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Abstract. The objective of this paper is to review recent developments in numerical re-
construction methods for inverse transport problems in imaging applications, mainly
optical tomography, fluorescence tomography and bioluminescence tomography. In
those inverse problems, one aims at reconstructing physical parameters, such as the ab-
sorption coefficient, the scattering coefficient and the fluorescence light source, inside
heterogeneous media, from partial knowledge of transport solutions on the boundaries
of the media. The physical parameters recovered can be used for diagnostic purpose.
Numerical reconstruction techniques for those inverse transport problems can be
roughly classified into two categories: linear reconstruction methods and nonlinear re-
construction methods. In the first type of methods, the inverse problems are linearized
around some known background to obtain linear inverse problems. Classical regular-
ization techniques are then applied to solve those inverse problems. The second type
of methods are either based on regularized nonlinear least-square techniques or based
on gradient-driven iterative methods for nonlinear operator equations. In either case,
the unknown parameters are iteratively updated until the solutions of the transport
equations with the those parameters match the measurements to a certain extent.
We review linear and nonlinear reconstruction methods for inverse transport problems
in medical imaging with stationary, frequency-domain and time-dependent data. The
materials presented include both existing and new results. Meanwhile, we attempt to
present similar algorithms for different problems in the same framework to make it
more straightforward to generalize those algorithms to other inverse (transport) prob-
lems.
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1 Introduction

Inverse problems related to the radiative transport equation have been extensively stud-
ied in recent years; see for example the reviews [14, 88–90]. In those inverse problems,
the objective is to reconstruct some of the physical parameters in the transport equa-
tion inside spatial domains from partial measurements of the transport solutions on the
boundaries of the domains. Apart from their applications in medical imaging, which we
will address below, inverse transport problems emerge from many other areas of scien-
tific research, including intensity modulated radiation therapy (IMRT) [8, 24], imaging
in random media [15, 18], semiconductor design [31], remote sensing [6, 17, 19, 50, 103,
113–115, 119, 125, 126, 132], reactor physics [3, 82, 83] as well as ocean and atmospheric
optics [29, 46, 91, 118]. For readers interested in more applications, we refer to the refer-
ences [20–22, 26–28, 102, 103, 127] and the references cited there.

In this paper, we are interested in the application of inverse transport problems in
medical imaging. Three major applications that we will focus on are the fields of diffuse
optical tomography (DOT), fluorescence tomography (FT) and bioluminescence tomog-
raphy (BLT).

Diffuse optical tomography is a biomedical imaging modality that utilizes diffuse
light as a probe of tissue structure and function [9]. In diffuse optical tomography,near
infra-red light are sent into biological tissues. The outgoing photon current at the surfaces
of the tissues are then measured. We then want to infer the optical properties of the
tissues from the knowledge of those measurements. These optical properties can be used
for diagnostic purposes. Applications of optical tomography include, but not limited to,
brain [40], breast [85] and joint imaging [97, 104]. We refer interested reader to [9, 11, 55,
65] for recent developments on theoretical and experimental aspects of diffusion optical
tomography.

In optical molecular imaging such as fluorescence and bioluminescence tomogra-
phy [81], we seek to determine the spatial concentration distribution of biological light
sources inside tissues from measurements of the light current on the surface of the tissue.
The light sources can come from either the fluorescent biochemical markers that we in-
jected into the biological object, or bioluminescent cells of the object. In the former case,
the markers have to be excited by an external light source, while in the later case, the cells
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emit light automatically. The two imaging strategies are called fluorescence tomography
and bioluminescence tomography, respectively. The distribution information of either
light source will serve as diagnostic tools to differentiate healthy and cancerous tissues.
We refer interested reader to [32,38,58,60,68,81,99,117] and references therein for recent
developments on optical molecular imaging.

In both diffuse optical tomography and optical molecular imaging, the law that gov-
erns the transport of near-infrared light in tissues, denoted by u(x,θ) (or u(t,x,θ) in time-
dependent case), is the radiative transfer equation that we will introduce in next section;
see, for example, Eq. (2.1) below. Optical properties of the tissues, for example the ab-
sorption coefficient (Σa in Eq. (2.1) below), the scattering coefficient (Σs in Eq. (2.1) be-
low), and the bioluminescence source (g(x) in Eq. (2.8) below) appear as parameters in
the corresponding transport equation. The objective of diffuse optical tomography is thus
to reconstruct the absorption and scattering coefficients from boundary measurement of
photon current, and that of optical molecular imaging is to reconstruct the distribution of
the fluorescence and bioluminescence sources from boundary measurement. Both prob-
lems are then formulated as inverse transport problems [12, 13, 34, 35, 42–44, 73, 120, 122].

Let us mention that the advantage of optical imaging over traditional imaging modal-
ities, such as X-ray imaging, is that optical imaging is non-invasive and it provides func-
tional (rather than anatomical) information. Optical imaging devices are also less ex-
pensive in general. However, unlike in X-ray imaging, there is, in general, no analytical
reconstruction formulas available for optical imaging, except in very specific geometri-
cal settings such as those in [111]. We thus have to rely on numerical computations in
most cases. At the same time, the inverse transport problems in optical tomography and
optical molecular imaging are in general ill-posed, or even severely ill-posed sometimes,
in the sense that assuming uniqueness holds, the stabilities of the reconstructions are
very poor. The resolution of optical methods is thus not comparable to traditional X-ray
imaging.

Numerical reconstruction techniques for inverse transport problems fall roughly into
two categories: linear reconstruction methods and nonlinear reconstruction methods. In
the first type of methods, the inverse problems are linearized around some known back-
ground states to obtain linear inverse problems that are of the form (3.6) below. Clas-
sical regularization techniques are then applied to solve those inverse problems. Let us
mention that unlike in many inverse problems for partial differential equations, where
the Green’s function for the homogeneous background is known analytically, analytical
Green’s functions are almost never available for even very simple settings in transport
theory. Those Green’s functions that are needed have to be evaluated numerically to
construct the forward map in the linear inverse problems. So linearization methods in
inverse transport are also computationally expensive. This fact will be made clear in the
following sections.

The second type of reconstruct methods works directly on the nonlinear inverse prob-
lems. Those methods are iterative in nature. In most cases, the inverse problems are
formulated as the problems of minimizing the discrepancy between predictions by the
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transport model and the measurements. Iterative methods, such as those of Newton’s
type, are then applied to solve those nonlinear optimization problems. Other iterative
methods based on local linearization have also been introduced. In general, iterative
reconstruction schemes are even more computationally expensive, not to mention that
they converges only locally despite of globalization strategies, such as line search, often
employed.

The objective of this paper is to review recent developments in numerical methods for
inverse transport problems in medical imaging applications. Before we present details,
let us remark that the reconstruction methods we discuss in the following sections can
be applied to almost any kinds of discretization on the radiative transport equation. In
other words, the inversion methods are independent of how accurate the forward prob-
lem are discretized numerically, although the quality of the reconstructions will certainly
depend on how the accurate the forward problems are solved; see more discussion in
Section 6. We will thus not review many results in transport discretizations but refer, in
a very subjective way, interested readers to the references [4, 5, 75, 76, 84, 87, 106], know-
ing that the list is by no means complete. Let us also mention that since the radiative
transport equation is posed in phase space, involving both spatial and angular variables,
any reconstruction method, as long as it requires the numerical solution of the transport
equation, will be extremely expensive.

The rest of the paper is organized as follows. In Section 2 we introduce briefly the
transport models for optical tomography and optical molecular imaging. We also recall
various types of measurements available in the community. We then review the basic
procedure of linearized reconstruction in Section 3. Nonlinear iterative reconstruction
schemes, including quasi-Newton methods such as Gauss-Newton, BFGS, Levenberg-
Marquardt algorithms, that are based on least-square formulations and other methods
such as the nonlinear Kaczmarz method that are not based least-square formulation, are
presented in Section 4. In Section 5 we review some special methods used to reconstruct
features in the unknowns. A summary and some concluding remarks are provided in
Section 6.

2 Inverse transport problems in medical imaging

We review in this section the formulation of the inverse transport problems in optical
tomography, fluorescence tomography and bioluminescence tomography, three major
applications of the inverse radiative transport problems. We need the following nota-
tions. We denote by Ω ⊂ R

n (n = 2,3) the spatial domain of interest, with sufficiently
regular boundary ∂Ω. Although practical applications are all posed in three dimensional
space (n =3), inverse transport algorithms that we will describe are in general indepen-
dent of spatial dimensions. We denote by Sn−1 the unit sphere in R

n, the space of light
propagation directions, and θ∈ Sn−1 the unit vector on the sphere. We then denote by
X ≡ Ω×Sn−1 the phase space in which the radiative transport equation is posed. We
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define the boundary sets of the phase space, Γ±, as

Γ±={(x,θ)∈∂Ω×Sn−1 s.t. ±θ·ν(x)>0}

with ν(x) the unit outer normal vector at x∈∂Ω. The measure one can then introduce on
Γ± is dζ = |θ·ν(x)|dσ(x)dθ with dσ(x) the surface measure on ∂Ω.

2.1 Diffuse optical tomography

In diffuse optical tomography, near infrared lights are sent into tissues to be probed. The
propagation of NIR light in tissues is governed by the following phase space radiative
transport equation for photon density u(x,θ) [9]:

θ·∇u(x,θ)+Σ(x)u(x,θ)=Σs(x)K(u)(x,θ) in X ,
u(x,θ)= g(x,θ) on Γ−.

(2.1)

Here the non-negative functions 0 < Σ(x),Σs(x)∈ L∞(Ω) are the total absorption coeffi-
cient and the scattering coefficients, respectively. The physical absorption coefficient is
given by

Σa(x)≡Σ(x)−Σs(x).

The function g(x,θ)∈ L1(Γ−,dζ) is the incoming light source. The scattering operator K
is defined as

K(u)(x,θ)=
∫

Sn−1
K(θ·θ′)u(x,θ′)dθ

′,

where the kernel K(θ·θ′) describes the way that photons traveling in direction θ
′ getting

scattered into direction θ. The normalization condition
∫

Sn−1
K(θ·θ′)dθ

′=1, ∀θ∈Sn−1

should hold. In practical applications in biomedical optics, K is often taken to be the
Henyey-Greenstein phase function [9, 107]. Also, physical absorption always exists in
biological tissues, so Σa(x)>0 (thus Σ(x)>Σs(x)).

Measurements in optical tomography experiments are generally taken on the bound-
aries of the interested regions. We thus introduce the measurement operator, a bounded
linear functional M, acting on u(x,θ). In typical optical fiber based measurement, the
measurement operator is defined as [9]

(M1u)(x)≡
∫

Sn−1
θ·ν(x)u|Γ+dθ. (2.2)

This is nothing but the outgoing current of photons on the boundary of the domain. In
CCD cameras based measurement, the measurement operator is defined as

(M2u)(x,θ)≡u(x,θ)|Γ+ . (2.3)
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This is just the solution of the transport equation on the boundary of the domain in out-
going directions. It is clear that data in this type of measurement is more rich than those
in (2.2) since angularly dependent information are collected.

The goal of optical tomography is thus to reconstruct the optical properties of tissues,
the functions Σ(x) and Σs(x), from the full knowledge of the map Λ: g 7→Mu. In practice,
however, only a finite source-detector pairs can be used in the measurement process. We

thus have only partial information on the map Λ. {G(x,θ;xd}
Nd

d=1 Let us denote by Nq the
number of sources, Nd the number of detectors that can be used in an optical tomography
experiment and Nk the number of directions in which measurements can be taken. Then
the total data set we have is

{

gq, { zq,d }
Nd

d=1

}Nq

q=1
or

{

gq, {{ zq,d,k }
Nk

k=1}
Nd

d=1

}Nq

q=1
, (2.4)

depending on which measurement type we have. Here gq is the q-th source, zq,d =
(M1uq)(xd) is the measurement corresponding to the d-th detector and

zq,d,k =(M2uq)(xd,θk).

The inverse transport problem in optical tomography can now be formulated for-
mally as:

Problem 2.1. To reconstruct the functions Σa(x) and Σs(x) in the radiative transport equa-
tion (2.1) from the data set (2.4).

The numerical methods we will present in Section 3 depend slightly on what type of
measurements are taken. The nonlinear reconstruction methods in Section 4, however,
will be almost independent of the measurement operator. We will make those points
more clear later.

There is extensive literature on optical tomography with the radiative transport equa-
tion. We refer interested readers to [14,42,56,64,80,107,111,124] and the references cited
there.

2.2 Fluorescence tomography

Fluorescence tomography (FT) is a molecular imaging technique in which fluorescent bio-
chemical markers are injected into biological objects. The markers will then accumulate
on target tissues and emit near-infrared light (at wavelength λm) upon excitation by an
external light source (at a different wavelength which we denote by λx). Both the propa-
gation of the external light source and the fluorescent light in the tissues are described by
the radiative transport equation. So we have a system of two radiative transport equa-
tions in this case:

θ·∇ux(x,θ)+Σx(x)ux(x,θ)=Σx
s K(ux)(x,θ) in X ,

θ·∇um(x,θ)+Σm(x)um(x,θ)=Σm
s K(um)(x,θ)+ηΣx

a f (x)E(ux)(x) in X ,

ux(x,θ)= gx(x,θ), um(x,θ)=0 on Γ−.

