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Scalings and structures in turbulent Couette-Taylor flow
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The scaling of velocity structure functions in Couette-Taylor flow@Lewis and Swinney, Phys. Rev. E59,
5457 ~1999!# is revisited to obtain more accurate values of the scaling exponents for the Reynolds number
range investigated, 12 000 to 540 000~Taylor Reynolds numbers, 34,Rl,220). Systematic convergence of
the statistics with increasing sample size is examined, and the uncertainty of the scaling exponents is assessed.
At all Reynolds numbers the data support the hierarchical symmetry proposed by She and Leveque@Phys. Rev.
Lett. 72, 336 ~1994!#. The She-Leveque constantb has a value of 0.83, indicating greater intermittency in
Couette-Taylor turbulence than in free jets, whereb50.87. The constantg, which is a measure of the degree
of singularity of the most intermittent structure, decreases from 0.14 forR,105 to 0.10 for R.105; this
transition corresponds to a visually observed break up of the Taylor vortex roll structure with increasingR.
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I. INTRODUCTION

At high Reynolds numbers, turbulent flows develop flu
tuations over a range of scales in which the decay of sta
tical correlations is governed by power laws@1,2#. The
power law exponents characterize a system, and their in
pretation can lead to an understanding of the underly
physics, especially when intermittency is prominent.

Scaling laws for turbulent flows have been determined
several different geometries in recent years~see Ref.@3# and
references therein!. We consider here the turbulence th
arises in flow between concentric cylinders with the inn
cylinder rotating and the outer cylinder at rest~a Couette-
Taylor system!. We analyze velocity measurements obtain
for Reynolds numbers ranging up to 540 000~based on the
gap between the cylinders! for a system with radius ratio
0.724 @4#. In the core of the turbulent flow, the small-sca
structures generated through the turbulent cascade bec
mixed with the structures that develop near the wall and
swept into the bulk. Turbulence in such a closed system
a more complicated structure than turbulent flow in a free
or wake. We will show that this difference is indicated b
differences in the structure function exponents and in
parameterb in the She-Leveque hierarchical structure mo
@5#.

One of the consequences of the mixed origin of sm
scale structures in the bulk of the fluid may be the absenc
an inertial range, even at moderately high Reynolds nu
bers. In our Couette-Taylor experiments@4#, the Taylor Rey-
nolds number based on the Taylor microscale is fairly la
(Rl'220), yet the velocity data do not exhibit any ran
with scaling ~i.e., no inertial range!, perhaps because flow
structures originating from the wall are anisotropic and ca
information from several scales when they are swept ac

*Present address: Calimetrics, Inc., Suite 105, 815 Atlantic A
Alameda, CA 94501.
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measurement probe. However, even with mixing of ani
tropic structures, the method of extended self-similar
~ESS! @6# yields a wide scaling range@4#. This implies that
once turbulent fluctuations are substantially developed, th
exists a similarity property intrinsic to multiscale fluctuatio
fields.

In this study we obtain scaling exponents for the veloc
structure functions from truncated velocity increment pro
ability distribution functions~PDFs! rather than directly from
velocity increments, and we examine the convergence of
exponent values as a function of the size of the data s
These analyses lead to more accurate estimates for the e
nents than obtained previously@4#. We apply theb test and
theg test of the hierarchical structure model@5,7,8# and find
that the data obey the hierarchical symmetry assumed in
model. We will discuss the interpretation of the values d
termined for the model parametersb andg.

In Sec. II we describe briefly the experiment and th
argue that the structure function exponents can be obta
more accurately from truncated PDFs than from a direct R
mann sum. We also examine the convergence of estim
for the exponents as a function of the number of data poi
In Sec. III we present results from the She-Leveque mod
the b test andg test. Section IV discusses the conclusio
and suggests future directions.

