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Abstract

Two-photon absorption photoacoustic tomography (TP-PAT) is a recent hybrid
imaging modality that aims at reconstructing two-photon absorption properties of
heterogeneous media from measured ultrasound signals generated by the photoacoustic
effect. While there have been extensive experimental studies in recent years to show
the great promises of TP-PAT, very little has been done on developing computational
methods for quantitative image reconstruction in this imaging modality. In this work,
we present a mathematical model for quantitative TP-PAT in diffusive media. We
implemented a computational strategy for the reconstruction of the optical absorption
coefficients, and provide numerical simulations based on synthetic acoustic data to
demonstrate the feasibility of quantitative reconstructions in TP-PAT.
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1 Introduction

Photoacoustic imaging (PAT) is a recent biomedical imaging modality that can provide high-
resolution images of optical contrast of heterogeneous media such as biological tissues [7,
10, 19, 30, 36, 40, 41, 43, 57, 62, 72, 73, 74]. In a typical PAT experiment, a short pulse of
near-infra-red (NIR) photons is sent into the medium to be probed. Photons then propagate
inside the medium and a portion of them gets absorbed during the propagation process. The
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energy absorbed by the medium leads to the heating of the medium, and the heating then
forces the medium to expand. The medium cools down when the remaining photons exit, and
the cooling process leads to the contraction of the medium. The expansion and contraction
of the medium initializes a pressure change inside the medium which then propagates in the
form of ultrasound waves. The ultrasound signals on the surface of the medium are then
measured. These measurements are used to infer information on the optical properties of
the medium [2, 14, 15, 18, 25, 44, 49, 50, 54, 60, 64, 65, 68, 70, 71, 80, 84, 87].

We study here two-photon photoacoustic tomography (TP-PAT) [12, 32, 33, 34, 52,
67, 69, 75, 77, 78, 79, 81], a variant of PAT that is used to image two-photon absorption
properties of tissue-like heterogeneous media. Here by “two-photon absorption” we mean
the absorption event where an electron transfers to an excited state after simultaneously
absorbing two photons whose total energy exceed the electronic energy band gap [37, 55, 63].
Even though it occurs less frequently in normal biological tissues than its single-photon
counterpart (i.e. the absorption event where an electron transfers to an excited state after
absorbing the energy of a single photon), two-photon absorption is extremely useful in
practice. In recent years, various types of materials with strong two-photon absorptions
have been proposed and engineered as exogenous contrast agents for different optical imaging
modalities [21, 61, 82, 88]. Many such materials can be tuned to be associated with specific
molecular signatures. Therefore, they can be used to visualize particular cellular functions
and molecular processes inside biological tissues.

There have been extensive experimental investigations on measuring two-photon absorp-
tion properties of various materials using TP-PAT [3, 32, 33, 76, 77, 78, 79, 81]. These
studies demonstrate the feasibility of TP-PAT in the sense that it is indeed possible to have
strong enough photoacoustic effect from two-photon absorption that can be experimentally
detected. It has, however, not been satisfactorily demonstrated so far, despite great progress,
that one can indeed separate the photoacoustic effect due to single-photon absorption from
that due to two-photon absorption to have better quantitative reconstruction of two-photon
absorption from measured ultrasound data. In the rest of this paper, we demonstrate,
computationally, through a model-based reconstruction algorithm, that it is possible to get
quantitative reconstructions of both single-photon and two-photon absorptions and therefore
separate them.

2 The mathematical models

The main physical processes involved in a TP-PAT experiment are the propagation of near
infra-red photons and the propagation of ultrasound signals in the underlying medium. In
optically heterogeneous media such as the biological tissues, it is well established now that
the propagation of NIR photons can be modeled with a diffusion equation for the local
density of photons [4, 18, 60, 84]. The main difference between TP-PAT and the regular
PAT is that two-photon absorption, in addition to single-photon absorption, needs to be
considered in the model for light propagation. Let us denote by Ω ⊆ Rd (d ≥ 2) the medium
to be probed, and denote by u(x) the density of photons at position x ∈ Ω. We then have
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that u(x) solves the following nonlinear diffusion equation [52]:

−∇ · γ(x)∇u(x) + σ(x)u(x) + µ(x)|u|u(x) = 0, in Ω

u+ κγ
∂u

∂ν
= g(x), on ∂Ω

(1)

where∇ is the usual gradient operator with respect to the spatial variable x, and the function
g(x) models the incoming NIR illumination source on the boundary ∂Ω. The function γ(x) is
the diffusion coefficient of the medium, and the functions σ(x) and µ(x) are respectively the
single-photon absorption and the (intrinsic) two-photon absorption coefficients. The total
two-photon absorption strength is given by the product µ(x)|u| where the absolute value
operation is taken to ensure that the total two-photon absorption strength is non-negative,
a property that needs to be preserved for the nonlinear diffusion model (1) to correctly
reflect the physics. The unit outer normal vector at point x on the boundary ∂Ω is denoted

by ν(x), and the notation
∂u

∂ν
= ν · ∇u is used in the Robin boundary condition. The

coupling parameter κ in the boundary condition is the rescaled extrapolation length. Its
value depends on many parameters, and can be explicitly calculated in specific settings [20].

The main difference between the nonlinear diffusion model (1) and the classical linear
diffusion model is the extra term µ(x)|u|u(x) that models the two-photon absorption mech-
anism. This nonlinear term makes the model (1) harder to solve computationally than
the classical linear diffusion model. It is important to emphasize that this nonlinear dif-
fusion model is indeed a well-posed mathematical model that admits a unique solution for
a given illumination source g under classical assumptions on regularities of the coefficients
and the domain. Classical numerical discretization schemes, such as finite element and finite
difference methods, can be used to discretize the equation. Iterative schemes such as the
Newton’s method can be used to solve the resulting nonlinear algebraic system; see more
detailed discussions in [52]. Let us also mention that simplified versions of this nonlinear
diffusion equation have been proposed in previous studies in TP-PAT; see for instance [12].

The initial pressure field generated by the photoacoustic effect in TP-PAT is the product
of the Grüneisen coefficient of the medium, Γ, and the total energy absorbed locally by the
medium, σu+ µ|u|u. Note that here the total absorbed energy consists of two components,
the contribution from single-photon absorption, σu, and the contribution from two-photon
absorption, µ|u|u. Therefore, we write the initial pressure field as [24, 52]:

H(x) = Γ(x)
[
σ(x)u(x) + µ(x)|u|u(x)

]
, x ∈ Ω. (2)

where the Grüneisen coefficient is non-dimensionalized, and it describes the efficiency of the
photoacoustic effect of the underlying medium.

The change of pressure field generates ultrasound waves that propagate following the
standard acoustic wave equation, the same model equation for ultrasound propagation in
the regular PAT [24]:

1

c2(x)

∂2p

∂t2
−∆p = 0, in (0,+∞)× Rd

p(t,x) = χΩH(x),
∂p

∂t
(t,x) = 0, in {t = 0} × Rd

(3)
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where p(t,x) is the pressure field, and c(x) is the speed of the ultrasound waves. In most
biological applications of PAT, the ultrasound speed c is assumed known and is often taken
as the speed of ultrasound in water since most biological tissues behave like water to ul-
trasound waves. The function χΩ is the characteristic function of the domain Ω. It should
be understood as the extension operator that extends the initial pressure field inside the
medium Ω to the whole space Rd, that is,

χΩH(x) =

 H(x), x ∈ Ω

0, x ∈ Rd\Ω
.

The acoustic datum measured in TP-PAT is the ultrasound signal on the surface of the
medium, p|(0,T ]×∂Ω, for time T sufficiently long, and very often, we need to measure data that
are generated from multiple illumination sources. From the measured data, we are interested
in reconstructing the physical coefficients (Γ, γ, σ, µ) of the underlying medium. Note that
among all the coefficients, the two-photon absorption coefficient µ is the only new coefficient
that appears in TP-PAT. The coefficients (Γ, γ, σ) are also quantities to be reconstructed
in the regular PAT [4, 19, 18, 35, 36, 46, 51, 53, 56, 74, 84, 85, 86]. Mathematical analysis
in [52] shows that one can not simultaneously reconstruct all four coefficients (Γ, γ, σ, µ) even
from data collected from multiple illuminations, if all illumination sources have the same
optical wavelength. We will therefore only focus on the two absorption coefficients (σ, µ)
in the rest of the paper. The reconstruction of all four coefficients using multispectral data
following the ideas in [6, 17, 19, 35, 48, 50, 59, 83] will be the subject of a future work.