(2.5)
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Here the superscripts x and m denote the quantities at the excitation wavelength and
emission wavelength, respectively. The total absorption coefficients are

Σx,m =Σ
x,m
ai +Σ

x,m
a f +Σx,m

s .

Here Σ
x,m
ai and Σ

x,m
a f are absorption due to chromophores and fluorophores, respectively.

E(ux) is the average of ux(x,θ) over direction variable θ. In other words, the operator E
is defined as

E(ux)(x)=
∫

Sn−1
ux(x,θ)dθ. (2.6)

In fluorescence imaging, the coefficients Σm
ai, Σm

a f and Σ
x,m
s are all assumed to be known

already by other techniques (such as optical tomography). So the main interest is to re-
construct the coefficients Σx

ai and Σx
a f (and thus the emission light source Σx

a f (x)E(ux)(x)).

The data measured is the map Λ : gx 7→ (Mux,Mum) with the measurement operator M
given by (2.2) or (2.3). In practice, the total data set we have is

{

gx
q , { zx

q,d, zm
q,d }

Nd

d=1

}Nq

q=1
or

{

gx
q , {{ zx

q,d,k, zm
q,d,k}

Nk

k=1}
Nd

d=1

}Nq

q=1
, (2.7)

where again gx
q is the q-th excitation source,

zx,m
q,d =(Mux,m

q )(xd), zx,m
q,d,k =(Mux,m

q )(xd,θk)

are measurement taken at wave length λx,m. Now the fluorescence inverse problem can
be posed as:

Problem 2.2. To reconstruct the two absorption coefficients Σx
a f (x) and Σx

ai(x) in the sys-

tem (2.5) from the data set (2.7).

Note that in the fluorescence tomography problem, since the first transport equation
only involves quantities at the excitation wavelength, the problem is reduced to optical
tomography problem if we only have measurements at the excitation wavelength. If
we only measure at the emission wavelength, we can at most reconstruct the product
ηΣx

a f (x)E(ux), not Σx
a f (x) since E(ux) is not known. We thus have to measure at both

wavelengths.
For recent development in fluorescence tomography, we refer interested readers

to [69, 79, 105, 116, 117] and references therein.

2.3 Bioluminescence tomography

Bioluminescence tomography (BLT) is another optical molecular imaging technique in
which we attempts to recover the distribution of light sources of bioluminescent cells.
Since those bioluminescence cells emit light automatically, there is no need to have exci-
tation light in this case. The same radiative transport equation can be used to describe the
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propagation of bioluminescent photons in tissues, and since we do not need excitation,
the non-incoming boundary condition has to be imposed. The equation reads

θ·∇u(x,θ)+Σ(x)u(x,θ)=Σs(x)K(u)(x,θ)+g(x),
u(x,θ)=0, (x,θ)∈Γ−,

(2.8)

where both the scattering and absorption coefficients are now assumed to be known. The
measurement now is the solution on the boundary of the domain, h(x,θ)=u(x,θ)|Γ+, or
in practice

{

{zd,k =h(xd,θk) }
Nk

k=1

}Nd

d=1
, (2.9)

where again Nk is the total number of directions at which we can measure the out-going
photon densities.

The inverse transport problem in bioluminescence tomography can now be formu-
lated formally as:

Problem 2.3. To reconstruct the bioluminescence source function g(x) in equation (2.8)
from the data set (2.9).

As we have mentioned above, what makes bioluminescence tomography unique is
the fact that since no excitation is needed, there is very little background autofluores-
cence. So we can obtain a better signal to noise ratio in this case than in the case of
fluorescence tomography. This feature makes bioluminescence tomography a promising
imaging technique in probing molecular and cellular processes.

We refer interested reader to references [30, 36, 37, 61, 128] for recent advances in the-
oretical and practical studies on bioluminescence imaging. Note that most of the work
on model-based bioluminescence imaging are based on the diffusion equation, not the
radiative transport equation that we focus on in this review.

Let us finally remark that bioluminescence tomography is a linear inverse source
problem for the transport equation. The fluorescence tomography is also an inverse
source problem (for wavelength λm) but is coupled with an optical tomography prob-
lem for the coefficients (for wavelength λx). Fluorescence tomography is thus a non-
linear inverse problem. Apart from fluorescence and bioluminescence tomography, in-
verse source problems for the radiative transport equation have also applications in other
fields; see for example [22, 66, 86, 101, 110, 115].

2.4 Miscellaneous extensions

The optical tomography, fluorescence tomography and bioluminescence tomography
problems we described in the previous sections can be generalized when different data
types are available in practice.

The first generalization is to consider time-dependent case. In this case, the term 1
c

∂u
∂t

is added to the transport equations, with c denoting the speed of light in tissues. One
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can thus measure the time evolution of the photon currents on the boundary of the do-
main. In terms of the notation before, the measurement we have for optical tomography
is still (2.4) except that each data point zq,d (or zq,d,k(t)) is now a function of t∈ (0,tmax):

{

gq(t), { zq,d(t) }Nd

d=1

}Nq

q=1
, or

{

gq(t), {{ zq,d,k(t)}Nk

k=1}
Nd

d=1

}Nq

q=1
. (2.10)

The time-dependent data for fluorescence tomography is now

{

gx
q (t), { zx

q,d(t), zm
q,d(t) }Nd

d=1

}Nq

q=1
, or

{

gx
q (t), {{ zx

q,d,k(t), zm
q,d(t)}Nk

k=1}
Nd

d=1

}Nq

q=1
.

(2.11)
Reconstructions with time-dependent measurement for both optical tomography and flu-
orescence tomography have been investigated in the past. Most of those investigations
use diffusion equation as their model of photon propagation [116, 117].

Frequency domain measurement is a cheaper alternative to the expensive time-
dependent measurement. Essentially, this is Fourier domain technique. The intensity
of the incoming source is modulated to some specific frequencies, so that we have the so
called propagation of photon density waves. Mathematically, this is just a Fourier trans-
form of the time-dependent problem. So we just need to replace the term 1

c
∂u
∂t by iωu

c with
ω the modulation frequency used. Ideally if we can measure data for all ω, we can do an
inverse Fourier transform to get time-dependent measurement. In practice, one can only
measure data for a few (say, Nω) frequencies. The data available in this case for optical
tomography is thus, assuming measurement of type (2.2),

{

gq(ω), { zq,d(ω) }Nd

d=1

}Nq

q=1
, ω∈{ω1,··· ,ωNω}. (2.12)

The same type of frequency-domain measurements can be realized in fluorescence to-
mography. Reconstructions with frequency-domain measurement for both optical to-
mography and fluorescence tomography have been investigated in the past; see for ex-
ample [69, 107].

A recent attempt to improve bioluminescence tomography is to introduce multiple
spectral measurements. The technique is thus called multispectral bioluminescence to-
mography [39, 61, 129]. Here it is assumed that one can measure light at different wave-
lengths. The transport equation in this case is

θ·∇u(x,θ,λ)+Σ(x,λ)u(x,θ,λ)=Σs(x,λ)K(u)(x,θ,λ)+g(x,λ),
u(x,θ,λ)=0, (x,θ)∈Γ−.

(2.13)

The measured data is again h(x,θ,λ)=u(x,θ,λ)|Γ+ . In practice, we can measure for several
(say, Nλ) different λ, so the data set we have is

{

{zd,k(λ)=h(xd,θk,λ) }Nk

k=1

}Nd

d=1
, λ∈{λ1,··· ,λNλ

}. (2.14)
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It is obvious that although we enriched our data set by measuring at different wave-
length, we also introduce an extra variable for the unknown function (g(x) becomes
g(x,λ)). Now if there is no a priori information on the source g(x,λ), we are back to
the usual bioluminescence problem for each wavelength. In fact, it is assumed in mul-
tispectral bioluminescence tomography that g(x,λi)= w(λi)g̃(x) with w(λi) known and

satisfies ∑
Nλ
i w(λi) = 1. Thus the multispectral data will help us to average out noises

in the reconstruction of g̃(x). We remark that the multispectral reconstruction can be
roughly decomposed into Nλ single spectral reconstruction problem (i.e., to reconstruct

{g(x,λi)}
Nλ
i=1) plus a data processing problem (i.e., to recover g̃(x) from {g(x,λi)}

Nλ
i=1). So

we will not cover the topic in the following sections.

2.5 Remarks on uniqueness and stability

Inverse transport problems in optical imaging have been extensively analyzed mathe-
matically in recent years [16, 33–35, 121–123, 130]. For a very complete review on the
subject, we refer to the reference [14] where uniqueness and stability results on various
types of inverse transport problems are presented in more general settings than the cases
we considered here. Here we only briefly mention the following results on a formal level,
without being mathematically precise. To ensure the well-posedness of the forward trans-
port problem (in appropriate function spaces, depending on the regularity of the source
functions), we assume that

0<Σa(x),Σs(x)∈L∞(Ω), so that Σ(x)≡Σa(x)+Σs(x)>Σs(x).

We also assume that the scattering kernel K(θ·θ′) (> 0 a.e.) is regular enough (say, K
belongs to L1(Sn−1)) with respect to both θ and θ

′, which is clearly true for the Henyey-
Greenstein phase function that is commonly used.

For the inverse coefficient problem in optical tomography, it is shown [14] that, as-
suming K is known:

(i) If we measure time-dependent, angularly-resolved data,

Λ : g(t,x,θ) 7→u(t,x,θ)|Γ+ ,

then both Σa(x) and Σs(x) can be uniquely and stably reconstructed in dimension n≥2;

(ii) If we measure time-independent, angularly-resolved data,

Λ : g(x,θ) 7→u(x,θ)|Γ+ ,

then Σa(x) and Σs(x) can be uniquely reconstructed when n = 3. When n = 2, Σa(x) can
be uniquely reconstructed if Σs(x) is known. Moreover, the reconstruction of Σa is stable;

(iii) If we measure time-dependent, angularly-averaged data,

Λ : |ν(x)·θ|g(t,x) 7→ (Mu)(t,x)|∂Ω ,
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then Σa(x) and Σs(x) can be uniquely reconstructed when n≥2; (iv) If we measure time-
independent, angularly-averaged data,

Λ : |ν(x)·θ|g(x) 7→ (Mu)(x)|∂Ω ,

only Σa can be uniquely reconstructed and the reconstruction is severely ill-posed. For
the bioluminescence inverse source problem in Section 2.3, it is shown under some con-
ditions on K that g(x) can be uniquely reconstructed from measurement of u(x,θ)|Γ+ .

These statements, although not mathematically precise, provide a flavor of unique-
ness results in optical tomography and bioluminescence tomography. In fact, many of
the uniqueness statements above can be generalized to more complicated absorption,
scattering coefficients and the kernel K; see the review paper [14] for more precise math-
ematical presentation of the above uniqueness results. Note that these uniqueness results
are obtained with infinite number of source detector pairs, i.e., with all possible sources
and measure at each point on the boundary. In practice, we never have such measure-
ments since our number of source-detector pairs is always finite (and often small).

For the fluorescence problem in Section 2.2, it is clear that to uniquely reconstruct the
product ηΣx

a f (x), we need at least data of the following type:

Λ : |ν(x)·θ|g(x) 7→
(

Mux(x)|∂Ω,um(x,θ)|Γ+

)

.

With these data, we can reconstruct uniquely Σx
ai+Σx

a f and ux(x,θ) from the first equa-

tion with measurement at wavelength λx. The second equation and the measurement at
wavelength λm would allow us to reconstruct uniquely ηΣx

a f E(ux). It is then clear that

Σx
ai and Σx

a f can be reconstructed uniquely provided that η is known.

For the multispectral bioluminescence tomography problem (2.13), we can deduce
from the above-mentioned results that full measurement at wavelength λi will allow us
to reconstruct uniquely the quantity

g(x,λi)=w(λi)g̃(x).

If the weight w(λi) is known, then we can of course obtain uniquely g̃(x). When noisy
measurement are used, we can first perform reconstructions at all Nλ wavelengths to get
Nλ estimates of g̃(x). We then take an average over the Nλ reconstructions to get a better

estimate of g̃(x), (1/Nλ)∑
Nλ
i=1 g(x,λi)/w(λi). This is why multispectral measurements are

useful. In fact, it is shown in [36,61] that one can obtain better reconstruction of g̃(x) even

in the case where {w(λi)}
Nλ
i=1 are not known exactly.

As we have mentioned above, the stability of reconstructions in optical imaging with
angularly averaged measurements is usually very low. In fact, theory shows that the
reconstruction in this regime is exponentially unstable [14], very similar to the case of
optical imaging with diffusion equations. More detailed analysis [111] shows that the in-
stability mainly happens in the depth direction. In other words, the resolution of diffuse
optical tomography in the depth direction is extremely low, while the resolution in the
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transverse direction is controlled by sampling. We will not discuss the issue further in
the following sections but refer interested readers to the above-mentioned references.

Let us conclude Section 2 by the following two remarks. The traditional imaging
techniques such as X-ray tomography uses high-energy so that scattering effect can be
neglected [95, 96]. Thus, the transport equations involved there for the propagation of
X-rays are the free radiative transport equation without the scattering term (i.e., the op-
erator K). The inversion for those transport equations are thus, although still highly
nontrivial, significantly simpler (computationally) than the cases we considered in this
work; see the reviews in [93, 94].

