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The scaling of velocity structure functions in Couette-Taylor fldvewis and Swinney, Phys. Rev. 9,
5457 (1999] is revisited to obtain more accurate values of the scaling exponents for the Reynolds number
range investigated, 12 000 to 540 O0aylor Reynolds numbers, 34R, <220). Systematic convergence of
the statistics with increasing sample size is examined, and the uncertainty of the scaling exponents is assessed.
At all Reynolds numbers the data support the hierarchical symmetry proposed by She and [E¥sguRev.
Lett. 72, 336 (1994 ]. The She-Leveque constafithas a value of 0.83, indicating greater intermittency in
Couette-Taylor turbulence than in free jets, whgre0.87. The constang, which is a measure of the degree
of singularity of the most intermittent structure, decreases from 0.14Rfof0° to 0.10 for R>10°; this
transition corresponds to a visually observed break up of the Taylor vortex roll structure with incrRasing
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I. INTRODUCTION measurement probe. However, even with mixing of aniso-
tropic structures, the method of extended self-similarity

At high Reynolds numbers, turbulent flows develop fluc-(ESS [6] yields a wide scaling ranget]. This implies that
tuations over a range of scales in which the decay of statisonce turbulent fluctuations are substantially developed, there
tical correlations is governed by power la}$,2]. The exists a similarity property intrinsic to multiscale fluctuation
power law exponents characterize a system, and their intefields.
pretation can lead to an understanding of the underlying In this study we obtain scaling exponents for the velocity
physics, especially when intermittency is prominent. structure functions from truncated velocity increment prob-

Scaling laws for turbulent flows have been determined fo@bility distribution functiongPDFg rather than directly from
several different geometries in recent ye@mse Ref[3] and  Vvelocity increments, and we examine the convergence of the
references therein We consider here the turbulence that €xponent values as a function of the size of the data sets.
arises in flow between concentric cylinders with the innerThese analyses lead to more accurate estimates for the expo-
cylinder rotating and the outer cylinder at rést Couette- nents than obtained previoudl$]. We apply theg test and
Taylor system We analyze velocity measurements obtainedthe vy test of the hierarchical structure mod6l7,8] and find
for Reynolds numbers ranging up to 540 O@@&sed on the that the data obey the hierarchical symmetry assumed in the
gap between the cylinderdor a system with radius ratio model. We will discuss the interpretation of the values de-
0.724[4]. In the core of the turbulent flow, the small-scale termined for the model parametgsand y.
structures generated through the turbulent cascade becomeln Sec. Il we describe briefly the experiment and then
mixed with the structures that develop near the wall and ar@rgue that the structure function exponents can be obtained
swept into the bulk. Turbulence in such a closed system hagore accurately from truncated PDFs than from a direct Rie-
a more complicated structure than turbulent flow in a free jemann sum. We also examine the convergence of estimates
or wake. We will show that this difference is indicated by for the exponents as a function of the number of data points.
differences in the structure function exponents and in thdén Sec. Ill we present results from the She-Leveque model:
parametes in the She-Leveque hierarchical structure modelthe B test andy test. Section IV discusses the conclusions
[5]. and suggests future directions.

One of the consequences of the mixed origin of small-
scale structures in the bulk of the fluid may be the absence of
an inertial range, even at moderately high Reynolds num-
bers. In our Couette-Taylor experimepds, the Taylor Rey- Velocity measurements were made with a thermal veloc-
nolds number based on the Taylor microscale is fairly largdty probe located midway between the two cylindgts The
(Ry~220), yet the velocity data do not exhibit any rangeroot-mean-square velocity fluctuations were typically only
with scaling (i.e., no inertial range perhaps because flow 6% of the mean velocity so the Taylor frozen turbulence
structures originating from the wall are anisotropic and carryhypothesis should be accurate. Hence the temporal fluctua-
information from several scales when they are swept acrosttons recorded by the thermal velocimeter should reflect the

streamwise spatial fluctuations, and consequently we will not
distinguish between space and time in our analysis.
*Present address: Calimetrics, Inc., Suite 105, 815 Atlantic Ave., The main statistical quantities we consider are moments
Alameda, CA 94501. of the velocity differences, the velocity structure functions:

IIl. MEASUREMENTS AND CONVERGENCE STUDIES
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FIG. 1. ESS: over a range of scale of more than one decade . . o
(236</<2%6) whered is the distance between the sample points FIG. 2. Probability distribution functions of the velocity incre-
the log of thepth-order structure function varies linearly with the MENts at two length scales {2 and 29, where 4 is the distance
log of the third order structure function. These curves were mad®etween data points, 0.17 mnfPoints and lines are the PDFs with-

with 2x 10° data points, only one-tenth the length of our data set 0Ut and with the noise reduction procedure applied, respectively.
R=540 000. R=540000, 210’ points.