3 A two-step reconstruction method

We now present a numerical method for the reconstruction of the absorption coefficients
(σ, µ). We follow the standard two-step procedure in quantitative PAT image reconstruc-
tions. In the first step, the qualitative step, we reconstruct the initial pressure field, H
in (2), from measured acoustic data using the wave equation (3). In the second step, the
quantitative step, we reconstruct the absorption coefficients from the initial pressure field
H using the nonlinear diffusion equation (1). We emphasize that the reason for choosing
this two-step reconstruction strategy, instead of the more recent one-step algorithms such
as those in [22, 45], is that the two-step method allows us to avoid solving the nonlinear
diffusion equation (1) in the quantitative reconstruction step in this specific setup; see more
discussions in Section 3.2.

3.1 Qualitative step: reconstructing initial pressure fields

In the qualitative step of TP-PAT, we aim at reconstructing the initial pressure field H
from measured datum p|(0,T ]×∂Ω. This step is the same as that in the regular PAT, which
has been extensively studied in the past. Many efficient algorithms have been proposed; see
for instance [11, 16, 23, 26, 27, 28, 29, 30, 31, 39, 42, 47, 58, 66, 70, 87] for an incomplete
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list of works in this direction. We implement here a simple least-square based algorithm for
the reconstruction.

To simplify the presentation, let us denote by A the linear operator that takes the initial
pressure field H(x) to the acoustic field on the boundary ∂Ω, i.e.,

p(t,x)|(0,T ]×∂Ω = AH. (4)

Our objective is to invert the operator A to find H for a given measurement p∗(t,x)|(0,T ]×∂Ω.
We solve this problem in the least-square sense, that is, we search for H as the minimizer
of the misfit functional

Φ(H) :=

∫ T

0

∫
∂Ω

(p− p∗)2dxdt ≡ ‖AH − p∗‖2
L2((0,T ]×∂Ω). (5)

Standard least-square theory then implies that the minimizer H solves the the normal equa-
tion

A>AH = A>p∗, (6)

where A> denotes the L2-adjoint of the operator A. We therefore need to invert the self-
adjoint operator A>A to find H.

We solve the normal equation (6) using the Conjugate Gradient method [9]. In a nutshell,
the method seeks a solution of the normal equation by iteratively choosing “conjugate”
or “A>A-orthogonal” directions, and minimizing the magnitude of the residual, ‖AH −
p∗‖2

L2((0,T ]×∂Ω), in each of these conjugate directions.

More precisely, let Hk be the value of H at iteration k, and let {hi}ki=1 be the set of
“A>A-orthogonal” directions constructed in the first k iterations. The directions {hi}ki=1

satisfy the A>A orthogonality relation, ∀ 2 ≤ i ≤ k:

〈hi,A>Ahj〉L2(Ω) = 0, ∀ 1 ≤ j ≤ i− 1.

We now search for an update of Hk in the direction hk such that the residual is minimized
after the update. That is, we minimize the residual Ψ(α) over α with:

Ψ(α) = ‖A(Hk + αhk)− p∗‖2
L2((0,T ]×∂Ω) = 〈A(Hk + αhk −H),A(Hk + αhk −H)〉L2((0,T ]×∂Ω)

= 〈Hk + αhk −H,A>A(Hk + αhk −H)〉L2(Ω)

where it was recalled p∗ = AH. The optimality condition immediately gives that the step
length at iteration k is:

αk =
〈hk,A>A(Hk −H)〉L2(Ω)

〈hk,A>Ahk〉L2(Ω)

=
〈hk, sk〉L2(Ω)

〈hk,A>Ahk〉L2(Ω)

, with sk = A>[A(Hk −H)].

Note that if we define rk = A(Hk −H) = AHk − p∗ as the residual of the original problem
at step k, then sk = A>rk is simply the so-called normal residual corresponding to rk. The
updated value Hk+1 is then obtained as

Hk+1 = Hk + αkhk,
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while the normal equation residual sk is updated as

sk+1 = sk − αkA>Ahk.
The Conjugate Gradient method updates the search direction following

hk+1 = sk+1 +
‖sk+1‖2

L2(Ω)

‖sk‖2
L2(Ω)

hk.

We summarize the Conjugate Gradient method in Algorithm 1 following the routine in [9],
with an accuracy tolerance parameter ε > 0 and the maximal number of iteration K.