II. MEASUREMENTS AND CONVERGENCE STUDIES

Velocity measurements were made with a thermal vel
ity probe located midway between the two cylinders@4#. The
root-mean-square velocity fluctuations were typically on
6% of the mean velocity so the Taylor frozen turbulen
hypothesis should be accurate. Hence the temporal fluc
tions recorded by the thermal velocimeter should reflect
streamwise spatial fluctuations, and consequently we will
distinguish between space and time in our analysis.

The main statistical quantities we consider are mome
of the velocity differences, the velocity structure function
.,
©2001 The American Physical Society08-1
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Sp(l )5^udv l up&, wheredv l 5v(t1l )2v(t) is a velocity
increment across a distancel , and bothv and l are taken
along the direction of the mean flow~the azimuthal direc-
tion!. In a scaling analysis, the range ofl examined is cho-
sen such that the variation ofSp(l ) follows a power law,
Sp(l )}l zp. However, in the flow examined here, there is
range of l for which a power law behavior ofSp(l ) is
observed, even at the highest Reynolds number studied@4#,
but there is a range in which the dependenceSp(l ) on
S3(l ) is described by a power law. This relative scaling
called ESS property of the velocity structure function in tu
bulence@6#. A typical ESS plot is shown in Fig. 1. Remark
ably, we find that even with only one-tenth of our total da
there exists a range for which the ESS plots exhibit sca
behavior. At R5540 000, the range over which the ES
holds is one and a half decades inl . If those scales were in
the asymptotic inertial range, the third order moments wo
vary also over a decade and a half, but for our data the t
order moments exhibit no scaling range when plotted
rectly as a function ofl . However, in ESS the length scalel
is implicit. Over this implicit range the nonlinear transfer~or
cascade! is presumably important, but there is no theory
the ESS property. Such a theory should predict, among o
things, where the ESS property fails.

When turbulence is maintained in a statistically station
state, an ensemble average is customarily replaced wi
time average by the ergodic hypothesis. ThusSp(l ) is cal-
culated by integration in time,

Sp~ l !5
1

TE0

T

@dv l ~ t !#pdt. ~1!

FIG. 1. ESS: over a range of scale of more than one dec
(23d<l <28d) whered is the distance between the sample poin
the log of thepth-order structure function varies linearly with th
log of the third order structure function. These curves were m
with 23106 data points, only one-tenth the length of our data s
R5540 000.
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This calculation is susceptible to errors for high ord
moments because for largep ~say p>10) a spurious large
fluctuation can change the results considerably. How ca
spurious large measurement be distinguished from a gen
large fluctuation? Large fluctuations are still smooth var
tions in time; hence the PDF should vary smoothly, even
the tails. We remove improbable events from the PDFs
first constructing a histogram of the velocity incrementdv l

and normalizing it to make a PDF,P(dv l ). Typical PDFs of
dv l at two scalesl are shown in Fig. 2. The discrete dots
the tails correspond to events that occur only a few times~in
a total of more than ten million data points!, a consequence
of the finite sample size. An event that appears only once~or
a few times! in the entire time record is not statistically sig
nificant. Our noise reduction procedure consists in elimin
ing the few lowest discrete probability density events: t
probability density is set to zero below a threshold of
3pmin , wherepmin is the lowest probability density due t
the finite sample size (pmin5c/N), whereN is the number of
data points and c is a constant depending on the discre
tion of dv l when constructing the histograms. In Fig. 3 w
show PDFs obtained with application of the noise reduct
procedure for three different sample sizes.

The structure functions are now evaluated by a direct
tegration with the PDFs,

Sp~ l !5E
2`

`

udv l upP~dv l !d~dv l !. ~2!

Figure 4 compares extended self-similarity scaling of str
ture functions for three values ofp, plotted with and without
applying the noise reduction procedure. Before reducing

de
,

e
t.

