius r′ = ˜̃ce−κ

′κ|ρ| centered at u∗, in
W 3,2(Ω). The solution is of the form (66).
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