Algorithm 1 : CG algorithm for qualitative reconstruction

1: Set parameters ε and K; set k = 0
2: Set initial guess H = 0
3: Evaluate the residual r = p∗ −AH and the normal residual s = A>r
4: Set initial search directions h = s
5: Evaluate the size of normal residual γ = ‖s‖2

L2(Ω)

6: while k ≤ K and γ/‖A>p∗‖2
L2(Ω) > ε do

7: g = Ah
8: α = γ/‖g‖2

L2((0,T ]×∂Ω)

9: H = H + αh
10: r = r − αg, s = A>r
11: β = ‖s‖2

L2(Ω)/γ

12: γ = ‖s‖2
L2(Ω)

13: h = s+ βh
14: k = k + 1
15: end while

It is often the case that a regularization term is added to the misfit functional Φ(H)
in (5). In our implementation, we did not include a regularization term in Φ(H). When it is
needed, the two algorithmic parameters ε and K can both serve as mechanisms to regularize
the reconstruction. We did not pursue in this direction in this study, but we understand
that tuning regularization can refine some of the reconstruction results that we show in the
next section.

Let us mention that even though the operator A and its adjoint operator A> are called in
each iteration of the algorithm, these operators are never explicitly formed in the numerical
implementation. We only need to know the actions of these operators on given vectors. For
instance, to evaluate Ah for a given h(x), we solve the acoustic wave equation (3) with initial
condition p(0,x) = h(x) and record the solution on the boundary of Ω: p(t,x)|(0,T ]×∂Ω. To
evaluate A>r for a given r(t,x), we first solve the following adjoint wave equation:

1

c2(x)

∂2v

∂t2
−∆v = 0, in (0, T )× Ω

v(t,x) = 0,
∂v

∂ν
(t,x) = r, in (0, T )× ∂Ω

v(t,x) = 0,
∂v

∂t
(t,x) = 0, in {t = T} × Ω

(7)
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We then take A>r = −∂v
∂t

(0,x). The derivation of (7) is straightforward, and has been

documented previously [1, 22], so we omit the details here.

3.2 Quantitative step: reconstructing absorption coefficients

The second step, the quantitative step, is to reconstruct the optical coefficients from the
initial pressure field H recovered in the first step. In recent years, this step was the subject
of many computational studies in the case of the regular PAT; see, for instance, [1, 2, 4, 5,
15, 18, 19, 35, 38, 46, 51, 53, 56, 60, 84, 85, 86] for a partial list of references.

Our main objective here is to develop an algorithm to reconstruct the absorption coef-
ficients (σ, µ) in TP-PAT to show that we can separate two-photon absorption from single-
photon absorption. We assume that both the Grüneisen coefficient Γ and the diffusion
coefficient γ are known already, for instance from a regular PAT reconstruction.

We assume that we have reconstructed initial pressure fields generated from J ≥ 2
illuminations sources. We denote by {Hj = Γ

[
σuj + µ|uj|uj

]
}Jj=1 those initial pressure

fields, where uj denotes the solution of the nonlinear diffusion equation with illumination
sources gj (1 ≤ j ≤ J).

We first reconstruct from the initial pressure fields {Hj}Jj=1, using the fact that Γ and γ
are known, the quantities:

σuj + µ|uj|uj =
Hj

Γ
, 1 ≤ j ≤ J. (8)

This allows us to replace the term σuj + µ|uj|uj in the nonlinear diffusion equation (1) for
source j to obtain the following linear diffusion equation for uj (1 ≤ j ≤ J):

−∇ · (γ∇uj) = −Hj

Γ
in Ω, uj + κ

∂uj
∂ν

= gj on ∂Ω. (9)

We can solve this linear elliptic equation to reconstruct uj, again since Γ and γ are known.
Therefore we can reconstruct the quantities

σ + µ|uj| =
Hj

Γuj
, 1 ≤ j ≤ J. (10)

Therefore, at each point x ∈ Ω, we have the following system to determine σ and µ:
1 |u1|
...

...

1 |uJ |


σ
µ

 =


H1

Γu1

...

HJ

ΓuJ

 .

We then reconstruct (σ, µ) by solving this small linear system, in least-square sense, at each
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point x ∈ Ω, to get

σ
µ

 =


 1 · · · 1

|u1| · · · |uJ |




1 |u1|
...

...

1 |uJ |



−1 1 · · · 1

|u1| · · · |uJ |




H1

Γu1

...

HJ

ΓuJ


=

 J
∑J

j=1 |uj|∑J
j=1 |uj|

∑J
j=1 |uj|2

−1 ∑J
j=1

Hj

Γuj∑J
j=1

Hj |uj |
Γuj

 . (11)

We have assumed here that the small 2× 2 matrix J
∑J

j=1 |uj|∑J
j=1 |uj|

∑J
j=1 |uj|2


in (11) is invertible at each point x ∈ Ω. Theoretical analysis in [52] shows that one can
indeed invert this matrix if the illuminations are selected carefully, that is, the illuminations
are sufficiently different from each other. In our numerical experiments, we observe that this
matrix is invertible for almost all illuminations that we have tried.

