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Abstract

This paper derives a radiative transfer equation from first principles to model
the energy density of (mono-frequency) high frequency waves propagating in a
random medium composed of localized scatterers. The correlation length of the
random scatterers is small compared to the overall distance of propagation so that
ensemble averaging may take place.

The paper also considers the detection and imaging of inclusions buried in
highly scattering random media. In such multiple scattering environments, the
coherent wave fields may be too weak to be used for imaging purposes. We thus
propose to model the inclusions as parameters in the macroscopic radiative trans-
fer equations and consider the imaging problem as an inverse transport problem.

Numerical simulations address the domain of validity of the radiative transfer
equation and of the imaging method. Wave propagation is solved by using a
Foldy-Lax framework and the forward and inverse transport problems are solved
by using a Monte Carlo method. Since the inverse transport problem is ill-posed,
the buried inclusions are parameterized by a small number of degrees of freedom,
typically their position and a few geometric properties.

Key words. Imaging in random media, high frequency waves in random media, inverse
problems, radiative transfer equation, Foldy-Lax model

1 Introduction

The imaging of inclusions buried in random media from acoustic, electromagnetic, or
elastic wave measurements has a long history. We refer the reader to e.g. [2, 7, 13, 19,
28, 26, 34] and their reference. Several imaging methods have been proposed based on
the type of available data and on the regime of wave propagation.

The most favorable situation occurs when the specific realization of the random
medium is known explicitly. We can then use the refocusing properties of time reversed
waves to backpropagate measured wave fields numerically through the known random
environment. The time reversed waves focus at the location of the buried inclusions and
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allow for fairly accurate imaging; see e.g. [10, 12, 22]. Note however that even small
errors in the assessment of the random medium, such as the mis-location of the random
scatterers by an amount comparable to the typical wavelength of the propagating waves,
have a very large effect on the refocusing of time-reversed waves [11, 29].

In most applications, however, the random medium is not known and this lack of
knowledge inevitably degrades the quality of the reconstructions. Randomness may
then roughly be treated in two different ways. One may either assume that noise is
sufficiently small so that it may be treated perturbatively. Imaging is then performed
by backpropagating appropriately mollified wave field measurements into a homogeneous
medium or a medium with smooth variations, whose determination is often an important
aspect of the reconstruction. One of the main pitfall in such reconstructions is that
many classical inversion techniques are not statistically stable, i.e., the reconstruction
strongly depends on the realization in a given set of random media. We refer the reader
to e.g. [13] for optimal, statistically stable, imaging methods in that context. Such
methods however cannot work when the fluctuations in the random medium increase to
a point where the coherent wave field, i.e., the part of the wave field that is not affected
by random scattering, becomes too weak. In such regimes of strong scattering, other
models are necessary.

The alternative to backpropagation in a homogeneous or smoothly varying medium
is to find a model that describes wave propagation in the random medium. In regimes
where the wavelength and the correlation length of the random medium are very small
compared to the overall distance of propagation, such as in the propagation of light
through the atmosphere or of near-infra-red photons through human tissues, the kinetic
description for wave propagation is extremely accurate [1, 16]. The wave energy den-
sity is then modeled quite accurately by a radiative transfer (transport) equation or a
diffusion equation.

In this paper, we are interested in the validity of the radiative transfer model in
a more intermediate regime, where the fluctuations in the random medium are too
strong for imaging methods based on coherent information to work, and where the
typical wavelength in the system is smaller, though not orders of magnitude smaller,
than the overall distance of propagation. Typically, we could have GHz microwaves,
with a wavelength of 30cm, propagate over distances of tens or hundreds of meters. The
typical random medium we consider here is made of hundreds of scatterers, with a mean
separation distance between scatterers comparable or large compared to the wavelength
but small compared to the overall distance of propagation. Our objective is then to
detect and image a -sufficiently large- inclusion buried in the random medium.