In practical applications, all the data we measured are polluted by noise of various
sources. Dealing with noisy data is itself a challenging research topic. In inverse trans-
port community, this issue is often addressed by introducing regularization techniques.
In the presentation below, we will assume that the data we used are noisy as well and
incorporate simple regularization strategies in the algorithms we present. We will not
address the question of how to choose optimal regularization parameters, such as the β
in (3.24) below, but refer interested readers to the classical monograph [47] and references
therein.

3 Linearized reconstruction methods

We have seen from the previous section that both optical tomography and fluorescence
tomography are nonlinear inverse transport problems. For those nonlinear inverse prob-
lems, it is often desirable to linearize the problem around some known (not necessarily
constant) background to obtain linear inverse problems. In fact, this is often what is done
in the field [25,74]. We study the procedure of linearization of nonlinear inverse transport
problem in this section. Let us start with optical tomography.

3.1 DOT with stationary measurement

Let us first consider the situation where we have measurement of type (2.2), i.e., assuming
that we have data (2.4). Let us assume that the physical absorption coefficient is what
we are looking for. We consider the case where Σa(x) can be written as superposition
of a known background Σ0

a (not necessarily constant) and a perturbation Σ̃a(x) from the
background. In other words,

Σa(x)=Σ0
a +Σ̃a(x). (3.1)

We then linearize the problem around the background Σ0
a. We denote by U0

q(x,θ) (1≤q≤

Nq) the solution of the transport equation (2.1) with the known background Σ0
a for source

gq. Then U0
q(x,θ) solves the transport equation

θ·∇U0
q (x,θ)+Σ0(x)U0

q (x,θ)=Σs(x)K(U0
q )(x,θ) in X ,

U0
q(x,θ)= gq(x,θ) on Γ−,

(3.2)
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with Σ0(x)=Σ0
a(x)+Σs(x), where both Σ0

a(x) and Σs(x) are assumed known.
The solution of the full problem can then be written as

uq(x,θ)=U0
q (x,θ)+ũq(x,θ), (3.3)

where ũq(x,θ) is the perturbation in the solution caused by the perturbation Σ̃a(x) in the
coefficient. The equation satisfied by the perturbation ũ(x,θ), to the first order, is

θ·∇ũq(x,θ)+Σ0(x)ũq(x,θ)=Σs(x)K(ũq)(x,θ)−Σ̃a(x)U0
q (x,θ) in X ,

ũq(x,θ)=0 on Γ−.
(3.4)

We now introduce the adjoint (in L2 sense) Green’s function G(x,θ;xd) for the homoge-
neous problem

−θ·∇G(x,θ;xd)+Σ0(x)G(x,θ;xd)=Σs(x)K(G)(x,θ;xd) in X ,
G(x,θ;xd)=δ(x−xd) on Γ+,

(3.5)

for xd ∈ ∂Ω. Note that since the transport operator is not self-adjoint, the boundary con-
dition is now put on Γ+.

If we multiply (3.4) by G(x,θ;xd) and integrate over phase space X , and multiply (3.5)
by ũq(x,θ) and integrate over the phase space, we obtain

∫

Ω
Σ̃a(x)

(

∫

Sn−1
U0

q (x,θ)G(x,θ;xd)dθ

)

dx=−
∫

Sn−1
n(xd)·θũq(xd,θ)|Γ+dθ. (3.6)

The right hand side of Eq. (3.6) is nothing but the difference between measured data and
prediction from the background problem, i.e.,

z̃q,d =−
(

zq,d−(M1U0
q |Γ+)(xd)

)

,

which is now treated as the new data. The kernel for this linear integral equation,
∫

Sn−1 U0
q Gdθ is known since it only involves transport solution (and Green’s function)

for the background medium. We have thus constructed a linear map that maps the per-
turbation of absorption coefficient, Σ̃a(x), to measured data. The inverse problem can
now be solved by inverting the linear map (3.6).

In practice, let us assume that we have a numerical procedure, say a quadrature rule,
to discretize the integral equation (3.6), and assume that we discretize Σ̃a(x) on a mesh of

NΩ nodes, {yk}
NΩ

k=1. Then, after collecting the discretization for all Nq sources, we obtain
a linear system of algebraic equation of the form

AΣ̃a =Z , (3.7)

with the matrix A∈R
(NqNd)×NΩ and the column vector Z ∈R

(NqNd)×1 are of the form

A=[AT

1 ,··· ,AT

Nq
]T, Z =[ZT

1 ,··· ,ZT

Nq
]T, (3.8)
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with

Aq ∈R
Nd×NΩ , Zq =[zq,1,··· ,zq,Nd

]T∈R
Nd×1, ≤q≤Nq.

The superscript T is used to denote the transpose of a quantity. The Σ̃a ∈ R
Nd×1 now

denotes the column vector that contains the value of the function Σ̃a on the mesh nodes.
The elements of the matrix A is given by

(Aq)dk = ξk

∫

Sn−1
U0

q(yk,θ)G(yk,θ;xd)dθ, (3.9)

with ξk (1≤ k≤NΩ) the weight of the quadrature on the kth element.

3.2 Generalization to other measurement types

We can generalize the linearization method to problems with other measurements. For
example, if instead of considering angularly averaged measurement (2.2) we consider
measurement of the form (2.3), we can construct a similar linear problem by following
the same procedure as above. The only difference would be to replace the source δ(x−xd)
in the equation for the Green’s function, i.e., Eq. (3.5), by δ(x−xd)δ(θ−θ̂); see Eq. (3.22)
below. Let us denote the Green’s function in this case by G(x,θ;xd,θ̂). Then the same
procedure would provide us the following linearized problem

∫

Ω
Σ̃a(x)

(

∫

Sn−1
U0

q (x,θ)G(x,θ;xd,θ̂)dθ

)

dx=−θ̂·n(xd)ũq(xd,θ̂). (3.10)

Here again the right hand side is nothing but the measured data (multiplied by the
known factor −θ̂·n(xd) which, when the measurement direction is taken to be n(xd),
is just −1). The integral equation (3.10) can be discretized to obtain a linear algebraic
system that is very similar to (3.7).

Frequency-domain data (2.12) are often used when both the absorption and the scat-
tering coefficients have to be recovered. In this case, linearization techniques can also be
developed. Assuming we want to recover both absorption and scattering perturbations,
we can follow the same procedure as before to obtain

∫

Ω
Σ̃a(x)

(

∫

Sn−1
U0

q(ω,x,θ)G(ω,x,θ;xd)dθ

)

dx

+
∫

Ω
Σ̃s(x)

(

∫

Sn−1

(

U0
q−K(U0

q)
)

G(ω,x,θ;xd)dθ

)

dx

=−
∫

Sn−1
n(xd)·θũq(ω,xd,θ)|Γ+dθ. (3.11)

where U0
q(ω,x,θ) solves the frequency domain transport equation, i.e., Eq. (3.2) with a

term iω
c U0 on the left hand side, with background coefficients Σ0

a and Σ0
s , and G(ω,x,θ;xd)

is the corresponding adjoint Green’s function. Now since the integral equation (3.11) is
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complex, we can split it into two separate equations for the real and imaginary parts.
After discretization, we can obtain system of equations of the form (3.7)

ArΣ̃a+BrΣ̃s =Zr,

AiΣ̃a+BiΣ̃s =Zi.
(3.12)

Here the subscripts r and i are used to denote the real and imaginary part, respectively.
The matrices Ar and Ai come from the discretization of the first integral in (3.11). Ma-
trices Br and Bi come from the discretization of the second integral. It is hoped that
when the modulation frequency ω is non-zero, one can solve (3.12) to recover both Σ̃a

and Σ̃s. This separation between the two coefficients is not possible when only stationary
angularly-averaged measurements are available.

To generalize the linearization method to time-dependent problems, let us assume
that we can have measurements up to time tmax. We thus consider the following initial
and boundary value problem for the transport equation

∂u

∂t
+θ·∇u(t,x,θ)+Σ(x)u(t,x,θ)=Σs(x)K(u)(t,x,θ) in (0,tmax)×X ,

u(0,x,θ)=0 in Ω, u(t,x,θ)= g(t,x,θ) on (0,tmax)×Γ−.

(3.13)

Note that it is not crucial to assume the zero initial condition. Follow the procedure in
Section 3.1, we obtain, with the same notation as before,

∫

Ω
Σ̃a(x)

(

∫ tmax

0

∫

Sn−1
U0

q (t,x,θ)G(t,x,θ;xd)dθdt
)

dx

=−
∫ tmax

0

∫

Sn−1
n(xd)·θũq(t,xd,θ)|Γ+dθdt. (3.14)

Here the adjoint Green’s function is the solution of

−
∂G

∂t
−θ·∇G+Σ0(x)G(t,x,θ;xd)=Σs(x)K(G)(t,x,θ;xd) in (0,tmax)×X ,

G(tmax,x,θ)=0 in X , G(t,x,θ;xd)=δ(x−xd) on (0,tmax)×Γ+,

(3.15)

which is an evolution equation that starts from t= tmax, not t=0.

The linear integral equation (3.14) can be discretized again to obtain a system of linear
equation of the same form as (3.7), with the elements of the coefficient matrix given by

(Aq)dk = ξk

∫ tmax

0

∫

Sn−1
U0

q (t,yk,θ)G(t,yk,θ;xd)dθdt. (3.16)

This indicates that the solution of the linear inverse problem will depend on tmax (since
(Aq)dk is a function of tmax).
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3.3 Linearization in fluorescence tomography

The nonlinear fluorescence tomography problem can also be linearized to obtain linear
problems around some known background. The procedure is very similar to the lin-
earization we have just presented. However, due to the fact that fluorescence tomogra-
phy involves a coupled system of two transport equations, extra efforts are needed. With
similar notations as before, the equations for the perturbations are

θ·∇ũx
q +Σx,0(x)ũx

q =Σx
s (x)K(ũx

q)−(Σ̃x
ai+Σ̃x

a f )Ux,0
q in X ,

θ·∇ũm
q +Σm(x)ũm

q =Σm
s (x)K(ũm

q )+ηΣ̃x
a f E(Ux,0

q )+ηΣ
x,0
a f E(ũx

q) in X ,

ũx
q(x,θ)=0, ũm

q (x,θ)=0 on Γ−,

(3.17)

where Ux,0
q and Um,0

q are the solutions with background optical parameters. Let us intro-
duce the adjoint boundary Green’s functions, Gx(x,θ;xd) and Gm(x,θ;xd), that solve

−θ·∇Gx+Σx,0(x)Gx =Σx
s (x)K(Gx)(x,θ;xd) in X ,

−θ·∇Gm+Σm(x)Gm =Σm
s (x)K(Gm)(x,θ;xd) in X ,

Gx(x,θ)=δ(x−xd), Gm(x,θ)=δ(x−xd) on Γ+.
(3.18)

Note that if measurements are only taken at wavelength λm, then the δ(x−xd) source for
Gx will not be necessary. We are now ready to obtain

∫

Ω

(

Σ̃x
ai(x)+Σ̃x

a f (x)
)(

∫

Sn−1
Ux,0

q Gxdθ

)

dx

=−
∫

Sn−1
n(xd)·θũx

q(xd,θ)|Γ+dθ (3.19)

and
∫

Ω
ηΣ̃x

a f (x)
(

E(Ux,0
q )E(Gm)

)

dx

=−
∫

Sn−1
n(xd)·θũx

q(xd,θ)|Γ+dθ+
∫

Ω
ηΣ

x,0
a f E(Gm)E(ũx

q)dx. (3.20)

The first equation, Eq. (3.19), is the same as (3.6) but for wavelength λx. The second equa-
tion, Eq. (3.20), is very different. The right hand side involves not only measured data
at wavelength λm but also the solutions of the perturbed equations inside the domain.
In order to solve for the unknowns Σ̃x

ai and Σ̃x
a f , we have to combine the linear integral

equations, Eq. (3.19) and Eq. (3.20), with the equations for perturbations at wavelength
λx, i.e., the first equation in (3.17) to form an enlarged least square problem. We can also
solve the problem sequentially as follows. We first solve (3.19) to obtain the summation
Σ̃x

ai+Σ̃x
a f . We then solve the first equation in (3.17) to obtain ux

q(x,θ). After that, we can

solve (3.20) to obtain Σ̃x
a f (and thus Σ̃x

ai assuming that η is known). Note that since the

parameter η (possibly as a function of space also) and Σx
a f appear as a product in the

equation, it is not possible to reconstruct both of them, but only the product.



K. Ren / Commun. Comput. Phys., 8 (2010), pp. 1-50 17

When time-dependent or frequency-domain measurements [116,117] are available in
fluorescence tomography, we can generalize, in a straightforward way, the above lin-
earization technique to use those data. We will not repeat the procedure here.

3.4 Bioluminescence problem

Unlike optical tomography and fluorescence tomography, bioluminescence tomography
itself is a linear inverse source problem. There is thus no linearization procedure needed.
The map between the unknown source g(x) and the measurement on the boundary is
just the solution restriction of the solution operator for (2.8) on Γ+, which we can express
as

∫

Ω
g(x)

(

∫

Sn−1
G(x,θ;xd,θ̂)dθ

)

dx=u(xd,θ̂), (xd,θ̂)∈Γ+, (3.21)

where the Green’s function G(x,θ;xd,θ̂) solves

−θ·∇G(x,θ;xd,θ̂)+Σ(x)G(x,θ;xd,θ̂)=Σs(x)K(G)(x,θ;xd,θ̂) in X ,

G(x,θ;xd,θ̂)=δ(x−xd)δ(θ−θ̂) on Γ+.
(3.22)

The kernel of the integral operator in (3.21) thus involves only the Green’s function,
which is quite different from the linearization problem in optical tomography, (3.6), and
fluorescence tomography, (3.19) and (3.20).