We now summarize the quantitative reconstruction step in Algorithm 2.

Algorithm 2 : Non-iterative algorithm for quantitative reconstruction

1: for j ← 1, J do
2: Reconstruct the quantities σuj + µ|uj|uj following (8)
3: end for
4: for j ← 1, J do
5: Solve the diffusion equation (9) to reconstruct uj
6: end for
7: for j ← 1, J do
8: Reconstruct the quantities σ + µ|uj| following (10)
9: end for

10: for each point x ∈ Ω do

11: Evaluate ω =
J∑

j=1

|uj(x)|, θ =
J∑

j=1

|uj(x)|2, ξ =
J∑

j=1

Hj

Γuj
and ζ =

J∑
j=1

Hj|uj|
Γuj

12: Evaluate (σ, µ) using the formula:

σ(x)

µ(x)

 =

J ω

ω θ

−1ξ
ζ


13: end for

Let us emphasize two important features of the quantitative reconstruction algorithm.
First, even though the reconstruction of the coefficients (σ, µ) from initial pressure fieldH is a
nonlinear inverse problem, our reconstruction method is non-iterative. Therefore there is no
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convergence issues at all. The method is guaranteed to give the correct reconstruction result.
Second, the reconstruction algorithm is computationally cheap. The major computational
cost of the reconstruction algorithm is the solution of the J linear diffusion equations in (9).
The cost in dealing with the algebraic calculations in the rest of the algorithm, in (8), (10)
and (11), is almost negligible.

4 Numerical implementations

We now provide some details on the numerical implementation of the two-step algorithm for
quantitative TP-PAT image reconstructions. We limit ourselves to two-dimensional simula-
tions. Nothing changes in three-dimensional case besides the increasing of the computational
cost. We use the notational convention x = (x, y) for the spatial variable.

Since the units of the physical quantities in the nonlinear diffusion model (1) and the
acoustic wave equation (3) are very different, we first normalize the problems by taking the
following convention. We take the spatial domain Ω to be the unit square Ω = [0, 1]2, and
set the ultrasound speed c = 1. We set the time interval where the measurements are taken
as (0, T ] with T = 3. This convention means that if we take the size of Ω in units of cm2, the
ultrasound speed at 1.5× 105cm/s, then T = 3 equals 20 microseconds. We observed in our
numerical simulations (see discussions in the next section) that these choices of Ω, c and T
for the wave equation are sufficient to capture all of the physical wave signals generated by
the initial conditions H(x) we have tested, at least up to the numerical discretization errors.
For the diffusion problem, we set U0 = 1011 as the characteristic photon density involved in
the system, and normalize the solution u and the boundary illumination against U0.

The wave equation (3) is posed on R2, not inside Ω. We therefore have to make a
truncation to have a finite domain for the wave simulation. We do this by using the technique
of perfectly matched layers (PML) [8, 13]. We surround our physical domain Ω with a PML

region of thickness 0.2 to have the computational domain Ω̃ = [−0.2, 1.2]2. We use a split-
field PML scheme (see, e.g., [8, 13]). This scheme reduces to the undamped wave equation
in the physical domain Ω, coupled with a damped wave split field scheme in the PML region
Ω̃ \ Ω. Ultimately, we end up solving the system of equations, assumed again that c = 1,

∂px
∂t

+ τxpx =
∂vx
∂x

,

∂py
∂t

+ τypy =
∂vy
∂y

,

∂vx
∂t

+ τxvx =
∂p

∂x
,

∂vy
∂t

+ τyvy =
∂p

∂y
,

where p = px + py, τx(x) and τy(x) are absorptive terms supported only in the PML region

Ω̃ \ Ω. In our simulations, we use τx(x) = τx(x, y) = χx>1(x)α(x − 1)2 + χx<0(x)αx2 with
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α a given constant. Similarly, τy(x, y) = τx(y, x). Initial and boundary conditions can be
transformed into this first-order formulation in a straightforward way.