When the density of scatterers is sufficiently large so that the coherent wave field is
too weak to be useful in imaging, the incoherent part of the wave field, i.e., the part that
has interacted with the unknown random medium, can no longer be neglected and needs
to be modeled. Such a model has to depend on the regime of wave propagation. In the
high frequency regime, when the wavelength is smaller than the propagation distance,
the simplest extension of wave propagation in homogeneous domains is arguably the
radiative transfer equation. Such an equation models the propagation of the phase-space
energy density a(t,x,k) at time t, position x, and wave number k and for acoustic waves
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takes the form

∂a

∂t
+ck̂·∇xa = Qa, Qa =

∫
Rd

σ(x,k′,k)(a(t,x,k′)−a(t,x,k))δ(c|k′|−c|k|)dk′, (1)

where k̂ = k/|k|, c is sound speed, and σ(x,k,k′) is the scattering coefficient, which
is inversely proportional to the mean free path, the mean distance between successive
interactions of the wave energy with the underlying medium. Note that the radiative
transfer equation may be seen as a perturbation of the propagation of high frequency
waves in a homogeneous medium, which corresponds to the case σ = 0. The radiative
transfer equation is thus characterized by two features: scattering is not sufficiently
strong to modify the advection nature of high frequency waves; this is the left hand side
in (1). However, because of incoherent interactions with the underlying structure, the
-partially incoherent- energy density, rather than the wave field, needs to be modeled,
and while the energy density still transport through the random medium, it does so by
possibly changing direction in a way described by the scattering operator on the right-
hand side of (1). In that sense, it may be seen as the simplest model for the energy
density of high-frequency waves propagating in heterogeneous media.

Radiative transfer equations have also been extensively studied and derived either
phenomenologically or from first principles (as an approximation to a wave equation); see
[3, 16, 21, 25, 33, 35, 36]. We rederive the equation in the setting of localized (possibly)
strong scatterers adapting techniques in [3, 33] to model the energy density of mono-
frequency waves propagating in such a random medium. The localized scatterers are
assumed here to have a Poisson distribution. We then propose to assess the range of
validity of the radiative transfer model by comparing its predictions with wave field
calculations. We use a Foldy-Lax model to compute the wave fields. We demonstrate
based on numerical simulations that the radiative transfer equations are very accurate
provided that the wave energy measurements are sufficiently stable statistically.

Statistical stability is a cornerstone in the interferometric imaging techniques devel-
oped in [13]. Reconstructions based on coherent information are much enhanced when
a carefully calibrated to the random medium, statistically stable, inversion technique
is employed. When macroscopic models for the incoherent energy density are used,
statistical stability is an absolute prerequisite to any form of imaging. It is impossible,
based on one measurement, to image an inclusion whose influence on the detectors is
a random variable whose fluctuations cannot be averaged out one way or another (for
instance by collecting measurements on a larger detector). It turns out that in the high
frequency limit, wave energy densities are indeed statistically stable for a wide class of
random media. This has been proved in simplified models of wave propagation [5, 6]
and has been confirmed numerically [8, 9].

We present here numerical evidence of the statistical stability of the wave energy
density in sufficiently mixing random media with localized scatterers. What we mean by
sufficiently mixing is that the density of scatterers is sufficiently high. We demonstrate
numerically the physically simple fact that the energy density is more stable statistically
when the density of scatterers increases (their correlation length decreases) while their
scattering strength decreases in such a way that the mean free path remains constant.

Once we are confident in the radiative transfer equation as a model for the wave
energy density, we use the model to image buried inclusions in such random media. We

3



assume here that the random medium is statistically homogeneous, i.e., that its statistics
are invariant by translation. We can consider two scenarios. In the first scenario, we
measure energy densities in the presence of the inclusion. We thus have to estimate the
mean free path of the random medium and image the inclusion at the same time. In such
a configuration, the inclusion’s influence on available measurements has to be larger than
the statistical instability coming from our lack of knowledge of the underlying random
medium. In the second scenario, we have access to energy measurements in the presence
and in the absence of the inclusion. We may thus perform differential measurements.
These differential measurements are then obviously proportional to the inclusion. With
a kinematic picture in mind, all the instability in the random paths that do not visit the
object cancel out in differential measurements, thus allowing us to image much smaller
objects. We consider reconstructions under these two scenarios based on forward wave
field calculations and inverse transport problems.

The rest of the paper is structured as follows. Section 2 presents our model of
random media with localized scatterers and derives the radiative transfer equation from a
high-frequency acoustic wave equation. Time-dependent and mono-frequency equations
are considered. The Foldy-Lax approximation to wave propagation is also presented.
The numerical validation of the radiative transfer equations based on Foldy-Lax wave
simulations and transport Monte Carlo simulations is presented in Section 3. Transport-
based imaging of inclusions in random media is then considered in Section 4.