This calculation is susceptible to errors for high order
moments because for large(say p=10) a spurious large
fluctuation can change the results considerably. How can a
spurious large measurement be distinguished from a genuine
large fluctuation? Large fluctuations are still smooth varia-
tions in time; hence the PDF should vary smoothly, even in
the tails. We remove improbable events from the PDFs by
first constructing a histogram of the velocity incremeént,
and normalizing it to make a PDP(d6v /). Typical PDFs of
dv . at two scaleg” are shown in Fig. 2. The discrete dots in
the tails correspond to events that occur only a few tifires
a total of more than ten million data poihts consequence
of the finite sample size. An event that appears only ¢oce
'a few timeg in the entire time record is not statistically sig-
Shificant. Our noise reduction procedure consists in eliminat-
ing the few lowest discrete probability density events: the

robability density is set to zero below a threshold of 5

Sp(/)=(|bv,|P), where v ,=v(t+/)—v(t) is a velocity
increment across a distangg and bothv and /" are taken
along the direction of the mean flothe azimuthal direc-
tion). In a scaling analysis, the range ©Sfexamined is cho-
sen such that the variation &,(~) follows a power law,
Sp(/’)oc/?p. However, in the flow examined here, there is no
range of / for which a power law behavior 08,(~) is
observed, even at the highest Reynolds number studigd
but there is a range in which the depender&g/) on
S3(¢) is described by a power law. This relative scaling is
called ESS property of the velocity structure function in tur-
bulence[6]. A typical ESS plot is shown in Fig. 1. Remark-
ably, we find that even with only one-tenth of our total data
there exists a range for which the ESS plots exhibit scalin
behavior. At R=540000, the range over which the ESS
holds is one and a half decades/inIf those scales were in
the asymptotic inertial range, the third order moments woul . 7 o :
vary also over a decade and a half, but for our data the thirg, Pmin, Whereppy is the lowest probability density due to

order moments exhibit no scaling range when plotted di- e finite sample sizepin=Cc/N), whereN is the number of
rectly as a function of, However, in ESS the length scale data points and c is a constant depending on the discretiza-

is implicit. Over this implicit range the nonlinear transter tion of dv, when constructing the histograms. In Fig. 3 we
IS imphicit. Ov IS Implict 9 In€ show PDFs obtained with application of the noise reduction
cascadgis presumably important, but there is no theory of

; rocedure for three different sample sizes.
the ESS property. Such a theory should predict, among othé)r The structure functions are nO\E)v evaluated by a direct in-
things, where the ESS property fails. : :
: A . - . tegration with the PDFs,
When turbulence is maintained in a statistically stationary
state, an ensemble average is customarily replaced with a %
time average by the ergodic hypothesis. TI®y6”) is cal- Sp(/’)=f | v ,/|PP(v ,)d(dv ). (2
culated by integration in time, ‘°°

1T Figure 4 compares extended self-similarity scaling of struc-
Sy(/)= _f [ v /(1)]Pdt. (1) ture fgnctions fqr three va_lues of plotted with and With_out
TJo applying the noise reduction procedure. Before reducing the
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FIG. 5. Structure function exponenfs for one-tenth, one-third,
and all of the data (X 10" points atR=540 000. The dashed lines
show the prediction of the She-Leveque model with our measured
values of 8 and y, and the solid line shows the prediction of the
She-Leveque model witg= (2/3)*° and y=1/9, as for fully tur-

. - . bulent fl f a jet.
noise, the moments exhibit large fluctuations due to the ap—u entfowora e

pearance of improbable extreme events. After reducing the
noise, the fluctuations are much smaller, suggesting that thextended self-similarity even for very high order moments,
statistical ensemble for the smoothed fluid structures exhibitgp to p=18. All structure function calculations that we will
present were conducted using the noise reduction procedure.
We next consider the convergence of the structure func-
20 - - tion exponentsf, with the size of the data set; Anselmet
q et al. [9] pointed out the importance of testing for this con-
] vergence. The convergence of the scaling exponent values
may be different from the convergence of the moments—
scaling exponents could converge faster because they char-
acterize the rate of change of the logarithm of moments.
There is no theory to assess the error bars in exponents. The
study of sample size dependence is a tangible way to assess
the uncertainty in the exponents. A typical result is shown in
Fig. 5 in which the ESS scaling exponents are calculated
with one-tenth, one-third, and the full sample size Rat
=540000: the{, values decrease as the sample size in-
creases. A smaller value ¢f, marks a larger departure from
a Kolmogorov 1941 value, and hence larger intermittency
effects. This is understandable since as the sample size in
creases, largefpresumably more intermittentluctuation
amplitudes are included. We find that for 10, {, has con-
verged within one or two percerisymbols in Fig. 5 over-
lap), but for p>10, longer time series are needed to ensure
convergence.