We discretize these equations using standard second-order finite differences in space,
and first-order finite differences in time on uniform spatial-temporal grids. The spatial grid
covering Ω̃ consists of 141× 141 spatial points:

{(xi, yj) : xi = i/100, yj = j/100, −20 ≤ i, j ≤ 120},

while the temporal grid covering [0, T ] = [0, 3] consists of 3001 grid points:

{tk : tk = k/1000, 0 ≤ k ≤ 3000}.

The velocity fields vx and vy are solved for at staggered half-time steps, i.e., at times {tk+1/2},
using values of the split pressure fields px and py at the usual time steps {tk}. The pressure
field p = px + py is then updated using the velocity fields at these staggered times. Hence
the scheme is known as a leapfrog scheme, and reduces to standard second-order finite
difference time stepping in the physical domain Ω where τx = τy = 0. With our spatial step
size h = 1/100 and our temporal step size ∆t = 1/1000, we clearly satisfy the CFL condition

(c∆t)2

h2
=

104

106
= 10−2 < 1,

which is necessary for the explicit finite difference scheme we implemented to be stable.

To solve the adjoint wave equation (7), we first perform the change of variable t′ = T − t
to transform the equation into an initial value (instead of final value) problem. We then
apply the same type of spatial-temporal discretizations to the new equation.

The nonlinear diffusion equation (1) and the linear diffusion equations involved in the
reconstruction process, mainly in (9), are all discretized using a standard first-order finite
element method with about 12000 elements on a triangular mesh of Ω. The nonlinear
algebra system resulting from the discretization of (1) is solved with the Newton’s method.
In the forward simulation, the initial pressure field H that is needed in the acoustic wave
equation (3) is linearly interpolated from the quadrature points of the triangular elements.
In the reconstruction process, the initial pressure field H reconstructed in the qualitative
step, i.e. the first step, is interpolated back to the quadrature points of the triangular
elements as datum for the quantitative reconstruction step. These interpolation processes
induce additional noise in the reconstruction process besides the artificial white noise we
add to the acoustic data that we discuss below.

To generate synthetic data, we solve the nonlinear diffusion equation (1) with the true
physical coefficients to generate H and then solve the acoustic wave equation (3) to produce
p(t,x)|(0,T ]×∂Ω. To add noise to the synthetic data, we use the following strategy. At each
point x ∈ ∂Ω where the ultrasound signal is measured, we generate an independent Gaussian
“white-noise” process wx(t), t ∈ (0, T ], that satisfies

E(wx(t)) = 0, and, E(wx(t)wx(s)) = δ(t− s).

10



We then scale the white noise wx(t) according to the power of the signal p(t,x), to generate
noisy data p̃(t,x) with a specified noise-to-signal (NSR) ratio η:

p̃(t,x) = p(t,x) + η

(∫ T

0
p2(t′,x)dt′∫ T

0
w2

x(t′)dt′

)1/2

wx(t), t ∈ (0, T ].

In our numerical simulations in the upcoming section, we set the tolerance level ε = 10−6

in Algorithm 1 and run this algorithm for a maximum number of K = 1000 iterations. The
quantity ‖AHk − p∗‖2

L2((0,T ]×∂Ω) is usually guaranteed to decrease monotonically (see, e.g.,

the discussion in [9, Section 7.4]). However, it is clear from our description above that our
implementation of the operators A and A> constitute only approximate adjoints of one
another due to errors associated with the finite difference approximations and PML region
in the wave solver. Therefore, we also force Algorithm 1 to exit if non-monotonic behavior
of ‖AHk − p∗‖2

L2((0,T ]×∂Ω) is encountered.

5 Numerical simulations

We now present some numerical simulations to demonstrate the performance of our quanti-
tative reconstruction strategy. Our main objective is to show that the photoacoustic data
measured in TP-PAT allow quantitative separation of the single-photon and the two-photon
absorption coefficients. In all the simulation results below, we set the Grüneisen coefficient
Γ = 1 and the diffusion coefficient γ(x) = 0.02 + 0.01 sin(2πy). Moreover, we use data
collected from four different illumination sources. The first source function takes a constant
value the top and right sides of the boundary, and is zero everywhere else. That is,

g1(x) =

1, x ∈ (0, 1)× {1} ∪ {1} × (0, 1)

0, otherwise

The second to fourth sources, g2, g3, and g4, are obtained by rotating g1 by π/2, π and 3π/2
respectively along the boundary. Note again that g1 is normalized against U0 already.