2 Radiative transfer models

In this section, we introduce the microscopic and macroscopic models for the propagation
of high frequency waves in random media with localized scatterers.

We start from the acoustic wave equation with sound speed given by the super-
position of a constant background sound speed and localized strong fluctuations. The
radiative transfer equation is obtained as the high frequency limit of the energy density
of the acoustic waves following methods developed in e.g. [3, 33] in Section 2.1. The
corresponding transport equation for mono-frequency (time-harmonic) waves is given
in Section 2.2. Because the scatterers are localized on a scale much smaller than the
wavelength, the wave equation for time-harmonic wave fields is approximated by the
Foldy-Lax model, which is recalled in Section 2.3.

It remains to address the modeling of the buried inclusions. Extended objects are
treated like any other point-like object in the Foldy Lax formalism. At the radiative
transfer level, we assume that the inclusion is sufficiently large compared to the wave-
length so that energy reflects specularly at the inclusion’s boundary. Such models are
explained in greater detail in Section 2.4.

2.1 Derivation of the transport equation

We consider the propagation of scalar waves in media with constant (to simplify) density
ρ0 and spatially varied compressibility κ(x)

ρ0∂tv +∇p = 0, κ(x)∂tp +∇ · v = 0, p(0,x) = p0(x), v(0,x) = v0(x), (2)
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where t > 0 and x ∈ Rd with d ≥ 2 the spatial dimension. The theories that follow
generalize to the context of electromagnetic and elastic waves; see e.g. [3, 33]. We
restrict ourselves to the case of acoustic waves for concreteness.

In the high frequency regime of interest in this paper, the above equation rescales,
after the change of variables t 7→ t

ε
and x 7→ x

ε
, as

ρ0ε∂tvε + ε∇pε = 0, κε(x)ε∂tpε + ε∇ · vε = 0, (3)

where the initial conditions pε(0,x) = p0ε(x) and vε(0,x) = v0ε(x) oscillate at the
frequency ε−1. The parameter ε thus models the typical wavelength in the system. The
wave speed is defined as

c2
ε(x) =

1

ρ0κε(x)
= c2

0(x)−
√

εVε(
x

ε
). (4)

We retain the scaling
√

εVε(
x
ε
) to use the results developed in e.g. [3, 33]. Neither

the amplitude nor the correlation length of the potential Vε are necessarily of order O(1)
however. More precisely, the potential Vε is chosen as

Vε(x) = ε−
(γ+β)d

2

∑
j

τjV
(x− xε

j

εβ

)
, (5)

where β > 0, γ < 1, where V (x) is a compactly supported non-negative, uniformly
bounded, function, where the points xε

j(ω) form a Poisson point process of density νε =
εγdn0, and where the coefficients τj(ω) are square-integrable, mean-zero, independent
identically distributed random variables. Here ω is a point in a sufficiently large abstract
probability space (Ω,F , P ).

The sound speed fluctuations are therefore of the form

√
εVε(

x

ε
) = ε

1−(γ+β)d
2

∑
j

τjV
(x− εxε

j

ε1+β

)
. (6)

We thus conclude that the thickness of the scatterers is tε = ε1+β � ε, the correlation
length in the medium is lε = ε1−γL for L a typical distance of propagation, which verifies
lε � ε when 0 < γ < 1 and L = O(1), and the density of scatterers is nε = ε−dνε =
ε(γ−1)dn0 � O(1).

Note that Poisson point process allow the clustering of points xε
j , although the

number of points in a given bounded domain is bounded P -a.s. There is therefore
a (P -)small subset Ωε of Ω where the above fluctuation is larger than c2

0, which would
result in a negative c2

ε. The process in (6) thus needs to be modified on Ωε, for instance
by setting the fluctuations to 0. We verify, although we shall not present this here,
that such modifications of the process in (6) occur on a very small set and that the
calculations of the power spectra presented below are not affected by the change.