When multispectral measurements (2.14) are available, the bioluminescence tomog-
raphy problem (2.13) can be re-formulated as

∫

Ω
g(x,λ)

(

∫

Sn−1
G(x,θ,λ;xd,θ̂)dθ

)

dx=u(xd,θ̂,λ), (xd,θ̂)∈Γ+. (3.23)

Note that the Green’s function used here depends on wavelength λ. It solves Eq. (3.22)
with λ-dependent absorption and scattering coefficients.

3.5 Computational complexities

In all the problems we have discussed about in this section, we end up with a linear
system of algebraic equations of the form (3.7). In practice, those are either underdeter-
mined or overdetermined system, depending on the amount of data available. Besides,
as we have mentioned at the end of Section 2, the measured data usually contain noise.
Thus, the linearized problems, for example Eq. (3.7), are usually solved in regularized
least-square sense. For example, when Tikhonov regularization is used, Σ̃a is found as
the solution to

min
Σ̃a

1

2
‖AΣ̃a−Z‖2

2+
β

2
‖Σ̃a‖

2
2. (3.24)

The minimizer of (3.24) is the solution of the normal equation

(ATA+βI)Σ̃a =ATZ , (3.25)
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that is,

Σ̃a =(ATA+βI)−1ATZ . (3.26)

In practice, when the number of unknowns (discretized optical properties or sources) is
large, the inverse matrix (ATA+βI)−1 is usually not formed directly. Instead, iterative
methods are used to solve (3.25).

The major computation cost for linearized reconstruction methods that we presented
above is devoted to the formation of the linear system such as (3.7). This is because of the
fact that analytical formulas for the adjoint Green’s functions are not available. We thus
have to solve the transport equations to get those Green’s functions and background solu-
tions. For the optical tomography problem with measurement type (2.2) (resp. (2.3)), we

need to solve Nq transport problems to get {U0
q}

Nq

q=1. We then need to solve Nd (resp.

Nd×Nk) adjoint transport problems to get the Green’s functions {G(x,θ;xd}
Nd

d=1 (resp.

{{G(x,θ;xd,θk}
Nd

d=1}
Nk

k=1). The cost in the solution of the least square problem (3.24) is
small compared to a transport solver. So the total computational cost is roughly Nq+Nd

(resp. Nq+Nd×Nk) transport solvers. This is also true for time-dependent problems in
which cases Nq+Nd (resp. Nq+Nd×Nk) time-dependent transport problems have to be
solved. If frequency-domain data are used, the total computational cost will be roughly
(Nq+Nd)×Nω (resp. (Nq+Nd×Nk)×Nω ) complex transport solvers.

For the fluorescence tomography with measurement of type (2.2) (resp. (2.3)), to solve
each background forward problem, we need to solve two transport equations. We also
need to solve two adjoint transport equations to get the Green’s function for each detec-
tor. So we need totally 2(Nq+Nd) (resp. 2(Nq+Nd×Nk)) transport solvers to build the
linear system (3.19) and (3.20). To solve the linear system, however, we need to solve Nq

transport equations for the perturbation ux
q as we have discussed in Section 3.3. Thus the

total computational cost in this case is roughly 3Nq+2Nd (resp. 3Nq+2Nd×Nk) transport
solvers.

For the bioluminescence tomography problem in Section 3.4 with data (2.9), the com-
putational cost is Nd×Nk transport solvers. The computational cost for multispectral BLT
is roughly Nλ×Nd×Nk if the total number of wavelength used is Nλ. This is because the
absorption and scattering coefficients depend on wavelength, so that Green’s functions
for different wavelength is different.

3.6 Further remarks

The computational advantage of the linearization method over nonlinear reconstruction
methods is not very obvious in inverse transport problems. The main reason is the lack
of analytical results on transport Green’s functions, even in very simplified cases. We
have to compute those Green’s functions when needed, which makes the linearization
method still computational expensive as we have discussed above. For example, in all
those linearized reconstruction methods we have presented, the computational costs of
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the methods depend on not only the number of sources Nq, but also the number of detec-
tors Nd and the number of directions Nk. In some of the nonlinear reconstruction methods
we will introduce in Section 4, the computational cost will be independent of the number
of detectors (Nd) and the number of directions Nk.

In general, however, linearization methods are indeed computationally cheaper than
nonlinear iterative methods (such as those in Section 4) which require a considerable
number of iterations to converge, starting from an initial guess. Also, since the majority
of the computational costs is spent on forming the linearized problem, not on solving
the linearized problem by the least-square method, the cost of the whole reconstruction
process is (almost) independent of the value of the regularization parameter β. It is much
less expensive to choose the optimal regularization parameter in linearized reconstruc-
tion methods than in nonlinear reconstruction methods. For more details on how to
choose the optimal regularization parameter, we refer to [47].

When we are in the linearization regime, the quality of the reconstructions are compa-
rable to those obtained by more advanced reconstruction techniques. Indeed, it has been
observed in many applications that the linearization method works even when the per-
turbation in the absorption coefficient is not very small. However, when the perturbation
is very large, the linearization method fails. Let us emphasize finally that the background
around which we linearize the problem does not have to be constant but have to be known
a priori.

In recent years, it is of great interests to solve inverse transport problems with very
large data sets. In terms of the linearization method, this basically means that we have
to solve Nq ∼ 103 forward transport problems and Nd ∼ 103 adjoint transport problems
to form the matrix (3.7). Note that for all the Nq forward transport problems, only the
source terms in the equations are different. All other parameters (including absorption
and scattering coefficients) are the same. This is all true for the Nd adjoint problems.
In other words, we have to solve the same transport equation for Nq different source
terms. In terms of linear algebra, we want to solve linear systems with multiple right-
hand-sides. It would be of great interest if one can adapt fast algorithms such as those
proposed in [71, 72] (for different forward models) to solve the system efficiently so that
we can solve the inversion problem in a reasonable computational time.

4 Nonlinear iterative reconstructions

The majority of the reconstruction methods that have been developed in transport-based
medical imaging are nonlinear in nature since those inverse transport problems are
mostly nonlinear inverse problems. All the methods that we will review here are iter-
ative where starting from some initial guesses, the unknowns are iteratively updated so
that the discrepancy between the physical measurements and model predictions can be
reduced.

To simplify the presentation, we will consider the reconstruction problems for the
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transport equations on the discretized level. The way how the transport equations are
discretized is not very relevant. We will mainly focus on methods for optical tomogra-
phy with stationary measurements in Sections 4.1, 4.2 and 4.3. We will then attempt to
extend those methods to time-dependent measurements and fluorescence tomography
in Section 4.4.

Let us assume that the discretized transport equation (2.1) for source q (1 ≤ q ≤ Nq)
takes the form

T(Σ)Uq =Gq, (4.1)

where T(Σ)∈R
NΩNθ×NΩNθ denote the discretized transport operator, depending on the

discretized optical parameter Σ∈R
NΩ×1, Uq∈R

NΩNθ×1 is the discretized photon flux and
Gq ∈ R

NΩNθ×1 denote the discretized source function, coming from gq(x,θ). As before,
NΩ denote the number of nodes in spatial mesh and Nθ denote the number of directions
used in the discretization of the direction variable. For the detector located at a mesh
node xd∈∂Ω, we denote by MT

d :RNΩNθ×1 7→R the discretized version of the measurement
operator at xd. We can now introduce the nonlinear map between optical parameter Σ

and the measured data

Fq,d(Σ)≡MT

d Uq(Σ)= zq,d, 1≤q≤Nq, 1≤d≤Nd. (4.2)

The objective is now inverting this map to find the optical parameter Σ.
In practice, the system (4.2) is either overdetermined or underdetermined. Besides,

the physical measurements always contain noise. So, as in the linearized inversion case
we discussed in the previous section, (4.2) is often also inverted in (scaled) least-square
sense. Roughly speaking, we attempt to recover the unknowns by minimizing the dis-
crepancy between measured data zq,d and model predictions MT

d Uq. More precisely, with
data (2.4), the objective function to be minimized in optical tomography is defined as

Φ(Σ)=
1

2

Nq

∑
q=1

Nd

∑
d=1

|MT

d Uq(Σ)−zq,d|
2

|zq,d|2
+βR(Σ), (4.3)

where R(Σ) is the regularization functional and β is the regularization parameter. It is
important to note that the objective function Φ takes into account solutions Uq of the
forward problem for all Nq sources simultaneously. We emphasize that, although theo-
retically the normalization factor 1/|zq,d|

2 does not make any impact since we assume we
can minimize the objective function to arbitrary accuracy, it is very important to keep the
normalization in practice. This is because optical signals measured at different locations
can have values that are different by one or more order of magnitude. The normalization
process thus re-weights the mismatch terms coming from different source-detector pairs
so that they are on the same scale. Let us also mention that, when the data used con-
tain noise, it is useful to rescale the objective function using the covariance matrix of the
noisy data. The algorithms we present below, however, are independent of both rescaling
strategies.
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Now on the discretized level, optical tomography can be formulated as a minimiza-
tion problem subject to the constraints (4.1) for Nq different sources:

min
(Σ,{Uq}

Nq
q=1)

Φ
(

Σ,{Uq}
Nq

q=1

)

,

subject to T(Σ)Uq−Gq =0, 1≤q≤Nq.

(4.4)

We remark that in this constrained minimization formulation, we view the function Φ

as a function of both Σ and {Uq}
Nq

q=1. The two variables Σ and {Uq}
Nq

q=1 are linked to-

gether by the transport equations in the constraints. If we solve the transport equations

to obtain {Uq}
Nq

q=1 (as functions of Σ) and substitute back in Φ, we can then view Φ as a

function of Σ only. This is the perspective of unconstrained minimization; see discussion
in next section for more details. In the presentations in the following sections, we will

use both the notation Φ(Σ) and the notation Φ(Σ,{Uq}
Nq

q=1), depending on the context of

the presentation. We ask the readers to be alert about this difference.

To make the notations consistent, for any scalar function f (X,Y), we will regard its
gradients, ∇X f and ∇Y f , as column vectors, and define its Hessian matrix (matrix of
second order derivatives) as ∇2

XY f =∇Y

(

(∇X f )T
)

.

4.1 Methods of Newton type with line search

To solve the minimization problem (4.4), let us first consider methods of Newton type.
There are a few versions of the Newton’s method that have been developed in transport-
based optical tomography [78,107]. We present them in the same framework here. To do
that, let us first introduce the Lagrangian function L :RN×R

NΩNθ×Nq×R
NθNΩ×Nq 7→R for

the constrained optimization problem, defined by

L
(

Σ,{Uq}
Nq

q=1;{Vq}
Nq

q=1

)

=Φ
(

Σ,{Uq}
Nq

q=1

)

+
Nq

∑
q=1

VT
q

(

T(Σ)Uq−Gq

)

, (4.5)

where Vq ∈R
NθNΩ×1 is the adjoint variable to Uq, 1≤ q ≤ Nq. The solution to the opti-

mization problem (4.4), (Σ
∗,{U∗

q}
Nq

q=1), satisfies the first order optimality conditions, also

known as the Karush-Kuhn-Tucker (KKT) conditions, of (4.5),

∇ΣL=0, ∇[U]L=0, ∇[V]L=0,

where, to save space, we have introduced

[U]≡ (UT

1 ,··· ,UT
q ,··· ,UT

Nq
)T.
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Those conditions can be explicitly written as:

∇ΣL= β∇ΣR+
Nq

∑
q=1

(TΣUq)
TVq =0, (4.6)

∇UqL=TT(Σ)Vq+
Nd

∑
d=1

MT

d Uq−zq,d

|zq,d|2
Md =0, 1≤q≤Nq, (4.7)

∇VqL=T(Σ)Uq−Gq =0, 1≤q≤Nq, (4.8)

with the quantity

TΣ≡∇ΣT

understood as a tensor in R
NθNΩ×NΩ×NθNΩ so that (TΣUq) is in R

NθNΩ×NΩ and (TΣUq)TVq

is a column vector in R
NΩ×1. The kth component of (TΣUq)TVq is given by

UT
q

∂TT

∂Σk
Vq

with Σk the kth component of Σ. Theory of constrained optimization says that if

(Σ
∗,{U∗

q}
Nq

q=1) provides an optimal solution of (4.4), then there exist V∗
q ∈ R

NθNΩ×1,

1≤ q≤Nq, such that (Σ
∗,{U∗

q}
Nq

q=1,{V∗
q}

Nq

q=1) is a stationary point of the Lagrangian func-

tion (4.5).