To measure the quality of the reconstructions, we use relative L2 errors. Let f be a
quantity to be reconstructed, ft its true value and fr the reconstructed value. Then the
relative L2 error of the reconstruction, denoted by EL2(f), is the ratio between the size of
the error in the reconstruction and the size of the true quantity. That is,

EL2(f) =
‖ft − fr‖L2(Ω)

‖ft‖L2(Ω)

.

Experiment I. In the first group of numerical simulations, we attempt to reconstruct
the absorption coefficients (σ, µ) shown in Figure 1. We first perform reconstructions, using
Algorithm 1, on the initial pressure field H generated by the four illumination sources {gi}4

i=1
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NSR Illumination EL2(H) (EL2(σ), EL2(µ))

η = 0.00

g1 4.05× 10−4

(0.46, 3.33)× 10−2g2 6.66× 10−4

g3 6.22× 10−4

g4 4.96× 10−4

η = 0.01

g1 7.13× 10−3

(1.71, 4.08)× 10−2g2 7.30× 10−3

g3 8.25× 10−3

g4 8.00× 10−3

η = 0.05

g1 1.78× 10−2

(3.80, 6.33)× 10−2g2 1.80× 10−2

g3 1.77× 10−2

g4 1.93× 10−2

η = 0.10

g1 2.68× 10−2

(5.15, 8.01)× 10−2g2 2.63× 10−2

g3 2.48× 10−2

g4 2.55× 10−2

Table 1: Quality of reconstructions in Experiment I. Shown are relative L2 errors in the
reconstructions of various initial pressure fields (third column) and the corresponding ab-
sorption coefficients in Figure 1 (fourth column) from ultrasound data with different noise
levels (controlled with the NSR η).

from acoustic data of different noise levels. The quality of the reconstructions, in terms of
the relative L2 errors, is summarized in Table 1, third column. We observed, as has been
confirmed by many works in the PAT community, the qualitative reconstruction is of high
quality. We show in Figure 2 and Figure 3 some reconstructions with illuminations g1 and
g2 respectively. Shown are the true initial pressure field H, the reconstructed H using clean
data (NSR η = 0.0) and noisy data with NSR η = 0.1. The relative L2 errors of the
reconstruction in Figure 2 are 0.04% for the case of η = 0.0 and 2.7% for the case of η = 0.1,
while these for the reconstructions in Figure 3 are respectively 0.06% for the case of η = 0.0
and 2.6% for the case of η = 0.1.

Let us mention that even though can see clearly the two-photon absorbing inclusions in
the true initial pressure field H and the reconstructed H, the true absorption coefficients in
Figure 1 are very different from the H in Figure 2 and Figure 3. In other words, knowing
H does not provide us enough information about the true absorption coefficients unless we
perform the next step, the quantitative step, of the reconstruction.

In Figure 4, we show the reconstructions of the coefficient pair (σ, µ) in Figure 1 from
the initial pressure fields we obtained in the qualitative step, using Algorithm 2. Shown,
from left to right, are reconstructions using noisy data with NSR η = 0.00, η = 0.05 and
η = 0.10 respectively. The quality of the reconstructions is very high with relative L2 errors
(1.71, 4.08) × 10−2, (3.80, 6.33) × 10−2, and (5.15, 8.01) × 10−2 respectively; see the fourth
column of Table 1 for the reconstruction result using data with η = 0.01 which we did not
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Figure 1: The true absorption coefficients, σ (middle, [cm−1]) and µ × U0 (right, [cm−1]),
used to generate synthetic data in Experiment I.

Figure 2: The initial pressure field H(x) generated from illumination g1 using the true
absorption coefficients in Figure 1 (left), as well as the reconstructions of H using ultrasound
data with NSR η = 0.0 (middle, clean data) and NSR η = 0.1 (right).

Figure 3: The same as Figure 2 except that the illumination source used is g2.

13



show here since it is too similar to the case with η = 0.00.

Figure 4: The absorption coefficients σ (top row) and µ × U0 (bottom row) reconstructed
using noisy data with NSR η = 0.00, η = 0.05 and η = 0.10 (from left to right).

The reconstructions in Figure 4 show that by performing quantitative reconstructions,
we can separate the two-photon absorption coefficient from the single-photon absorption
coefficient from the initial pressure field. This is clearly important for practical applications
of TP-PAT where two-photon absorption is the main quantity of interest.

Figure 5: The true absorption coefficients, σ (middle, [cm−1]) and µ × U0 (right, [cm−1]),
used to generate synthetic data in Experiment II.