We can now use the results obtained in [33] to show that the wave energy density is
such that

Eε(t,x)−
∫

Rd

aε(t,x,k)dk → 0, (7)
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in a weak sense (i.e., after integration against a test function in the spatial variables x),
where Eε(t,x) is the energy density defined as

Eε(t,x) = ρ0|vε|2(t,x) + κε(x)p2
ε(t,x), (8)

and where aε(t,x,k) is a phase-space energy density, which solves the following radiative
transfer equation

∂aε

∂t
+ c0k̂ · ∇aε =

∫
Rd

σε(x,k,q)(aε(x,q)− aε(x,k))δ(c0|k| − c0|q|)dq, (9)

with appropriate initial conditions, where

σε(x,k,q) =
πc2

0|k|2

2(2π)d
R̂ε(k− q). (10)

Here, R̂ε is the power spectrum of the fluctuations Vε. It is the Fourier transform of the
correlation function Rε of the fluctuations Vε. They are defined as follows:

c4
0Rε(y) = E{Vε(x)Vε(x + y)}

(2π)dc4
0R̂ε(p)δ(p + q) = E{V̂ε(p)V̂ε(q)}, (11)

where V̂ε(p) =
∫

Rd e−ix·pVε(x)dx is the Fourier transform of Vε(x). We then have the
following result on the asymptotic limit of the power spectrum.

Lemma 2.1. Let us assume that V (x) is a non-negative, integrable, compactly supported
function such that V̂ (0) = c2

0L
d for some characteristic distance 0 < L = O(1), where

V̂ (k) is the Fourier transform of V . Then we find that the power spectrum R̂ε(k)
converges in the uniform norm uniformly on compact sets to the limit

R̂0 = L2dE{τ 2}n0. (12)

Proof. We calculate that

c4
0Rε(y) = ε−(γ+β)dE{τ 2}E

{ ∞∑
j=1

V
(x− xj

ε

εβ

)
V

(x + y − xj
ε

εβ

)}
.

Since V is compactly supported, there is a domain D, at x and y fixed, such that the
above product vanishes for xε

j outside of D. The Poisson point processes verifies that
the number of points on D satisfies a Poisson distribution and that conditioned on the
number of points, these points are uniformly and independently distributed on D. This
yields that

E
{ ∞∑

j=1

V
(x− xj

ε

εβ

)
V

(x + y − xj
ε

εβ

)}
=

∞∑
m=0

e−|D|νε
(|D|νε)

m

m!

m∑
j=1

∫
D

V
(x− z

εβ

)
V

(x + y − z

εβ

) dz

|D|

= νε

∫
Rd

V
(z− x

εβ

)
V

(z− x− y

εβ

)
dz,
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where |D| is the Lebesgue measure of D. Now,

Hε(y) =

∫
D

V
(z− x

εβ

)
V

(z− x− y

εβ

)
dz =

1

(2π)d

∫
Rd

e−ix·k
εβ ei

(x+y)·k
εβ |V̂ (k)|2dk

=
1

(2π)d

∫
Rd

eiy·kεβd|V̂ (εβk)|2dk.

Its Fourier transform is thus given by

Ĥε(p) = εβd|V̂ (εβp)|2 = εβd(|V̂ (0)|2 + O(εβ)),

where O(εβ) means a term of order εβ in the uniform norm, uniformly bounded on
compact sets. This follows e.g. from the analyticity of V̂ (p). Since R̂ε(k) is the Fourier
transform of Rε(x), we find that

c4
0R̂ε(k) = (|V̂ (0)|2 + O(εβ))E{τ 2}n0.

This proves the result.

In the limit ε → 0, we thus find that aε converges to the solution of the following
radiative transfer equation:

∂a

∂t
+ c0k̂ · ∇a + Σ(x, |k|)a =

∫
Rd

σ(x,k,q)a(t,x,q)δ(c0|k| − c0|q|)dq, (13)

where

σ(x,k,q) =
π|k|2L2dc2

0E{τ 2}n0

2(2π)d

Σ(x, |k|) =
|Sd−1|π
2(2π)d

|k|d+1L2dc0E{τ 2}n0.

(14)

Here, |Sd−1| is the Lebesgue measure of the unit sphere in Rd.
Note that the transport equations generalize to the case where the density of scatter-

ers depends on space. For instance, we may assume that the sound speed fluctuations
are of the form

√
εVε(x,

x

ε
) = ε

1−(γ+β)d
2

∑
j

τjϕ(xε
j)V

(x− εxε
j

ε1+β

)
, (15)

where ϕ(x) is a deterministic non-negative function on Rd. In the numerical simulations
considered below, ϕ(x) is the indicatrix function of our computational domain. The limit
in (12) is then modified as

R̂0(x) = ϕ2(x)L2dE{τ 2}n0. (16)

The scattering coefficients in (14) also need be multiplied by ϕ2(x) and thus become
spatially dependent.
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2.2 Transport equation in the frequency domain

The derivation of transport equations for mono-frequency waves cannot be deduced in
a straightforward way from time-dependent equations. We refer to [15] for a derivation
of kinetic models from the Helmholtz equation. We formally generalize these results by
adding a scattering operator to the transport equation to model the interaction with
the underlying random medium.