The first order KKT conditions, (4.6), (4.7) and (4.8) forms a system of nonlinear equa-

tions for Σ, {Uq}
Nq

q=1 and {Vq}
Nq

q=1. It can be solved iteratively starting from an initial

guess (Σ0, [U0], [V0]). Assuming that we have the unknowns at iteration k, (Σk, [Uk],
[Vk]), the Newton method updates them according to

(Σ
k+1,[Uk+1],[Vk+1])=(Σ

k,[Uk],[Vk])+lk(Σ̃
k
,[Ũk],[Ṽk]), (4.9)

where (Σ̃
k
,[Ũk],[Ṽk]) is the update direction and lk is the step length in the that direc-

tion. lk is usually obtained by a line search method or other globalization technique. The
update direction is obtained by solving the following second order KKT system







∇2
[U][U]L ∇2

[U][V]L ∇2
[U]ΣL

∇2
[V][U]L ∇2

[V][V]L ∇2
[V]ΣL

∇2
Σ[U]L ∇2

Σ[V]L ∇2
ΣΣ

L













[Ũk]
[Ṽk]

Σ̃
k






=−





∇[U]L
∇[V]L
∇ΣL



, (4.10)

where all the derivatives are evaluated at (Σ
k,[Uk],[Vk]). In terms of transport operators,
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we have explicitly

∇2
[U][U]L= INq⊗

( Nd

∑
d=1

MdMT

d

|zq,d|2

)

,

∇2
[U][V]L=(∇2

[V][U]L)T = INq⊗TT,

∇2
[U]ΣL=(∇2

Σ[U]L)T =







TT
Σ

V1
...

TT
Σ

VNq






, ∇2

[V][V]L=0,

∇2
ΣΣ

L= β∇2
ΣΣ

R, ∇2
[V]ΣL=(∇2

Σ[V]L)T =







TΣU1
...

TΣUNq






,

(4.11)

where INq ∈R
Nq×Nq is the identity matrix and ⊗ denotes tensor product. As before, the

quantities TΣUq (1≤q≤Nq) (or respectively TT
ΣVq) (1≤q≤Nq) are understood as matrices

in R
NθNΩ×NΩ whose kth rows are given by ∂T

∂Σk
Uq (or respectively ∂TT

∂Σk
Vq).

In principle, if we can solve (4.10) to get the update direction, we can use the iterative
scheme (4.9) to find the final solution assuming that such an iterative process converges.
In practice, however, system (4.10) is a very large, (2Nθ NΩNq+NΩ)2, and ill-conditioned.
This full space approach has thus not being explored so far in optical imaging community.
All existing algorithms in optical tomography convert the minimization problem (4.4)
into unconstrained problem where only the unknown optical property are iteratively
updated. This is done as follows. Suppose we have Σ

k in the k-th Newton iteration.
We then solves the Nq forward transport problems in (4.8) with Σ

k exactly to get [Uk]. We

then solve the Nq adjoint problem in (4.7) to get [Vk]. After that, we have

∇[U]L(Σ
k,[Uk];[Vk])=0, ∇[V]L(Σ

k,[Uk];[Vk])=0,

so the update equation can now be simplifies to







∇2
[U][U]L ∇2

[U][V]L ∇2
[U]ΣL

∇2
[V][U]L 0 ∇2

[V]ΣL

∇2
Σ[U]L ∇2

Σ[V]L ∇2
ΣΣ

L













[Ũk]
[Ṽk]

Σ̃
k






=−





0

0

∇ΣL



, (4.12)

where we have used the fact that

∇2
[V][V]L=0.

It is now straightforward to perform a block Gauss elimination to eliminate [Ũk] and [Ṽk].
We thus obtain:

Hk
Σ̃

k
=−∇ΣL, (4.13)
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where the reduced Hessian operator is given by

Hk =∇2
ΣΣ

L−∇2
Σ[U]L(∇2

[V][U]L)−1∇2
[V]ΣL−∇2

Σ[V]L(∇2
[U][V]L)−1∇2

[U]ΣL

+∇2
Σ[V]L

(

∇2
[U][V]L

)−1
∇2

[U][U]L
(

∇2
[V][U]L

)−1
∇2

[V]ΣL, (4.14)

and the reduced gradient ∇ΣL is evaluated at (Σ
k,[Uk],[Vk]),

∇ΣL= β∇ΣR(Σ
k)+

Nq

∑
q=1

(TΣUk
q)

TVk
q. (4.15)

The updating formula (4.9) is also simplified to

Σ
k+1 =Σ

k+lkΣ̃
k
. (4.16)

The Newton type of methods that have been developed are all characterized by (4.16)
and (4.13) with line search method to determine lk. The main difference between differ-
ent implementations is how the reduced Hessian matrix and the reduced gradient are
approximated in practice.

4.1.1 The Gauss-Newton method

In Gauss-Newton version of the implementation, we drop the terms that involve ∇2
Σ[U]L

and ∇2
[U]ΣL to ensure that Hk is non-negative in the sense that

XTHkX≥0, ∀X∈R
NΩ×1.

This is important since we want to find the minimizer of the Lagrangian, not the maxi-
mizer. We thus obtain, after considering (4.11),

Hk
GN = β∇2

ΣΣ
R+

Nq

∑
q=1

(

(TΣUk
q)

TT−T

)( Nd

∑
d=1

1

|z2
q,d|

MdMT

d

)(

T−1(TΣUk
q)

)

. (4.17)

If we introduce a new matrix B∈R
NΩNθ×Nd defined as

B=[
M1

|zq,1|
,··· ,

Md

|zq,d|
,··· ,

MNd

|zq,Nd
|
], (4.18)

then the reduced Hessian can be written as

Hk
GN = β∇2

ΣΣ
R+

Nq

∑
q=1

JqJT
q , Jq ≡ (TΣUk

q)
TT−TB. (4.19)

There are also some different versions of the Gauss-Newton method. The most fre-
quently used one replaces the Hessian matrix (4.17) with

Hk
GN2 =∇ΣΦ(Σ

k)
(

∇ΣΦ(Σ
k)

)T

, (4.20)
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where Φ is the objective function defined in (4.3). It turns out that the gradient of the
objective function, ∇ΣΦ, is the same as ∇ΣL. To see this, we first differentiate Φ with
respect to Σ to obtain

∇ΣΦ(Σ)=
1

2

Nq

∑
q=1

Nd

∑
d=1

(

∇ΣUT
q

)

Md

MT

d Uq−zq,d

|zq,d|2
+β∇ΣR. (4.21)

We then differentiate the transport equation (4.1), after a transpose, with respect to Σ to
obtain

∇ΣUT
q TT+UT

q TT
Σ
=0. (4.22)

We can solve for ∇ΣUq and substitute into (4.21) to get

∇ΣΦ=−
Nq

∑
q=1

Nd

∑
d=1

UT
q TT

Σ
T−TMd

MT

d Uq−zq,d

|zq,d|2
+β∇ΣR

=
Nq

∑
q=1

(TΣUq)
TVq+β∇ΣR, (4.23)

which is exactly ∇ΣL. Here Vq is again the solution to the adjoint problem, i.e., the
second equation in the KKT conditions, Eq. (4.7).

We refer [124] for detailed implementation of the Gauss-Newton method for optical
tomography with the radiative transport equation.

4.1.2 The BFGS method

In the BFGS implementation of the Newton’s method (4.16) and (4.13), we approximate
the Hessian matrix Hk in a different way. Denote by

sk =Σ
k+1−Σ

k, yk =∇ΣΦ(Σ
k+1)−∇ΣΦ(Σ

k),

the BFGS updating rule for the Hessian matrix is

Hk+1
B =Hk

B−
Hk

BsksT

k Hk
B

sT

k Hk
Bsk

+
ykyT

k

yT

k sk

, (4.24)

starting from guess for Hessian, H0
B, which is often a scalar multiple of the identity ma-

trix. To reduce storage requirement for the Hessian matrix, which could be very large
in some cases, the limited memory version of the BFGS method chooses to form inverse
Hessian directly (in which case, (4.13) can be solved just by applying the inverse Hessian
to the right hand side). In this case, the updating rule for inverse Hessian is

(Hk+1
B )−1 =

(

INΩ
−

yksT

k

yT

k sk

)

(Hk
B)−1

(

INΩ
−

yksT

k

yT

k sk

)

+
ykyT

k

yT

k sk

. (4.25)
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As we mentioned above, forming (4.25) takes tremendous computer memory for large
problems. To overcome this shortcoming, the limited-memory version of BFGS only
stores the vector yk and sk obtained in the last m (3≤m≤ 7 usually) iterations [70] and
discards the rest. Thus after first m iterations, (4.25) can be expressed as:

(Hk+1
B )−1 =(QT

k ···Q
T

k−m)(Hk+1
B,0 )−1(Qk−m ···Qk)

+ρk−m(QT

k ···Q
T

k−m+1)sk−msT

k−m×(Qk−m+1 ···Qk)

+ρk−m+1(QT

k ···Q
T

k−m+2)sk−m+1sT

k−m+1×(Qk−m+2 ···Qk)

...

+ρksksT

k , (4.26)

with the sparse initial guess given by

(Hk+1
B,0 )−1 =

yT

k+1sk+1

yT

k+1yk+1

INΩ
, ρk =

1

yT

k sk

, Qk = INΩ
−yksT

k .

We refer interested readers to [98] for more details on the limited-memory BFGS al-
gorithms, and to reference [1, 57, 80, 100, 107, 112] for applications of those algorithms to
optical tomography with transport equation.

4.1.3 The Levenberg-Marquardt method

The Levenberg-Marquardt method can be also be viewed as a special case of the New-
ton’s method. In this case, the Hessian matrix is taken as

Hk
LM =νkINΩ

+β∇2
ΣΣ

R+
Nq

∑
q=1

JqJT
q , (4.27)

with Jq (1≤q≤Nq) given by (4.19). Note that (4.27) is the same as the Gauss-Newton ap-
proximation (4.17) except that there is an extra term νkINΩ

. In other words, the Levenberg-
Marquardt method can be viewed as a special case of the Gauss-Newton method with the
regularization functional

βR(Σ)+
νk

2
Σ

T
Σ.

The parameter ν is chosen to control the nonlinearity of the inverse problem and is chosen
such that νk → 0 as k → ∞. This means that the Levenberg-Marquardt method solves
the original regularized least-square problem when converges after infinite number of
iterations. In practice, the algorithm has to be terminated in a finite number of steps
(before νk to be zero), so the method regularizes the inversion more than designed.

The reduced gradient in the Levenberg-Marquardt method is taken as in (4.15) but
without the regularization term. In other words,

(∇ΣL)LM =
Nq

∑
q=1

(TΣUk
q)

TVk
q. (4.28)
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We remark that there are also different implementations of the Levenberg-Marquardt
method in the literature. To make a connection between them, let us consider the original
inverse problem in terms of (4.2). A local linearization at the kth iteration will give us the
following linear equations

(

∇ΣFq,d(Σ
k)

)T

(Σ
k+1−Σ

k)=−(Fq,d(Σ
k)−zq,d), 1≤q≤Nq, 1≤d≤Nd. (4.29)

Treating Σ
k+1−Σ

k as the unknown, we can solve this linear equation, after rescaling by
the factor 1/|zq,d|, by regularized least square method to obtain

[

1

|zq,d|
∇ΣFq,d(Σ

k)
( 1

|zq,d|
∇ΣFq,d(Σ

k)
)T

+νkINΩ
+β∇2

ΣΣ
R

]

(Σ
k+1−Σ

k)

=−
1

|zq,d|
∇ΣFq,d(Σ

k)
Fq,d(Σ

k)−zq,d

|zq,d|
, (4.30)

for 1≤ q≤ Nq , 1≤ d≤ Nd , with νk as the regularization parameter. We can now add the
equations for all source-detector pairs to obtain, still denoting by β and νk (instead of
(Nq+Nd)β and (Nq+Nd)νk) the parameters,

[ Nq

∑
q=1

(

TΣUk
q

)T
T−T

( Nd

∑
d=1

1

|z2
q,d|

MdMT

d

)

T−1
(

TΣUk
q

)

+νkINΩ
+β∇2

ΣΣ
R

]

(Σ
k+1−Σ

k)

=−
Nq

∑
q=1

(

TΣUq

)T
Vq, (4.31)

where we have used the fact that

∇ΣFq,d =
(

TΣUq

)T
T−TMd.

We now arrive at the following iteration for Σ
k

Σ
k+1 =Σ

k+(Hk
LM)−1

(

−
Nq

∑
q=1

(

TΣUq

)T
Vq

)

. (4.32)

This iteration is just the Newton method characterized in (4.13) and (4.16) with a fixed
step length, lk = 1, in line search. In practical implementations, we can of course use a
line search to find variable step length lk. That is why we treat the Levenberg-Marquardt
method as a special case of the Newton method with line search.

We can modify the above procedure slightly to get another implementation. Let us
first add together Eq. (4.29) for different detectors, again after rescaling by 1/|zq,d|, to
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obtain

Nd

∑
d=1

1

|zq,d|
MT

d T−1
(

TΣUq

)

(Σ
k+1−Σ

k)

=−
Nd

∑
d=1

1

|zq,d|
(MT

d Uq−zq,d), 1≤q≤Nq . (4.33)

We now again reformulate this equation in regularized least-square sense, and add the
results for all sources together, to get

Hk
LM2(Σ

k+1−Σ
k)=−(∇ΣL)LM2, (4.34)

with

Hk
LM2 =νkINΩ

+β∇2
ΣΣ

R

+
Nq

∑
q=1

( Nd

∑
d=1

(

TΣUk
q

)T
T−T Md

|zq,d|

)( Nd

∑
d=1

(

TΣUk
q

)T
T−T Md

|zq,d|

)T

, (4.35)

and

(∇ΣL)LM2 =
Nq

∑
q=1

[

( Nd

∑
d=1

(

TΣUk
q

)T
T−T Md

|zq,d|

) Nd

∑
d=1

1

|zq,d|
(MT

d Uq−zq,d)

]

. (4.36)

If we introduce Wq (1≤q≤Nq) that solves

TTWq =
Nd

∑
d=1

1

|zq,d|
Md, (4.37)

then Hk
LM2 and (∇ΣL)LM2 can be simplified as

Hk
LM2 =νkINΩ

+β∇2
ΣΣ

R+
Nq

∑
q=1

(

(

TΣUk
q

)T
Wq

)(

(

TΣUk
q

)T
Wq

)T

,

(∇ΣL)LM2 =
Nq

∑
q=1

[

(

(

TΣUk
q

)T
Wq

) Nd

∑
d=1

1

|zq,d|
(MT

d Uq−zq,d)

]

.