Experiment II. In the second group of numerical simulations, we study the reconstruction
of the absorption coefficients (σ, µ) shown in Figure 5. In Figure 6, we present the true
initial pressure filed H computed with illumination source g1, and the reconstructions of

14



this H with clean ultrasound data (NSR η = 0.00) and noisy data (NSR η = 0.10). By
visual inspection, we can see the presence of both the single-photon absorption and the two-
photon absorption inclusions in H. The reconstructions are impressively good, with relative
L2 errors 9.30×10−4 and 2.51×10−2 respectively for η = 0.00 and η = 0.10, even when H is
this complicated. We have also performed similar reconstructions for H generated from the
other three illumination sources g2, g3 and g4. The relative errors in the reconstructions are
summarized in Table 2, third column. Despite its slight degeneration as noise level increases,
the quality of the reconstructions of H remains high at moderate noise levels.

Figure 6: The initial pressure field H(x) generated from illumination g1 using the true
absorption coefficients in Figure 5 (left), as well as the reconstructions of H using ultrasound
data with NSR η = 0.00 (middle, clean data) and NSR η = 0.10 (right).

To separate µ from σ in the initial pressure fields, we perform quantitative reconstructions
using Algorithm 2. In Figure 7, we show the reconstructions from data with SNR η = 0.00
(left), η = 0.05 (middle) and η = 0.10 (right). The relative L2 errors in the reconstructions
are (2.19, 5.26)×10−2, (4.31, 7.73)×10−2, and (5.60, 9.34)×10−2 respectively. Once again, we
see good separation of the two different absorption coefficients which were mixed together
in the initial pressure fields H in Figure 6. The quantitative reconstruction results are
summarized in Table 2, fourth column.

6 Concluding remarks

We studied in this paper quantitative image reconstructions in two-photon photoacoustic
tomography, aiming at reconstructing the single-photon absorption and the two-photon ab-
sorption coefficients of biological tissues from measured ultrasound signals generated by the
photoacoustic effect of light absorption. We introduced a nonlinear diffusion equation as
the model for light propagation in TP-PAT, and presented a two-step image reconstruction
strategy, including a non-iterative quantitative reconstruction step, based on this model.
We showed, with computational simulations, that while single-photon absorption and two-
photon absorption are mixed in the images of the initial pressure fields, they can be stably
separated from each other through the quantitative reconstruction step, using Algorithm 2,
even when the ultrasound data contain relatively high level of random noises. Our numer-
ical simulations confirm the results of mathematical analysis of the problem in a previous
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Figure 7: Reconstruction of the absorption coefficient pair σ (top row) and µ×U0 (bottom
row) in Figure 5 using data at different noise levels (NSR η = 0.00, η = 0.05 and η = 0.10
from left to right).

publication [52].

Compared to the case in the regular PAT, quantitative image reconstruction in TP-PAT
is far less investigated, theoretically or computationally, to date. Our numerical simulations
show great promise in the quantitative imaging of the two-photon absorption. However, there
are still a lot of issues that need to be addressed. For instance, it would be very interesting
to test the two-step reconstruction method we proposed against experimentally measured
data to see what types of resolution and contrast we can get for the two-photon absorption
coefficient. It would also be important to develop efficient algorithms to reconstruct the
diffusion coefficient γ in addition to the absorption coefficients. Last but not the least,
reconstructing the Grüneisen coefficient with multispectral data, following for instance the
ideas in [6, 17, 19, 35, 48, 50, 59, 83], could also be extremely useful as well.
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NSR Illumination EL2(H) (EL2(σ), EL2(µ))

η = 0.00

g1 9.30× 10−4

(2.19, 5.26)× 10−2g2 1.16× 10−3

g3 1.17× 10−3

g4 9.38× 10−4

η = 0.01

g1 8.09× 10−3

(2.77, 5.78)× 10−2g2 8.25× 10−3

g3 7.79× 10−3

g4 7.68× 10−3

η = 0.05

g1 1.72× 10−2

(4.31, 7.73)× 10−2g2 1.82× 10−2

g3 1.82× 10−2

g4 1.78× 10−2

η = 0.10

g1 2.51× 10−2

(5.60, 9.34)× 10−2g2 2.48× 10−2

g3 2.40× 10−2

g4 2.79× 10−2

Table 2: Quality of reconstructions in Experiment II. Shown are relative L2 errors in the
reconstructions of various initial pressure fields (third column) and the corresponding ab-
sorption coefficients in Figure 5 (fourth column) from ultrasound data with different noise
levels.
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