FIG. 2. Probability distribution functions of the velocity incre
ments at two length scales (23d and 28d, whered is the distance
between data points, 0.17 mm!. Points and lines are the PDFs with
out and with the noise reduction procedure applied, respectiv
R5540 000, 23107 points.
8-2
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SCALINGS AND STRUCTURES IN TURBULENT . . . PHYSICAL REVIEW E 64 016308
noise, the moments exhibit large fluctuations due to the
pearance of improbable extreme events. After reducing
noise, the fluctuations are much smaller, suggesting tha
statistical ensemble for the smoothed fluid structures exh

FIG. 3. PDFs of the velocity increment with the noise reduct
procedure applied for three sample sizes: 23106 points, dashed
line; 63106 points, dotted line; and 23107 points, solid line. As
the sample size increases, the tail of the PDF extends further.

FIG. 4. Comparison of the relative scaling ESS calculated us
the PDFs with the noise reduction procedure~filled symbols! to
those without the noise reduction procedure~open symbols!. After
noise reduction, the moments fluctuate much less withS3(l ) ~or
with l ) and the dependence is described by a power law. The l
are the least square fits from which the scaling exponents w
extracted.R5540 000, 23107 points.
01630
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extended self-similarity even for very high order momen
up to p518. All structure function calculations that we wi
present were conducted using the noise reduction proced

We next consider the convergence of the structure fu
tion exponentszp with the size of the data set; Anselm
et al. @9# pointed out the importance of testing for this co
vergence. The convergence of the scaling exponent va
may be different from the convergence of the moments
scaling exponents could converge faster because they c
acterize the rate of change of the logarithm of momen
There is no theory to assess the error bars in exponents.
study of sample size dependence is a tangible way to as
the uncertainty in the exponents. A typical result is shown
Fig. 5 in which the ESS scaling exponents are calcula
with one-tenth, one-third, and the full sample size atR
5540 000: thezp values decrease as the sample size
creases. A smaller value ofzp marks a larger departure from
a Kolmogorov 1941 value, and hence larger intermitten
effects. This is understandable since as the sample size
creases, larger~presumably more intermittent! fluctuation
amplitudes are included. We find that forp<10, zp has con-
verged within one or two percent~symbols in Fig. 5 over-
lap!, but for p.10, longer time series are needed to ens
convergence.

If the velocity signal is not recorded long enough, t
values of the scaling exponentszp will be systematically
larger, as Fig. 5 shows. Antonia and Shafi@10# studied the
scaling in a rough wall turbulent boundary layer and o
tained slightly larger values ofzp than the original She-
Leveque values. This may partly due to a too small data
(106 points, about 1/20 of our data set!. In view of the result

g

es
re

FIG. 5. Structure function exponentszp for one-tenth, one-third,
and all of the data (23107 points! at R5540 000. The dashed line
show the prediction of the She-Leveque model with our measu
values ofb and g, and the solid line shows the prediction of th
She-Leveque model withb5(2/3)1/3 and g51/9, as for fully tur-
bulent flow of a jet.
8-3
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SHE, REN, LEWIS, AND SWINNEY PHYSICAL REVIEW E64 016308
presented above, it may be stated that their exponents
not fully converged. On the other hand, a difference betw
the Couette-Taylor flow and the rough wall boundary flow
possible, which we will discuss more in the Sec. IV.

Similar analyses were carried out for all sets of data
1.23104<R<5.43105. At each Reynolds number PDF
were constructed for velocity differences at scales from 21d
to 210d, whered is the the distance between the data poin
Then, the noise reduction procedure was applied and
ments were computed. ESS plots helped in identifying
range of scaling behavior, which was typically 23d< l
<28d, where d50.17 mm, the distance between samp
points. Scaling exponentszp were obtained by a least squa
fit in the chosen range. Each data set was treated sta
with a fraction of the sample size to the full sample size
order to assess the convergence; the results presented
next section are considered to be converged with respe
sample size dependence.