(4.38)

The iteration defined in (4.34) is again a Newton method. It is identical to the iteration
defined in (4.32) except that the Hessian matrix and the reduced gradient are slightly
different.

The Levenberg-Marquardt method has been implemented for inverse transport prob-
lems recently in [48,52–54]. We refer to those references for more details on the algorithm.
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4.1.4 Computational considerations

The methods of Newton type with line search that we have just introduced in this section
can be implemented as follows.

Algorithm 4.1: Newton’s method with line search

• FOR k=0,1,2,··· ,MAXIT

1. For q=1,2,··· ,Nq

Solve the forward problem (4.8);

Solve the adjoint problem (4.7);

End

2. Compute the reduced gradient and the Hessian matrix using

– (4.15) and (4.17) (or resp. (4.23) and (4.20)) for the Gauss-Newton method,

– (4.23) and (4.24) for the BFGS method, or

– (4.28) and (4.27) (or resp. (4.36) and (4.35)) for Levenberg-Marquardt method,

depending on the method selected;

3. Solve (4.13) for the update direction Σ̃
k
;

4. Perform a line search in direction Σ̃
k

to determine lk:

min
lk>0

Φ(Σ
k+lkΣ̃

k
);

5. Update Σ
k according to (4.16);

6. If (stopping criteria satisfied)

Stop and take Σ
k+1 as the final solution;

Else

Set Σ
k+1 =Σ

k;

End

• END

Different kinds of line search methods can be used in the algorithm to find lk > 0.
Usually, one impose the Wolfe conditions [98] on lk to ensure the convergence of the
algorithm:

Φ(Σ
k+lkΣ̃

k
)≤Φ(Σ

k)+c1lk

[

∇ΣΦ(Σ
k)

]T
Σ̃

k
, (4.39)

[

∇ΣΦ(Σ
k+lkΣ̃

k
)
]T

Σ̃≥ c2

[

∇ΣΦ(Σ
k)

]T
Σ̃

k
, (4.40)

where c1 and c2 are two small constants that can be tuned. The algorithm is usually
stopped when either the objective function (relative to its initial value, Φ(Σ

k)/Φ(Σ
0))
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is small enough or its gradient (in appropriate norm) is small enough. For details on
the implementation in the setting of inverse transport problems, including methods for
choosing the regularization parameter β, we refer to [48, 53, 54, 80, 107, 124].

The Newton type of methods, although straightforward to implement, are computa-
tional expensive. At each Newton iteration, the major costs are spent on the evaluation
of the objective function (or residual), the reduced gradient and the Hessian matrix. To
evaluate the residual, we need to solve Nq forward transport problems. We then have
to Nq adjoint transport problems to evaluate the reduced gradient. We thus need 2Nq

transport solvers. In the second Gauss-Newton method (characterized by (4.20)), the
BFGS method, and the second Levenberg-Marquardt method (characterized by (4.35)),
the reduced gradient can be used to form the Hessian matrices directly. So we do not
need extra transport solvers. The computational cost of those versions of the Newton’s
method is independent of the number of detectors used in the measurements. To form
the Hessian matrix (4.17) in the first Gauss-Newton and the Hessian matrix (4.27) in the
first Levenberg-Marquardt method, however, we need to solve Nd extra adjoint trans-
port equations to evaluate quantities of the form T−TMd (1≤d≤Nd). So we need totally
2Nq+Nd transport solvers to evaluate the residual, the reduced gradient and the Hessian
matrix. The computational costs for these two methods thus depend on the number of
detectors used.

The storage requirement for the Newton’s method is mainly the transport matrix T

(identical for all Nq sources) and the Hessian matrix H. The matrix T is in general sparse,
while H is not necessarily so. To circumvent storage limitations, one can use methods
such as the limited-memory version of the BFGS method [107]. A more general way
is to employ Krylov subspace methods (such as the GMRES method [109]) to solve the
reduced KKT system (4.13). Those methods are “matrix-free” in the sense that they do
not ask for the matrix explicitly but require only matrix-vector product.

Let us finally remark that the Nq transport equations (or resp. the Nq adjoint problems)
for different sources are independent of each other. Thus they can be solved on different
processors simultaneously when multiple-processor computational resources are avail-
able. Also, Newton type of methods converge faster (in terms of function and gradient
evaluations needed before the algorithms converge) than conjugate gradient methods
such as the one developed in [77].

4.2 Method of augmented Lagrangian

In the Newton type of methods we just introduced, the constrained minimization prob-
lem (4.4) is converted to an unconstrained minimization problem by solving the forward
and adjoint problems exactly at each Newton step. This method thus requires solving
the forward problem for some approximations of Σ over and over again in each recon-
struction. The speed of the algorithm depends strongly on how fast and accurately the
forward problems are solved.

In fact, (4.4) can be solved directly as a constrained problem. The augmented La-
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grangian method is an iterative method for this purpose that is easy to implement [2].
Still denote by L the Lagrangian function defined in (4.5), the method defines an aug-
mented Lagrangian function by

LA(Σ,{Uq}
Nq

q=1;{Vq}
Nq

q=1)=L(Σ,{Uq}
Nq

q=1;{Vq}
Nq

q=1)+
1

2A

Nq

∑
q=1

‖T(Σ)Uq−Gq‖
2
2, (4.41)

where the last term is used as a penalty for violating the constraints T(Σ)Uq−Gq = 0,
1≤ q≤ Nq . The strength parameter A will be updated during the iterative process. The
augmented Lagrangian method will look for a stationary point of the function LA instead
of L. Note that in the limit the constraints are satisfied exactly, LA =L. More details on
the method can be found in reference [98].

Let us assume that at the kth iteration, we have an approximation

(Σk,{Uk
q}

Nq

q=1;{Vk
q}

Nq

q=1) to the stationary point (Σ∗,{U∗
q}

Nq

q=1;{V∗
q}

Nq

q=1) of the Lagrangian

function. We fix the current estimates of the Lagrangian multipliers {Vk
q}

Nq

q=1 and a

penalty parameter Ak. Minimizing LAk
(Σ,{Uq}

Nq

q=1;{Vk
q}

Nq

q=1) with respect to Σ and

{Uq}
Nq

q=1 yields the following system for the minimizers:

β∇ΣR(Σ)+
Nq

∑
q=1

(TΣUq)
T

[

Vk
q−

1

Ak
(TUq−Gq)

]

=0, (4.42)

TT(Σ)
[

Vk
q−

1

Ak
(TUq−Gq)

]

+
Nd

∑
d=1

MT

d Uq−zq,d

|zq,d|2
Md =0, 1≤q≤Nq . (4.43)

Let (Σk,{Uk
q}

Nq

q=1) be approximate solution of this system, i.e., an approximate minimizer

of the augmented Lagrangian LAk
(Σ,{Uq}

Nq

q=1;{Vk
q}

Nq

q=1). We thus conclude, by compar-

ing this system with the optimality conditions of the Lagrangian, Eq. (4.6) and Eq. (4.7),
that Vk

q−(1/Ak)
(

T(Σ
k)Uk

q−Gq

)

approximates V∗
q :

V∗
q ≈Vk

q−(1/Ak)
(

T(Σ
k)Uk

q−Gq

)

, 1≤q≤Nq. (4.44)

This formula can be rearranged to produce an estimate of Vk
q−(1/Ak)

(

T(Σ
k)Uk

q−Gq

)

:

T(Σ
k)Uk

q−Gq ≈Ak(Vk
q−V∗

q). (4.45)

Hence, we deduce that if Vk
q is close to the optimal Lagrangian multiplier V∗

q , and Ak

is small enough, then the pair (Σk,{Uk
q}

Nq

q=1) satisfies the corresponding constraint with

a high accuracy. Formula (4.44) prompts a rule for iterative updating of the Lagrangian
multipliers (the adjoint variables):

Vk+1
q =Vk

q−
1

Ak

(

T(Σ
k)Uk

q−Gq

)

, 1≤q≤Nq. (4.46)
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The augmented Lagrangian method is thus an iterative method that update simulta-
neously the optical property Σ and the solutions of the forward (and adjoint) transport
problems. The algorithm can be implemented as follows.

Algorithm 4.2: Augmented Lagrangian algorithm

Initially choose A0, τ0 > 0 and maximum iteration step MAXIT. Also choose initial guess

(Σ̃
0
,{Ũ0

q}
Nq

q=1,{V0
q}

Nq

q=1).

• FOR k=0,1,2,··· ,MAXIT

1. Solve the sub-minimization problem

min
Σ,{U0

q}
Nq
q=1

LA0
(Σ,{U0

q}
Nq

q=1;{Vk
q}

Nq

q=1) (4.47)

to find the minimizer (Σ
k,{Uk

q}
Nq

q=1) by an iterative method that

– starts from initial value (Σ̃
k
,{Ũk

q}
Nq

q=1;

– terminates when ‖∇ΣLAk
‖l2 +∑

Nq

q=1‖∇UqLAk
‖l2 ≤τk is satisfied;

2. If (stopping criteria reached)

Stop and take (Σ
k,{Uk

q}
Nq

q=1) as the final solution;

End

3. Update the Lagrangian multipliers according to (4.46).

4. Choose a new penalty parameter Ak+1∈ (0,Ak) and new a parameter τk;

5. Set starting point for the next iteration:

(Σ̃
k+1

,{Ũk+1
q }

Nq

q=1)=(Σ̃
k
,{Uk

q}
Nq

q=1)

• END

To solve the sub-optimization problem (4.47) in the above algorithm, we can use any
iterative method such as the BFGS algorithm. The gradients of the objective function,

LAk
(Σ,{Uq}

Nq

q=1;{Vk
q}

Nq

q=1), with respect to Σ and {Uq}
Nq

q=1 are available analytically; see

for example, the left hand sides of (4.42) and (4.43). This makes the minimization proce-
dure more-or-less straightforward.

For initial guess set (Σ̃
0
,{Ũ0

q}
Nq

q=1, {V0
q}

Nq

q=1), we only choose an initial guess Σ
0. The

{Ũ0
q}

Nq

q=1 and {V0
q}

Nq

q=1 are chosen as the solution to the forward and adjoint transport

problems with Σ
0, respectively.

One advantage of the augmented Lagrangian method is that it can be easily paral-
lelized. For example, in the sub-minimization problem, the gradient of the augmented
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Lagrangian function has an analytical form that involves only the summation of local
matrix-vector and vector-vector products. The computation of this gradient can thus be
done on separate processors and then collected. Also, the update of the Lagrangian mul-
tipliers can be done on parallel processors.

We refer to references [23, 67, 98] for more detailed discussion of the augmented La-
grangian method, including the choice of parameters Ak and τk. It is shown in [2] that
with appropriate choice of various algorithmic parameters, the augmented Lagrangian
method can speed up the reconstruction process in optical tomography significantly. The
problem is exactly that there is no general theory on how to tune those parameters for
specific problems. One has to perform test reconstructions to choose efficient parameters.

4.3 The nonlinear Kaczmarz method

Besides those methods that are closely related to optimization theory, there are also a few
other types of iterative methods that have been implemented for inverse transport prob-
lems. The nonlinear Kaczmarz method [94, 95] has been implemented in a few different
settings [42].

In the Kaczmarz method, at each iteration, the data from different sources are used in
sequential to update the unknowns. This is very different from the methods we presented
above where, at each iteration, the measured data for all source-detector pairs are used
simultaneously to update the unknown. To present the method, let us first rewrite the
discretized nonlinear operator equation (4.2) into Nq small groups of nonlinear equations

Fq(Σ)=zq, 1≤q≤Nq , (4.48)

with the notation

Fq =

















Fq,1
...

Fq,d
...

Fq,Nd

















, zq =

















zq,1
...

zq,d
...

zq,Nd

















. (4.49)

Then the nonlinear Kaczmarz method is characterized by the following double iterative
process, starting with Σ

0

Σ̂
k,0

=Σ
k, (4.50a)

Σ̂
k,q

= Σ̂
k,q−1

+̟
(

∇ΣFT
q (Σ̂

k,q−1
)
)

C−1
q

(

zq−Fq(Σ̂
k,q−1

)
)

, q=1,··· ,Nq, (4.50b)

Σ
k+1 = Σ̂

k,Nq , (4.50c)

with

Cq =
(

∇ΣFT
q (Σ̂

k,q−1
)
)T(

∇ΣFT
q (Σ̂

k,q−1
)
)

∈R
Nd×Nd , (4.51)
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and 0<̟ <2 an algorithmic parameter.