FIG. 4. Comparison of the relative scaling ESS calculated using ! the velocity signal is not recorded long enough, the
the PDFs with the noise reduction procedifiled symbols to ~ values of the scaling exponent will be systematically
those without the noise reduction proced(mpen symbols After  larger, as Fig. 5 shows. Antonia and SHaf0] studied the
noise reduction, the moments fluctuate much less Bigy) (or ~ scaling in a rough wall turbulent boundary layer and ob-
with /) and the dependence is described by a power law. The linetined slightly larger values of, than the original She-
are the least square fits from which the scaling exponents werkeveque values. This may partly due to a too small data set
extracted R=540000, 2< 10’ points. (10° points, about 1/20 of our data eln view of the result

FIG. 3. PDFs of the velocity increment with the noise reduction
procedure applied for three sample sizex 1@° points, dashed
line; 6x 1P points, dotted line; and 210" points, solid line. As
the sample size increases, the tail of the PDF extends further.
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LI L L L predicted by the original She-Leveque moffg], which has
L o R=24k ] been found to describe the scaling exponents in free jets and
3 o R=69Kk a Wakes[ll].

A. The B test

At all Reynolds numbers the scaling exponents in Fig. 6
are remarkably well described by a generalized She-Leveque
formula with parameterg andy determined, not by a fitting
procedure, but by well-defined procedures called the “
test” and the “y test.” These techniques have recently been
introduced and used by Stet al. [8] to analyze turbulence
data obtained in experiments2] and numerical simulations
[13-15. We now describe th@ test andy test in turn.

The hierarchical structure model of She and Leveque
[5,7] involves a hierarchy of functions F (/)
=Sp+1(/)/Sp(#), each describing more closely the inten-
sity of fluctuations[5]. F(~) is associated with higher in-

&

o L L e tensity fluctuations with increasing She and LevequEs]
0 2 4 6 8 10 12 postulated an invariant relation betweepandF . ;, which
P is referred to as a hierarchical symmetry relatiarsymme-

FIG. 6. Structure function exponenfs measured at four values 1Y With respect to a translation ip),
of R 2.4x10* (open squares 6.9x 10* (open circley 2.66x 10° N B N1-p
(solid squares and 5.4< 10° (solid circles; the ¢, at the latter two Fora(/)=ApF (/) FFL(/)7, &)

R are indistinguishable on the scale of the graph. The dashed lines . .
are the She-Leveque formula with our measured valugsarid . Where 0< <1 is a constant and, is independent of and

The solid line shows the prediction of the She-Leveque model wit ay also be nearly independentfThe most intermittent

B=(2/3)"® and y=1/9, which accurately describe the scaling ex- S'Uctures are characterized by

onents for turbulent open jets and wakes. .
P pen F.(/)=lim (| 6v P 4)/(| 6 |P) @)

pﬂoc
presented above, it may be stated that their exponents have
not fully converged. On the other hand, a difference betweenecause it is associated with the most intense fluctuation

the Couette-Taylor flow and the rough wall boundary flow isevents. The ternfr..(~)*~# can be eliminated by consider-

possible, which we will discuss more in the Sec. IV. ing the ratio
Similar analyses were carried out for all sets of data for
1.2x10*<R=<5.4x10°. At each Reynolds number PDFs Foi1(Z)  Ap[Fp(N))\?
were constructed for velocity differences at scales frord 2 Fo(/) A_l( Fl(/)) : ®)

to 2195, whereé is the the distance between the data points.