III. RESULTS

Figure 6 presents the structure function exponentsp
<10, at four Reynolds numbers. Thezp values forR,105

are larger than forR.105. Within the statistical uncertainty
~less than the size of a symbol on the graph!, the exponents
at the two larger values ofR are the same, which sugges
that the values have converged as a function ofR, although
this cannot be guaranteed without obtaining data for
larger R. The zp at the largerR in Fig. 6 are smaller than

FIG. 6. Structure function exponentszp measured at four value
of R: 2.43104 ~open squares!, 6.93104 ~open circles!, 2.663105

~solid squares!, and 5.43105 ~solid circles!; thezp at the latter two
R are indistinguishable on the scale of the graph. The dashed
are the She-Leveque formula with our measured values ofb andg.
The solid line shows the prediction of the She-Leveque model w
b5(2/3)1/3 and g51/9, which accurately describe the scaling e
ponents for turbulent open jets and wakes.
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predicted by the original She-Leveque model@5#, which has
been found to describe the scaling exponents in free jets
wakes@11#.

A. The b test

At all Reynolds numbers the scaling exponents in Fig
are remarkably well described by a generalized She-Leve
formula with parametersb andg determined, not by a fitting
procedure, but by well-defined procedures called theb
test’’ and the ‘‘g test.’’ These techniques have recently be
introduced and used by Sheet al. @8# to analyze turbulence
data obtained in experiments@12# and numerical simulations
@13–15#. We now describe theb test andg test in turn.

The hierarchical structure model of She and Leveq
@5,7# involves a hierarchy of functions Fp(l )
5Sp11(l )/Sp(l ), each describing more closely the inte
sity of fluctuations@5#. Fp(l ) is associated with higher in
tensity fluctuations with increasingp. She and Leveque@5#
postulated an invariant relation betweenFp andFp11, which
is referred to as a hierarchical symmetry relation~a symme-
try with respect to a translation inp),

Fp11~ l !5ApFp~ l !bF`~ l !12b, ~3!

where 0<b<1 is a constant andAp is independent ofl and
may also be nearly independent ofp. The most intermittent
structures are characterized by

F`~ l !5 lim
p→`

^udv l up11&/^udv l up& ~4!

because it is associated with the most intense fluctua
events. The termF`(l )12b can be eliminated by consider
ing the ratio

Fp11~ l !

F2~ l !
5

Ap

A1
S Fp~ l !

F1~ l ! D
b

. ~5!

If a log-log plot of Fp11(l )/F2(l ) vs Fp(l )/F1(l ) is a
straight line, we say that the data pass theb test because the
assumed hierarchical symmetry is satisfied. Then the va
of b is the slope of the line. In Fig. 7 we show the result
theb test for the Couette-Taylor data at four Reynolds nu
bers.

The parameterb measures the degree of intermittency
a turbulent flow. In the limitb→1, there is no intermittency
The Kolmogorov 1941 picture of turbulence belongs to t
limit, and it is straightforward to show thatzp→p/3 @see Eq.
~7! below#. In contrast, in the limitb→0, only the most
intermittent structures persist; this is the ordered limit. O
example in this category is the black and whiteb model@16#
where only one type of structure~white! is responsible for
the energy dissipation. A particular successful case of
black-white model is a random distribution of Burge
shocks whose energy spectrum isk22 and whose scaling
exponents arezp51 for p>1 @17#.

Our measured value ofb ~0.83! indicates that the
Couette-Taylor turbulence is a mixture of order and disord
this suggests that high intensity structures are partially c

es

h
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SCALINGS AND STRUCTURES IN TURBULENT . . . PHYSICAL REVIEW E 64 016308
related with low intensity structures and they are partia
similar. The absence of a dependence ofb on Reynolds
number suggests that the difference in similarity betwe
them ~we will call it the degree of intermittency! does not
vary in the range ofR studied.

B. The g test

Once the statistics pass theb test, if one further assume
that

F`;S3
g , ~6!

it can be shown that the general scaling formula@5# ~with
z351) is given by

zp5gp1C~12bp!, ~7!

where C5(123g)/(12b3). Then simple algebraic ma
nipulation gives

zp2x~p;b!5g„p23x~p;b!…, ~8!

wherex(p;b)5(12bp)/(12b3). If a plot of zp2x(p;b)
vs p23x(p;b) yields a straight line, this confirms the a
sumption~6!. The slope of the line in this ‘‘g test’’ is the
value ofg.