The nonlinear Kaczmarz method (4.50) can be implemented straightforwardly. What
we need to pay attention to is the fact that the matrix Cq is very different from the Hessian
matrices in Newton type of method we have discussed above. Cq∈R

Nd×Nd is of different
size to the Hessian matrices. The component of the matrix is given by

(Cq)d1d2
=

(

(TΣUq)
TT−TMd1

)T(

(TΣUq)
TT−TMd2

)

. (4.52)

To evaluate the matrix Cq we thus have to solve the Nd adjoint transport equations to
compute T−TMd (1≤d≤Nd). The computational cost of the method is thus dependent not
only on the number of sources used but also on the number of the detectors employed.
The stop

It has not be discussed very much about how to impose regularization within the
framework of the Kaczmarz method besides stopping the iteration prematurely. One
possible way is to apply a weak low-pass filter, say F , on the iteration (4.50). In other

words, we replace the last step in the iteration by Σ
k+1=F(Σ̂

k,Nq). It would be interesting
to see some theoretical analysis on how to choose optimal filters in this case.

4.4 Extensions and remarks

The nonlinear methods we have presented so far for optical tomography with stationary
data can be generalized to other data types and inverse transport problems.

4.4.1 Frequency-domain data

Frequency-domain algorithms can be constructed in the same way as before. The trans-
port matrix T is now understood as the discretization of the transport operator T defined
as

Tu=
iω

c
u+θ·∇u+Σ(x)u−Σs(x)K(u). (4.53)

The transport solutions (Uq, 1 ≤ q ≤ Nq) and the adjoint variables (Vq, 1 ≤ q ≤ Nq) are
complex instead of being real. The transpose (i.e., adjoint) operation has to be understood

in complex (Hermitian) sense also. In other words, the transpose XT is replaced by X
T

; see
for example [107] for more details. An alternative choice is to split the complex equation
into real and imaginary parts to get a set of two (coupled) transport equations; see similar
discussion in Section 4.4.3.

Let us remark that when frequency domain data are available, it is desirable some-
times to rescale the phase and amplitude information separately. In minimization based
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algorithms, the objective function can be chosen as

Φ(Σ)=
1

2

Nq

∑
q=1

Nd

∑
d=1

{ |Re
[

ln(MT

d Uq)−ln(zq,d)
]

|2

|Re
[

ln(zq,d)
]

|2

+
|Im

[

ln(MT

d Uq)−ln(zq,d)
]

|2

|Im
[

ln(zq,d)
]

|2

}

+βR(Σ), (4.54)

where ReX and ImX denote the real part (amplitude) and imaginary part (phase) of X,
respectively. The rescaling factors can be chosen differently, depending on the needs of
concrete applications; see for example discussions in [124].

4.4.2 Time-dependent data

Time-dependent data can be Fourier transformed into frequency domain to use the al-
gorithms described above. We can also generalized those nonlinear reconstruction al-
gorithms to use data in time-domain directly. To see that, let us consider the Newton
method. The semi-discretized transport initial-value problem is now

1

c

∂Uq

∂t
+T(Σ)Uq =Gq, Uq(t=0)=0, 1≤q≤Nq, (4.55)

where the zero initial condition can be replaced with other ones, depending on physical
applications. Let us suppose that we can measure data in the interval (0,tmax). The
objective function to be minimized in this case is

Φ(Σ,{Uq}
Nq

q=1)=
1

2

Nq

∑
q=1

Nd

∑
d=1

∫ tmax

0

|MT

d Uq(t)−zq,d(t)|2

|zq,d(t)|2
dt+βR(Σ), (4.56)

where Uq(t) is an implicit function of Σ as before. Optical tomography with time-
dependent data can now be formulated into the same constrained minimization prob-
lem (4.4), except that constraints are now the equations in (4.55). The Lagrangian function
can be redefined as

L
(

Σ,{Uq}
Nq

q=1;{Vq}
Nq

q=1

)

=Φ(Σ,{Uq}
Nq

q=1)+
Nq

∑
q=1

∫ tmax

0
VT

q (t)
(1

c

∂Uq

∂t
+TUq−Gq

)

dt+
Nq

∑
q=1

VT
q (0)Uq(0). (4.57)
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The first order KKT conditions are now

β∇ΣR(Σ)+
Nq

∑
q=1

∫ tmax

0
(TΣUq)

TVqdt=0, (4.58)

−
1

c

∂Vq

∂t
+TT(Σ)Vq+

Nd

∑
d=1

MT

d Uq−zq,d

|zq,d|2
Md =0, Vq(tmax)=0, 1≤q≤Nq, (4.59)

1

c

∂Uq

∂t
+T(Σ)Uq−Gq =0, Uq(0)=0, 1≤q≤Nq, (4.60)

Attention has to be paid here to the fact that the adjoint problems are now transport
equations that evolves to t=0 starting from t= tmax. In other words, those are final-value
problems.

We can follow the steps in Section 4.1 to derive the whole algorithm. We will omit
the procedure but just mention that the second order operators involved in the reduced
Hessian operator are now given by

(∇2
[U][U]L)[Ũ]=

[

INq⊗
( Nd

∑
d=1

MdMT

d

|zq,d|2

)]

[Ũ],

(∇2
[V][V]L)[Ṽ]=0, (∇2

ΣΣ
L)Σ̃= β∇2

ΣΣ
RΣ̃,

(∇2
[U][V]L)[Ṽ]=

(

INq⊗(−
1

c

∂

∂t
+TT)

)

[Ṽ], [Ṽ](tmax)=0,

(∇2
[V][U]L)[Ũ]=

(

INq⊗(
1

c

∂

∂t
+T)

)

[Ũ], [Ũ](0)=0,

(∇2
[U]ΣL)Σ̃=







TT

Σ
V1
...

TT
Σ

VNq






Σ̃, (∇2

Σ[U]L)[Ũ]= [VT

1 TΣ ···VT
Nq

TΣ][Ũ],

(∇2
[V]ΣL)Σ̃=







TΣU1
...

TΣUNq






Σ̃, (∇2

Σ[V]L)[Ṽ]= [UT

1 TT

Σ
···UT

Nq
TT

Σ
][Ṽ].

We observe from (4.59) that to solve the adjoint problems, we need the forward solutions
Uq(t) for all time t ∈ (0, tmax). This means that we have to store full time-dependent
forward solutions. This is a nontrivial requirement since the forward solutions are high-
dimensional objects, the discretization of uq(t,x,θ) (1≤q≤Nq).

4.4.3 Fluorescence problem

Nonlinear reconstruction methods for fluorescence tomography is not very different from
those we have developed in the previous sections. To see that, let us consider the fluores-
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cence tomography in discrete level
(

Tx 0

Ex Tm

)(

Ux

Um

)

=

(

Gx

0

)

, (4.61)

where, as before, the superscript x and m denote quantities depending on wavelength λx

and λm, respectively. The matrix Ex is the discretization of the E operator defined in (2.6).
Equation (4.61) is of the same form as (4.1) if we introduce the notations

T=

(

Tx 0

Ex Tm

)

, U=

(

Ux

Um

)

, G=

(

Gx

0

)

.

Everything else follows immediately.

5 Techniques for features reconstructions

Inverse transport problems we have discussed in this paper are all ill-posed. In the al-
gorithms we presented in Section 3 and Section 4, we treat the optical parameters as
function of space and we attempts to reconstruct the full information about the optical
parameters. Those are inverse problems that are ill-posed, and the reconstructions are
not stable. In practice, it is always helpful when we have extra information about the
unknowns to be recovered so that we can use those information to improve the recon-
structions. We thus want to incorporate a priori information into the algorithms we have
developed. The techniques we introduce below are exactly for this purpose.

5.1 Parameterized reconstructions

In practical applications, we often have very limited amount of data that can be used.
We thus want to reduce the number of unknowns to be reconstructed so that the inverse
problem is not very underdetermined. One technique to reduce the number of unknowns
is to represent the unknown function with a basis under which the coefficients in the
representation decay fast enough so that the first a few coefficients will be enough to
represent the function accurately. In the cases where we know that the unknown function
is smooth enough, we can just use the Fourier representation. In regular domains, we
just look for a small number of Fourier coefficients of the unknown function. In a general
domain, we can parameterize the unknown as

Σ(x)=
M

∑
k=0

Σ̂kφk(x), (5.1)

with {φk}
∞
k=0 a global basis. One possible choice is of course the eigenfunctions of the

Laplace operator in domain Ω. In other words, {φk}
∞
k=0 are the solution of the following

eigenvalue problem
−∆φ(x)=λφ(x), in Ω, (5.2)
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with appropriate boundary conditions. If we use this parameterization to the linearized
inverse problem (3.6), we obtain, assuming that we are interested in only the first M
Fourier modes,

M

∑
k=1

ak(q,d)Σ̂k = zq,d, (5.3)

where the ak(q,d) are defined as

ak(q,d)=
∫

Ω
φk(x)

(

∫

Sn−1
U0

q (x,θ)G(x,θ;xd)dθ

)

dx. (5.4)

Collecting for all source and detector pairs, we get a linear system that we can solve
to recover the coefficients {Σ̂k}

M
k=1. The benefit of doing this is of course to reduce the

under-determinacy of the inverse problem. The reconstruction is thus more stable.
The parameterization can be also incorporated into nonlinear reconstruction schemes

we presented in Section 4. The unknowns are now the Fourier coefficients. For example,
in minimization-based methods, we now optimize with respect to {Σ̂k}

M
k=1. So the space

in which the minimizer is sought is much smaller than the original problem. The itera-
tive reconstruction algorithms can be directly used except that we have to compute the
gradient T

Σ̂
instead of TΣ. In fact, by chain rule, we obtain

T
Σ̂
=TΣ∇Σ̂

Σ.

Here ∇
Σ̂

Σ can be analytically computed from the representation in (5.1).
The parameterization method is a regularization (with prior knowledge) method in

the following sense. The number of modes kept, say M, play the role of the regulariza-
tion parameter. When M is small (1/M is large), the regularization is strong since we
are recovering very few parameters. When M is large (1/M is small), the regularization
effect is small. So 1/M has the same function as the parameter β in the regularized ob-
jective function we have seen in the previous sections. The parameterized reconstruction
method has been used in [59] for a two-dimensional rectangular domain where the basis
functions are chosen as cosines. It has been shown there that, with the parameterization
method, one can obtain reconstructions of very similar quality to full reconstructions, but
with less computational expenses and data.

5.2 Shape reconstructions

In many applications of optical tomography, the objective optical properties that we are
interested in consists of a few regions of constant values. In other words, we look for
localized changes in optical properties. Assuming that there are M localized objects in

regions {Ωk
Inc}

M
k=1, Ωi

Inc∩Ω
j
Inc =∅ if i 6= j, we can parameterize the unknown function as

Σ(x)=Σ0+
M

∑
k=1

Σ̂kχΩk
Inc

(x), (5.5)
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where χA(x) denotes the characteristic function of the set A. The objective is now of
course to look for the M regions, {Ωk

Inc}
M
k=1, and the coefficients in those regions, {Σ̂k}

M
k=1.

In bioluminescence tomography, to reduce the ill-posedness of the problem, it is pop-
ular to reconstruct features of the source instead of the general sources. For example, we
can assume that the source is localized, which result in the following parameterization

g(x)= ḡχΩsrc
(x). (5.6)

When multiple localized sources exist, we end up with a parameterization that is sim-
ilar to (5.5). Note that this parameterization, looking attractive, is nonlinear in nature.
It transforms the originally linear inverse problem into a nonlinear inverse problem to
recover the intensity ḡ and the support of the source Ωsrc.

Currently, most available results solve the inverse problem by solving the following
minimization problem (with the same notation as before)

min
{Σ̂k, Ωk

Inc}
M
k=1

1

2

Nq

∑
q=1

Nd

∑
d=1

|MT

d Uq−zq,d|
2

|zq,d|2
. (5.7)

The difficulty lies in the fact that any gradient-based iterative method will require the
computation of derivatives with respect to the geometric objects {Ωk

Inc}
M
k=1. In refer-

ence [10], an efficient method is proposed to compute such derivatives. The method pa-
rameterize further the boundary of the regions by Fourier coefficients in two-dimensional
case or spherical harmonics in three-dimensional case. For example, in two-dimensional
case, the boundary of a region, say (θ,r(θ)) in polar coordinate, is decomposed into the
superposition of a few Fourier modes:

r(θ)=
M

∑
k=−M

cke−ikθ , c−k = c̄k. (5.8)

It is then not very hard to compute the derivatives of the objective function with respect
to the Fourier coefficients {ck}

M
k=1.

The level set approach provides another way to solve the minimization problem (5.7).
We will not cover details here but refer interested readers to [44] for the implementation
of level set method for shape reconstruction problem in inverse transport applications.

5.3 Sparsity constraints

Very recently, there is a new type of a priori information that have been proposed to im-
prove reconstructions in bioluminescence imaging: the sparsity prior [53, 54]. The ideas
is based on the observation that the bioluminescence source we intend to recover is often
very localized. In other words, the source function only take nonzero values in a small
subregion of the domain. On discrete level, this means that the source vector to be re-
covered has sparse structure: there is only very small number (compared to the length
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of the vector) of nonzero entries. Recent study shows this type of sparse signals can be
recovered stably with only a small number of measurements [53]. Let us assume that we
have discretized the integral equation (3.21) into the following form

Gg=u (5.9)

with g the unknown source vector, G the system matrix and u the measurement vector.
We then recover the source vector by minimize the difference between prediction and
measurement with l1 regularization on the unknown:

min
g≥0

‖Gg−u‖2
2+β‖g‖1. (5.10)

It has been shown numerically in [53] that this minimization problem select sparse so-
lutions to the underdetermined problem (5.9), which thus helps to recover localized
sources. Based on the results in [53], it is proposed in [54] that one can go one step further
by changing the data fidelity term to l1 norm also to obtain the following minimization
problem

min
g≥0

‖Gg−u‖1+β‖g‖1. (5.11)

The benefit of using l1 data fidelity (instead of the l2 one) is that it allows one to recover
the right source function with data set that contain outliers (data points that are very
distant from the rest of the data), a claim that is verified by the numerical simulation in
[54] in a slightly more complicated situation.