Then, the noise reduction procedure was applied and mqf a |og-log plot of Fpi1(A)IFa(7) vs Fo()IF1(/) is a
ments were computed. ESS plots helped in identifying thesraight line, we say that the data pass ghtest because the
range of scaling behavior, which was typicall’®<l  assumed hierarchical symmetry is satisfied. Then the value
<2%, where §=0.17 mm, the distance between sampleof g is the slope of the line. In Fig. 7 we show the result of
points. Scaling exponents, were obtained by a least square the g test for the Couette-Taylor data at four Reynolds num-
fit in the chosen range. Each data set was treated startingesrs.
with a fraction of the Sample size to the full Sample size in The parameteﬁ measures the degree of intermittency of
order to assess the convergence; the results presented in f@urbulent flow. In the limi{3— 1, there is no intermittency.
next section are considered to be converged with respect tphe Kolmogorov 1941 picture of turbulence belongs to this
sample size dependence. limit, and it is straightforward to show tha— p/3 [see Eq.
(7) below]. In contrast, in the limit3—0, only the most
intermittent structures persist; this is the ordered limit. One
example in this category is the black and whitenodel[16]
Figure 6 presents the structure function exponepts, where only one type of structurgvhite) is responsible for
<10, at four Reynolds numbers. Tlfg values forR< 10° the energy dissipation. A particular successful case of the
are larger than forR>10°. Within the statistical uncertainty black-white model is a random distribution of Burgers
(less than the size of a symbol on the graphe exponents shocks whose energy spectrumks? and whose scaling
at the two larger values dR are the same, which suggests exponents ar¢,=1 for p=1 [17].
that the values have converged as a functioRRoélthough Our measured value of3 (0.83 indicates that the
this cannot be guaranteed without obtaining data for yeCouette-Taylor turbulence is a mixture of order and disorder;
larger R. The ¢, at the largerR in Fig. 6 are smaller than this suggests that high intensity structures are partially cor-

Ill. RESULTS

016308-4
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FIG. 8. The linearity of these curves demonstrates that the

each set of points is described by a straight line. Moreover, th&ouette-Taylor data pass thetest. Note thaty~0.14 for R<10°

value of B (slopes of the lings is the same at eadR 0.83, some-
what smaller than in free jetg8&0.87). For clarity, points at dif-

and y=~0.10 for R>10°. For clarity, points at different Reynolds
numbers are separated by a suitable vertical displacement.

ferent Reynolds numbers are separated by a suitable vertical dis-

placement.

v is a measure of the degree of singularity of the most
intermittent structurd-_, . If the most intermittent structures

related with low intensity structures and they are partiallywere shocks, thery would be zero(the velocity difference

similar. The absence of a dependencepfofon Reynolds

across a shock discontinuity is proportional48, or inde-

number suggests that the difference in similarity betweeendent of). This is a strong singularity. An example of a

them (we will call it the degree of intermittengydoes not
vary in the range oR studied.

B. The y test

Once the statistics pass tlgetest, if one further assumes
that
F.~$§, (6)
it can be shown that the general scaling form{8& (with
{3=1) is given by

{p=yp+C(1-p"), ()

where C=(1—3%)/(1—%). Then simple algebraic ma-
nipulation gives

Lo—x(P; B)=v(p—3x(p;B)), (8)

where x(p; 8)=(1—BP)/(1—B°). If a plot of {,— x(p;B)

vs p—3x(p;B) yields a straight line, this confirms the as-
sumption(6). The slope of the line in this ¥ test” is the
value of y.

Figure 8 presents the results of thetest for four Rey-
nolds numbers. At eacR the data yield a straight line; thus
the data pass the test. Note that in order to conduct the
test, the data must first pass tBeest and yield a value ¢8.
Then the measured and{,, are used in applying the test.

weaker singularity is a velocity profile like Brownian motion
for which y=1/2. The largery is, the weaker the singularity
of the most intermittent structures. Kolmogorov's dissipative
structure hasy=1/3 (because fop large, {;*'=p/3= yp);
therefore,K41 dissipative structure is less singular than the
shocks. In other words, Burgers turbulence is more intermit-
tent than the Kolmogorov turbulence.

Although v is theoretically a property of the very high-
order momentsp—« [see Eq.4)], we find in analyses of
simulations and experiments that a modest range ¢8
<p=10) can define the most intermittent structures. This is
because the structures that contributeFg(/) for 3<p
<10 comprise most of the intensive fluctuations that are sta-
tistically significant.y is characteristic of those structures in
the finite (but long velocity record.

The change in the value of from 0.14 forR<10° to
0.10 forR>10° suggests that the most intermittent structures
undergo a transition @&~10°. In Table | we list the mea-
sured values ofy for all Reynolds numbers. The robustness
of the transition aR~ 10° and the convergence of the values
of B andvy with data sets of increasing size are illustrated in
Fig. 9. The values o8 andy from two-thirds of the data set
and from the full data set coincide, indicating a convergent
evaluation of 8 and y. Even for smaller data sets whege
andy have not fully converged, the qualitative behavioof
andy with increasing Reynolds number is the same, namely,
B remains unchanged, but undergoes a transition &
~10°. This suggests that the test andy test can be applied

016308-5
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TABLE |. Measured She-Leveque paramet@sand y at dif-
ferent Reynolds numbers. The values of the Taylor microsgale
and the Taylor microscale Reynolds numbRgsare from formulas
in [4]: R,=0.32R%*% and A\;=47.0R %43cm. The Taylor mi-
croscale\; is much larger than the Kolmogorov dissipation scale
7, which is 0.075 cm aR=12 000 and 0.0057 cm &= 540 000
(cf. Fig. 12 of[4]).