Figure 8 presents the results of theg test for four Rey-
nolds numbers. At eachR the data yield a straight line; thu
the data pass theg test. Note that in order to conduct theg
test, the data must first pass theb test and yield a value ofb.
Then the measuredb andzp are used in applying theg test.

FIG. 7. The Couette-Taylor data at fourR satisfy well theb test:
each set of points is described by a straight line. Moreover,
value ofb ~slopes of the lines!, is the same at eachR, 0.83, some-
what smaller than in free jets (b'0.87). For clarity, points at dif-
ferent Reynolds numbers are separated by a suitable vertical
placement.
01630
n

g is a measure of the degree of singularity of the m
intermittent structureF` . If the most intermittent structure
were shocks, theng would be zero~the velocity difference
across a shock discontinuity is proportional tol 0, or inde-
pendent ofl ). This is a strong singularity. An example of
weaker singularity is a velocity profile like Brownian motio
for which g51/2. The largerg is, the weaker the singularity
of the most intermittent structures. Kolmogorov’s dissipati
structure hasg51/3 ~because forp large,zp

K415p/35gp);
therefore,K41 dissipative structure is less singular than t
shocks. In other words, Burgers turbulence is more interm
tent than the Kolmogorov turbulence.

Although g is theoretically a property of the very high
order moments,p→` @see Eq.~4!#, we find in analyses of
simulations and experiments that a modest range ofp (3
<p<10) can define the most intermittent structures. This
because the structures that contribute toFp(l ) for 3<p
<10 comprise most of the intensive fluctuations that are
tistically significant.g is characteristic of those structures
the finite ~but long! velocity record.

The change in the value ofg from 0.14 for R,105 to
0.10 forR.105 suggests that the most intermittent structu
undergo a transition atR'105. In Table I we list the mea-
sured values ofg for all Reynolds numbers. The robustne
of the transition atR'105 and the convergence of the value
of b andg with data sets of increasing size are illustrated
Fig. 9. The values ofb andg from two-thirds of the data se
and from the full data set coincide, indicating a converg
evaluation ofb and g. Even for smaller data sets whereb
andg have not fully converged, the qualitative behavior ofb
andg with increasing Reynolds number is the same, nam
b remains unchanged, butg undergoes a transition atR
'105. This suggests that theb test andg test can be applied

e

is-

FIG. 8. The linearity of these curves demonstrates that
Couette-Taylor data pass theg test. Note thatg'0.14 for R,105

and g'0.10 for R.105. For clarity, points at different Reynold
numbers are separated by a suitable vertical displacement.
8-5
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SHE, REN, LEWIS, AND SWINNEY PHYSICAL REVIEW E64 016308
even to small data sets to detect relative changes in the
tistical structures of turbulent flows.

We speculate that the transition ing aroundR'105 cor-
responds to a loss of coherence of the Taylor vortices. Vis
observations indicate that whenR is increased above abou
105, the Taylor vortices begin to break up and no longer ha
a well-defined structure@4#. The resultant structures are mo
turbulent and less ordered, hence more singular, andg de-
creases.

TABLE I. Measured She-Leveque parametersb and g at dif-
ferent Reynolds numbers. The values of the Taylor microscalelT

and the Taylor microscale Reynolds numbersRl are from formulas
in @4#: Rl50.324R0.495 and lT547.0R20.473 cm. The Taylor mi-
croscalelT is much larger than the Kolmogorov dissipation sca
h, which is 0.075 cm atR512 000 and 0.0057 cm atR5540 000
~cf. Fig. 12 of @4#!.