Note that the minimization problems (5.10) and (5.11) are now non-smooth problems,
and it is non-trivial to solve those minimization problems. Most importantly, the prob-
lems are now nonlinear so iterative methods have to be used. The computational cost of
solving the inverse problem thus increase dramatically compared to linear least-square
techniques such as (3.24).

6 Summary and further remarks

We have reviewed reconstruction algorithms developed for optical tomography, fluores-
cence tomography and bioluminescence tomography based on the radiative transport
equations. We constructed both linearized algorithms and nonlinear iterative algorithms
and discussed briefly the properties of those algorithms. Since the inverse boundary
value problems we considered in this paper are in general (severely) ill-posed, we do not
expect very high accuracy in the numerical solution of those inverse problems. Most of
algorithms provide reconstructions of very similar quality; see for example the results
in Fig. 1. We are thus more interested in the speed of the reconstruction (which is not
a huge problem for many traditional imaging scheme such as X-ray tomography). It-
erative schemes of Newton type presented here are all local convergent with order of
convergence close to 2, better than conjugate gradient type of schemes. The advantage of



K. Ren / Commun. Comput. Phys., 8 (2010), pp. 1-50 41

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

−0.05

0

0.05

0.1

0.15

0.2

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

−0.05

0

0.05

0.1

0.15

0.2

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

0

0.05

0.1

0.15

0.2

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

−0.05

0

0.05

0.1

0.15

0.2

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

−0.05

0

0.05

0.1

0.15

0.2

Figure 1: Reconstructions of the absorption coefficient in the two-dimensional domain (0, 2)×(0, 2). From
top left to bottom right: real coefficient, reconstructions with Gauss-Newton, BFGS, Levenberg-Marquardt,
Kaczmarz and augmented-Lagrangian methods. All reconstructions start from the same initial guess. Very
small Tikhonov regularization (with the same parameter) has been applied to all reconstructions except for the
Kaczmarz method where we simply applied a low-pass filter on the iteration the unknown in iteration (4.50).

augmented-Lagrangian type of method lies in the fact that it is easy to be implemented
on parallel processors.

There is another special type of reconstruction methods that has not been presented in
this paper: the Monte Carlo methods. Monte Carlo type of methods have been developed
in [7, 62–64, 92]. Those methods are in general not as efficient as deterministic methods,
but can be useful in special situations and are easier (than other deterministic methods)
to implement when the domains of interest are of irregular shapes.

The reconstruction methods we discussed in this paper can be applied to almost any
kinds of discretization on the radiative transport equation. In other words, the inversion
methods are independent of how accurate the forward problem are discretized numer-
ically, although the quality of the reconstructions will certainly depend on how the ac-
curate the forward problems are solved. The focus on solving the forward problem in
inverse transport applications is mostly on how to solve the problems fast enough. We
will not be able to review results in the discretizations and solution of forward transport
equations. We refer therefore, in a very subjective way and knowing that the list is by no
means complete, interested readers to [4, 5, 51, 75, 76, 84, 87, 106].

The physics described by the radiative transport equation can be roughly classified
into three regimes: the transport limit, the diffusion limit and the intermediate. The
transport limit is the case when the underline scattering is very small so that photons
can travel through the medium with little chance of getting scattered (i.e. change the
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direction of traveling). In this case, inverse transport problems can be related to inverse
(attenuated) Radon transform type of problems. There are analytical or half-analytical
reconstruction methods. The resolution of the reconstruction is essentially controlled by
sample resolution [49, 101], which can be very high. The diffusion limit is the case when
absorption is sufficiently low and scattering sufficiently large. In this case, the transport
process can be modeled macroscopically with the diffusion equation [41, 45], which in
stationary case takes the form

−∇·D∇U+Σa(x)U(x)=0, in Ω,
U+nǫLnν(x)·D∇U = g(x), on ∂Ω.

(6.1)

Here U(x) is the angularly-averaged photon flux at x, an approximation of the quantity
∫

Sn−1 u(x,θ)dθ in the transport equation. The diffusion coefficient D(x) is related to Σa and
Σs. Ln and ǫ are known coefficients. Known results in [14] show that the inverse transport
problem in diffusion regime is a severely ill-posed problem so that the resolution of the
reconstruction is very low in practice. The reconstruction techniques we presented in the
previous sections are mostly useful in the intermediate regime where we need to use the
transport equation (instead of the diffusion equation) as the forward model but have no
explicit reconstruction methods. Past numerical results show that even in regimes close
to the diffusion regime, there are noticeable differences between reconstruction-based
reconstructions and diffusion-based reconstructions [108]. This justifies somehow the
use of transport equations in optical imaging.

In terms of future developments of numerical reconstruction methods for inverse
transport problems, we believe the following aspects are very important.

The first aspect is to develop fast reconstruction methods to deal with problems with
large data sets, about 106 larger than currently used [131]. It has been show that the use of
those large data set can significantly improve the quality of the reconstructions. However,
it is impossible to use those large data sets in the algorithms we have presented in this
work since they are very slow. We believe that the combination of numerical methods
with analytical or half analytical reconstruction methods, even for simple geometries, are
important for future development in optical imaging with transport models [111].

The second aspect is to develop reconstruction methods that can efficiently utilize
a priori information on the unknowns. Effective usage of a priori information can not
only accelerate the reconstruction, but also improve the stability (thus the quality) of the
reconstruction. The parameterization methods and the shape reconstruction methods we
mentioned are clearly examples of such methods. One specific direction to go in this
aspect is to follow the lines of the work in [53, 54].

The third aspect is to develop statistical methods for uncertainty quantification in in-
verse transport problems. In both optical tomography and optical molecular imaging,
we assume that except for the objects we want to recover, all other parameters are known
exactly. In practice, however, this is not true. For example, in BLT, we assume that the
optical parameters are known and we only want to reconstruct the source term. How-
ever, the optical parameters are not known exactly since they come from a step of optical
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tomography. We thus only know the parameters up to a certain accuracy. The uncer-
tainty in the optical parameters will have an impact on the reconstruction of the source
term. To characterize the uncertainty in the reconstruction of some parameters due to
the uncertainty in other parameters, it is natural to introduce Bayesian type of statistical
methods.

The fourth aspect is to develop methods that can utilize more efficiently time-
dependent data. In all cases we have mentioned in this paper, time-dependent data
are used by averaging information at different times; see for example, the linearization
in (3.14) and the objective function (4.56). We know, however, photons reach the detec-
tor in early times carry different information about the medium than photons reach the
detector in later times. Early photons are not scattered as much as later photons, so they
carry mainly information on absorption property of the medium. Early time measure-
ment would allow us to recover stably the absorption property. It would be of great
interest to design methods that can efficiently utilize measurements in different time in-
tervals.

Let us conclude the paper by the following remark. The inverse transport problems
we considered in this paper are all inverse boundary value problems in the sense that
the measurements for those problems (i.e., the data) are all taken on the boundary of the
domain of interests. There are many other kinds of inverse boundary value problems
that are of interests to practical applications. Many of the algorithms and ideas (such as
parameterization and feature reconstruction) reviewed here can also be suitable for other
inverse boundary value problems for differential equations.
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Loève Galerkin procedure, J. Quant. Spectrosc. Radiat. Transfer, 68 (2001), pp. 489–506.

[104] V. Prapavat, W. Runge, J. Mans, A. Krause, J. Beuthan, and G. Müller, Development of
a finger joint phantom for the optical simulation of early stages of rheumatoid arthritis,
Biomedizinische Technik, 42 (1997), pp. 319–326.

[105] H. Quan and Z. Guo, Fast 3-D optical imaging with transient fluorescence signals, Optical
Express, 12 (2004), pp. 449–457.

[106] K. Ren, G. S. Abdoulaev, G. Bal, and A. H. Hielscher, Algorithm for solving the equation of
radiative transfer in the frequency domain, Optics Lett., 29 (2004), pp. 578–580.

[107] K. Ren, G. Bal, and A. H. Hielscher, Frequency domain optical tomography based on the
equation of radiative transfer, SIAM J. Sci. Comput., 28 (2006), pp. 1463–1489.

[108] , Transport- and diffusion-based optical tomography in small domains: A compara-
tive study, Applied Optics, 46 (2007), pp. 6669–6679.

[109] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2nd ed., 2003.
[110] R. Sanchez and N. J. McCormick, On the uniqueness of the inverse source problem for

linear particle transport theory, Transport Theory and Statistical Physics, 37 (2008), pp. 236–
263.

[111] J. C. Schotland and V. A. Markel, Fourier-Laplace structure of the inverse scattering prob-



K. Ren / Commun. Comput. Phys., 8 (2010), pp. 1-50 49

lem for the radiative transport equation, Inverse Problems in Imaging, 1 (2007), pp. 181–
188.

[112] M. Schweiger, S. Arridge, , and D. Delpy, Application of the finite-element method for
the forward and inverse models in optical tomography, J. Math. Imaging Vision, 3 (1993),
pp. 263–283.

[113] C. Sendra and M. A. Box, Retrieval of the phase function and scattering optical thickness of
aerosols: a radiative perturbation theory application, J. Quant. Spectrosc. Radiat. Transfer,
64 (2000), pp. 499–515.

[114] C. E. Siewert, Inverse solutions to radiative-transfer problems based on the binomial or the
Henyey-Greenstein scattering law, J. Quant. Spectrosc. Radiat. Transfer, 72 (2002), pp. 827–
835.

[115] , Inverse solutions to radiative-transfer problems with partially transparent bound-
aries and diffuse reflection, J. Quant. Spectrosc. Radiat. Transfer, 72 (2002), pp. 299–313.

[116] V. Y. Soloviev, C. D’Andrea, M. Brambilla, G. Valentini, R. B. Schulz, R. Cubeddu, and S. R.
Arridge, Adjoint time domain method for fluorescent imaging in turbid media, Applied
Optics, 47 (2008), pp. 2303–2311.

[117] V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and
S. R. Arridge, Fluorescence lifetime imaging by using time gated data acquisition, Applied
Optics, 46 (2007), pp. 7384–7391.

[118] R. P. Souto, H. F. C. Velho, S. Stephany, and E. S. Chalhoub, Performance analysis of radia-
tive transfer algorithms for inverse hydrologic optics in a parallel environment, Transport
Theory and Statistical Physics, 33 (2004), pp. 449–468.

[119] R. J. D. Spurr, T. P. Kurosu, and K. V. Chance, A linearized discrete ordinate radiative trans-
fer model for atmospheric remote-sensing retrieval, J. Quant. Spectrosc. Radiat. Transfer,
68 (2001), pp. 689–735.

[120] P. Stefanov, Inverse problems in transport theory. Inside Out: Inverse Problems and Appli-
cations, Vol (47), MSRI publications, 2003.

[121] P. Stefanov and A. Tamasan, Uniqueness and non-uniqueness in inverse radiative trans-
port. Submitted, 2008.

[122] A. Tamasan, An inverse boundary value problem in two-dimensional transport, Inverse
Problems, 18 (2002), pp. 209–219.

[123] , Optical tomography in weakly anisotropic scattering media, in Contemporary Math-
ematics, AMS, Providence, RI, 2003.

[124] T. Tarvainen, M. Vaukhonen, and S. R. Arridge, Gauss-Newton reconstruction method for
optical tomography using the finite element solution of the radiative transfer equation, J.
Quant. Spectrosc. Radiat. Transfer, 109 (2008), pp. 2767–2778.

[125] E. A. Ustinov, Adjoint sensitivity analysis of radiative transfer equation: temperature and
gas mixing ratio weighting functions for remote sensing of scattering atmospheres in ther-
mal IR, J. Quant. Spectrosc. Radiat. Transfer, 68 (2001), pp. 195–211.

[126] , Adjoint sensitivity analysis of radiative transfer equation: 2. Applications to re-
trievals of temperature in scattering atmospheres in thermal IR, J. Quant. Spectrosc. Radiat.
Transfer, 73 (2002), pp. 29–40.

[127] A. P. Wang and S. Ueno, An inverse problem in a three-dimensional radiative transfer,
Astrophys. Space Sci., 155 (1989), pp. 105–111.

[128] G. Wang, Y. Li, and M. Jiang, Uniqueness theorems in bioluminescence tomography, Med.
Phys., 31 (2004), pp. 2289–2299.

[129] G. Wang, H. Shen, W. Cong, S. Zhao, and G. Wei, Temperature-modulated bioluminescence



50 K. Ren / Commun. Comput. Phys., 8 (2010), pp. 1-50

tomography, Optical Express, 14 (2006), pp. 2289–2299.
[130] J.-N. Wang, Stability estimates of an inverse problem for the stationary transport equation,

Ann. Inst. Henri Poincaré, 70 (1999), pp. 473–495.
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