The Helmholtz equation for the mono-frequency wave field uε(x) with high frequency
ω
ε

takes the form:

ε2∆uε(x) +
ω2

c2
ε(x)

uε(x) =
1

ε
d−1
2

ϕ
(x− x0

ε

)
, (17)

where ϕ(x) is a smooth function which localizes in the vicinity of the point x0. We
assume that the density of scatterers vanishes in the vicinity of the source location x0

so that the dispersion relation is ω = c0|k| locally.
In the absence of scatterers, the results obtained e.g. in [15] show that there exists

a positive bounded measure a(x,k) such that

lim
ε→0

|uε(x)|2 := ν(x) =

∫
Rd

a(x,k)dk, (18)

where ν(x) is a positive measure on Rd. Moreover the phase-space measure a(x,k)
solves the Liouville equation:

c0k̂ · ∇a = Q(x,k), (19)

with the source Q(x,k) given by

Q(x,k) =
c2
0

2ω(2π)d−1
δ(x− x0)δ

(ω2

c2
0

− |k|2
)
|ϕ̂(k)|2

=
c3
0

4ω2(2π)d−1
δ(x− x0)δ

( ω

c0

− |k|
)
|ϕ̂(k)|2.

(20)

The above transport equation should be augmented with outgoing radiation conditions,
namely the incoming field a(x− tk,k) → 0 as t → +∞.

We briefly recall the derivation of the above equation and explain the scaling for
the source term in (17). The regularized Helmholtz equation (17) with constant sound
speed may be written as

(iεα + ε2∆ +
ω2

c2
0

)uε =
1

ε
d−1
2

ϕ
(x

ε

)
,

for some causality-preserving regularization parameter 0 < α � 1, and where we set
x0 = 0 to simplify the presentation. In the Fourier domain at frequency ξ/ε, this is

ûε

(ξ

ε

)
=

εdε−
d−1
2 ϕ̂(ξ)

iεα + ω2

c2
− |ξ|2

.

Let us now introduce the Wigner transform of uε:

Wε(x,k) =
1

(2π)d

∫
Rd

uε(x−
εy

2
)u∗ε(x +

εy

2
)eik·ydy,
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which verifies that

|uε(x)|2 =

∫
Rd

Wε(x,k)dk.

We verify that the Fourier transform x → q of Wε is given by

Ŵε(q,k) =
1

(2πε)d
ûε

(q

2
− k

ε

)
û∗ε

(q

2
+

k

ε

)
=

ε

(2π)d

|ϕ̂(k)|2

[iεα + ω2

c20
− |k + εq

2
|2][−iεα + ω2

c20
− |k− εq

2
|2]

+ l.o.t.

=
ε

(2π)d

|ϕ̂(k)|2(
ω2

c20
− |k|2

)2 −
(
iεα− εk · q

)2 + l.o.t.

=
ε

(2π)d

|ϕ̂(k)|2

2iεα− 2εk · q

[ 1(
ω2

c20
− |k|2

)
− iεα

− 1(
ω2

c20
− |k|2

)
+ iεα

]
+ l.o.t.

=
1

i(2π)d

|ϕ̂(k)|2

2α + i2k · q
2πiδ

(ω2

c2
0

− |k|2
)

+ l.o.t.

=
1

2α + i2k · q
|ϕ̂(k)|2

(2π)d−1
δ
(ω2

c2
0

− |k|2
)

+ l.o.t.

Here, l.o.t. refers to terms that tend to 0 in the sense of distributions as ε → 0. We
refer the reader to e.g. [15] for a more rigorous derivation. This shows that in the limit
ε → 0, we have

(2α + i2k · q)Ŵ (q,k) =
|ϕ̂(k)|2

(2π)d−1
δ
(ω2

c2
0

− |k|2
)
.

Sending the regularizing parameters α → 0+ and denoting by a(x,k) the inverse Fourier
transform q → x of Ŵ , we obtain the Liouville equation (19).