Reynolds number Rl lT ~cm! b g

12000 34 0.55 0.83 0.12

24000 48 0.40 0.83 0.14

34000 57 0.34 0.83 0.14

48000 67 0.29 0.83 0.14

69000 80 0.24 0.83 0.13

133000 110 0.18 0.83 0.10

266000 160 0.13 0.83 0.10

540000 220 0.09 0.83 0.10

FIG. 9. The variation ofb andg as a function of the Reynold
number for four different data sizes. The results at two-thirds d
set and the full data set completely coincide, suggesting the con
gence. Note also a similar qualitative behavior for all data size
01630
ta-
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e

IV. DISCUSSION

We have analyzed velocity data for Couette-Taylor flo
for a wide range of Reynolds number. The data are collec
midway between the two cylinders and therefore reflect
property of the bulk turbulence. The scaling of the structu
function for Couette-Taylor turbulence is found to be diffe
ent from that for turbulent free jets or wakes~cf. Fig. 6!.
Further evidence that Couette-Taylor turbulence is differ
lies in the Reynolds number dependence of the velocity
rivative flatness and skewness~Fig. 10!, which both decrease
with R for R.100 000; this is opposite to the trend found
turbulent jets and wakes and in many other turbulent flo
@18#. This difference merits further study. It may be due
the effects of rotation and the induced complex interact
between the flow structures originating from the Taylor vo
tices and from the boundary layer.

Structure functions were deduced not from Riemann su
but from PDFs that were reduced in noise by removing s
tistically insignificant points. Structure function exponentszp
were determined by the method of extended self-similar
and thezp values forp<10 were shown to have converge
when increasing the length of the velocity time series. Thezp
values are smaller than the values previously reported
free jets or wakes, indicating that Couette-Taylor flow
more intermittent.

Couette-Taylor turbulence is well described by the hier
chical structure~HS! model, passing both theb-test and the
g-test. The HS model has an invariance~called hierarchical
symmetry! that defines a transformation group@7#; this sym-
metry can be exactly simulated by a log-Poisson casc
process @19,20#, so the model is also called the ‘‘log
Poisson’’ model. The HS model has previously been fou
to describe scaling exponents in several turbulent flo

ta
er-

FIG. 10. Velocity derivative skewness (S3) and flateness~F! as
a function of the Reynolds number. Note the decreasing trend
R.100 000.
8-6
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@11,13,21,22#. The results here further suggest that the hi
archical symmetry is a general property of fully develop
turbulent flows.

Theb test yielded a value for the model parameterb that
was found to be independent of Reynolds number. This s
gests that in the Couette-Taylor flow, the weak and stro
fluctuations have a different cascade property~i.e., bÞ1),
but that difference remains unchanged in the range of
Reynolds numbers studied. Our value ofb, 0.83, is some-
what smaller than the one obtained in a free jet and in
merical simulations, whereb'0.87. We cannot say how sig
nificant this difference is; further study is warranted, e.g.,
applying theb test andg test on data sets of comparab
size.

Further, we found that the parameterg describing the
most intermittent structures decreases from 0.14 to 0.11
R5105, which suggests that there is a transition atR'105

where the most intermittent structures become more singu
There is also a suggestion of this transition in the values
zp ~Fig. 6!. We believe that this transition corresponds to
visually observed breakup of the Taylor vortex roll structu
with increasingR that initiates a cascade process yieldi
more singular small-scale structures. The detection of su
transition, if confirmed, is a significant step in the statisti
v

c
,

, J

ia
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analysis of turbulent flows: we have a set of statistical m
sures (b andg) capable of capturing the structural transitio
in a fully developed turbulent regime.

Future experiments should collect longer velocity time
ries than ours (23107 points!. Longer files will yield events
further in the tail of the distribution function, making it pos
sible to obtain convergent values forzp for p.10. In addi-
tion, velocity data should be obtained at different spatial
cations, especially close to the walls whereg is expected to
vary because the flow will depart increasingly from homog
neous isotropic turbulence. Finally, other flow geometr
should be investigated to quantify the intermittent structu
by applying theb test and theg test.
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