Reynolds number Ry N\t (cm) B v
12000 34 0.55 0.83 0.12
24000 48 0.40 0.83 0.14
34000 57 0.34 0.83 0.14
48000 67 0.29 0.83 0.14
69000 80 0.24 0.83 0.13
133000 110 0.18 0.83 0.10
266000 160 0.13 0.83 0.10
540000 220 0.09 0.83 0.10

PHYSICAL REVIEW B4 016308
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even to small data sets to detect relative changes in the sta- FIG. 10. Velocity derivative skewnes$y) and flatenes§F) as

tistical structures of turbulent flows.
We speculate that the transition jnaroundR~10° cor-

a function of the Reynolds number. Note the decreasing trend for
R>100 000.

responds to a loss of coherence of the Taylor vortices. Visual

observations indicate that whéhis increased above about

IV. DISCUSSION

10°, the Taylor vortices begin to break up and no longer have We have analyzed velocity data for Couette-Taylor flow

a well-defined structurg4]. The resultant structures are more
turbulent and less ordered, hence more singular, -
creases.
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FIG. 9. The variation of3 and y as a function of the Reynolds

for a wide range of Reynolds number. The data are collected
midway between the two cylinders and therefore reflect the
property of the bulk turbulence. The scaling of the structure
function for Couette-Taylor turbulence is found to be differ-
ent from that for turbulent free jets or wakésf. Fig. 6).
Further evidence that Couette-Taylor turbulence is different
lies in the Reynolds number dependence of the velocity de-
rivative flatness and skewneddg. 10, which both decrease
with R for R>100 000; this is opposite to the trend found in
turbulent jets and wakes and in many other turbulent flows
[18]. This difference merits further study. It may be due to
the effects of rotation and the induced complex interaction
between the flow structures originating from the Taylor vor-
tices and from the boundary layer.

Structure functions were deduced not from Riemann sums
but from PDFs that were reduced in noise by removing sta-
tistically insignificant points. Structure function exponefys
were determined by the method of extended self-similarity,
and the(,, values forp<10 were shown to have converged
when increasing the length of the velocity time series. Jhe
values are smaller than the values previously reported for
free jets or wakes, indicating that Couette-Taylor flow is
more intermittent.

Couette-Taylor turbulence is well described by the hierar-
chical structurgHS) model, passing both thg-test and the
v-test. The HS model has an invarian@alled hierarchical
symmetry that defines a transformation grolif); this sym-
metry can be exactly simulated by a log-Poisson cascade

number for four different data sizes. The results at two-thirds datrocess [19,20, so the model is also C_a||ed the “log-
set and the full data set completely coincide, suggesting the convePRoisson” model. The HS model has previously been found

gence. Note also a similar qualitative behavior for all data sizes.

to describe scaling exponents in several turbulent flows

016308-6
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[11,13,21,22 The results here further suggest that the hier-analysis of turbulent flows: we have a set of statistical mea-
archical symmetry is a general property of fully developedsures 3 andy) capable of capturing the structural transition
turbulent flows. in a fully developed turbulent regime.

The B test yielded a value for the model paramesethat Future experiments should collect longer velocity time se-
was found to be independent of Reynolds number. This sugries than ours (X 10’ points. Longer files will yield events
gests that in the Couette-Taylor flow, the weak and strondurther in the tail of the distribution function, making it pos-
fluctuations have a different cascade propéitg., #1),  sible to obtain convergent values f¢g for p>10. In addi-
but that difference remains unchanged in the range of th&on, velocity data should be obtained at different spatial lo-
Reynolds numbers studied. Our value @f 0.83, is some- cations, especially close to the walls wherés expected to
what smaller than the one obtained in a free jet and in nuvary because the flow will depart increasingly from homoge-
merical simulations, wherg~0.87. We cannot say how sig- neous isotropic turbulence. Finally, other flow geometries
nificant this difference is; further study is warranted, e.g., byshould be investigated to quantify the intermittent structures
applying theB test andy test on data sets of comparable by applying theg test and they test.
size.

Further, we found that the parametgrdescribing the ACKNOWLEDGMENTS
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