In the presence of scatterers whose density vanishes at x = x0, the radiating source
term Q(x,k) is not modified and propagation in a homogeneous medium is replaced
formally by propagation in a scattering medium as in the preceding section. The phase-
space energy density a(x,k) thus solves the following stationary transport equation

c0k̂ · ∇a + Σ(x,k)a =

∫
Rd

σ(x,k,q)a(x,q)δ(c0|k| − c0|q|)dq + Q(x,k). (21)

The equation should be augmented with zero-incoming radiation conditions, i.e., a(x−
tk,k) → 0 as t → +∞. In practice, we choose the source term ϕ(x) = δ(x) so that
ϕ̂(k) = 1.

2.3 Foldy-Lax model for point scatterers

The Helmholtz equation (17) is very demanding to solve numerically for the choice of
sound speed fluctuations given in (5). Since β > 0 so that εβ → 0 as ε → 0, the localized
scatterers are very small compared to the wavelength of the propagating waves. As a
consequence, we can replace the localized scatterers by point scatterers. We thus have
to solve a Helmholtz equation with randomly distributed point scatterers.
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Assuming that the number of scatterers on a given computational domain is N , we
obtain that the solution to the Helmholtz equation is given by

u(x) = ui(x) +
N∑

j=1

τjG0(x,xj)u(xj), (22)

where ui(x) is the wave field generated by the source and the Green’s function G0(x,x′)
is given by

G0(x,x′) =


i

4
H1

0 (k|x− x′|), d = 2,

eik|x−x′|

4π|x− x′|
, d = 3,

(23)

with H1
0 the 0th order Hankel function of the first kind. When x = xj, the above

solution needs modification. The Foldy-Lax model [23, 27, 38] removes the singularities
in a self-consistent fashion by imposing that

u(xj) = ui(xj) +
N∑

j=1
j′ 6=j

τj′G0(xj;xj′)u(xj′), (24)

for j = 1, ..., N . We thus need to solve the system (24) first and then can evaluate the
field u(x) at each point x using (22).

The Foldy-Lax equation (24) can be written in matrix form as:

HU = Ui, (25)

where
U ≡ [u(x1), ..., u(xN)]T, Ui ≡ [ui(x1), ..., u

i(xN)]T, (26)

and where the complex matrix H is given by

Hjj′ = δjj′ − (1− δjj′)τj′G0(xj,xj′). (27)

Let us assume to simplify that the strength of the scatterers is given by τj = εjτk2,
where the εj are independent variables taking the values 1 and −1 with equal probability.
This is the setting that we will consider in the next section. We then verify that

Σ2D(x) =
k3τ 2n0

4
, σ2D(x,k,k′) =

k3τ 2n0

8π
, (28)

in the two-dimensional case and

Σ3D(x) =
k4τ 2n0

4π
, σ3D(x,k,k′) =

k4τ 2n0

16π2
, 6 (29)

in the three-dimensional case. These expressions are consistent with (14) provided that
we set L = 1 and normalize the sound speed c0 = 1. We shall assume that L = 1 and
c0 = 1 for the rest of the paper.
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2.4 Models for the buried inclusions

We now have to model the buried inclusions, both at the level of the Helmholtz equation
and of the radiative transfer equation.

The Foldy-Lax model can be generalized to account for the presence of extended
objects. Here, we consider impenetrable objects with vanishing Neumann boundary
conditions at the inclusion’s boundary for the Helmholtz equation. In this setting, (22)
becomes

u(x) = ui(x,x′) +
N∑

j=1

τjG0(x;xj)u(xj) +
M∑
l=1

∫
∂Ωl

nl · ∇yG0(x;y)u(y)dS(y), (30)

where M is the number of extended objects in the domain and Ωl is the l−th inclusion
with sufficiently smooth boundary ∂Ωl and outer normal vector −nl on the boundary.
The Foldy-Lax consistent equation now becomes

u(xj) = ui(xj) +
N∑

j′ 6=j

τj′G0(xj;xj′)u(xj′) +
M∑
l=1

∫
∂Ωl

nl · ∇yG0(xj;y)u(y)dS(y), (31)

for j = 1, ..., N .
In order to evaluate wave fields at arbitrary points x, we need to solve (30) for points

on the boundary of the extended objects and (31) for xj, j = 1, ..., N . Equations (30)
and (31) are the new self-consistent Foldy-Lax multiple scattering equations in the case
where extended objects are present.

At the transport level, in order to obtain a contribution of order O(1), we need to
assume that the inclusion is comparable in size to the overall distance of propagation.
This implies that the extended object is large compared to the wavelength ε so that
its boundary may be treated as specularly reflecting. In other words, we assume the
following specular reflection:

a(x,k) = a(x,k− 2k · n(x)n(x)), x ∈ ∂Ωl. (32)

The radiative transfer equation (21) holds outside of the inclusions, i.e., on Rd\(∪lΩl).

3 Numerical validations

Although radiative transfer equations have been used for a long time to described the
energy density of waves in random media, numerical validations of such models are
more recent; see e.g. [8, 31] for simulations in the time domain. The reason is that the
propagation of high frequency waves in highly heterogeneous media is computationally
quite expensive. In this section, we compare the energy densities of monochromatic
waves based on the Foldy Lax model with the solution of the corresponding radiative
transfer equation.

3.1 The wave and transport solvers

The Foldy-Lax consistent equations (25) form a system of complex-valued algebraic
equations. Because the matrix H is dense, iterative methods are not more efficient
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than direct solvers. We thus solve the system by the LU factorization method. In the
case where extended objects are present in the domain, we need to solve (30) and (31).
We approximate the boundary integrals by standard numerical quadrature rules. Since
these integrals are weakly singular, we adopt the kernel splitting method developed in
[20] to discretize the integrals.

The random medium is generated by distributing the random scatterers according
to a Poisson point process of density n0. We recall that for a bounded volume element

V , the number of points in V has the distribution P(NV = k) = e−n0|V |(n0|V |)k

k!
for k ≥ 0,

where |V | is the (Lebesgue) measure of V . Once a realization of the number k is chosen,
the k points are placed in V using a uniform (normalized Lebesgue) distribution on V .
A typical distribution of point scatterers is shown in e.g. Fig. 1.

The transport equation (21) is solved by the Monte Carlo method [37]. We run
enough particles to ensure that the statistical error in the simulation is smaller than
any other involved quantity. Appropriate variance reduction techniques are used to
calculate the influence of extended objects accurately; see [8] for the details.

Note that the Foldy-Lax model and the radiative transfer equations work for a given
(large) frequency. By varying the frequency in a (small) vicinity of a central frequency,
time-domain data may be obtained by appropriate Fourier transform.

3.2 Numerical results

To compare the wave and transport models, we compute the total energy on a fixed
array of detectors D; see Fig. 1. After appropriate normalization, the energies take the
form:

EW =

∫
D

|u(x)|2dx and ET =

∫
D

∫
Sd−1

a(x, k̂)dk̂dx, (33)

where u(x) is the random solution to the wave equation and a(x, k̂) is the energy density
of those waves at position x propagating in direction k̂ ∈ Sd−1, where d = 2 in all our
numerical simulations.

Since u(x) is a random variable, EW is also a random variable, which thus depends
on the realization of the random medium. Note that ET in contrast is a deterministic
quantity. We have therefore two objectives: (i) show that E{EW} is close to ET ; and
(ii) show that the standard deviation σ(EW ) of EW is small. The latter is defined as

σ(EW ) =
(
E{(EW − E{EW})2}

) 1
2
. (34)

From now on, we use the standard notation σ to denote standard deviations, which
should not be confused with the scattering cross-section in (21). We are interested in
the behavior of σ(EW ) as a function of the mean free path c0Σ

−1.

Energy measurements and detector size. The first numerical test compares wave
and transport data in the absence of any buried inclusion. The setup is as shown in
Fig. 1. We compare the models for five frequencies uniformly distributed on [ω 1.25ω],
where ω = 2π

λ
. The domain of interest is fixed and given by [0 400λ] × [0 200λ]. The

point source is located at position (220λ,−40λ). A total number of 6000 point scatterers
on average (using a Poisson distribution) are randomly distributed in the domain. This
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Figure 1: Setup for the numerical simulations. The inclusion may be placed inside or
outside of the random medium. We show here a typical realization of the distribution
of 1000 point scatterers.

Figure 2: Comparison between measured transport and wave data at frequencies be-
tween ω = 2π

λ
and 1.25ω with detectors of size 40λ × 40λ (left) and 80λ × 80λ (right),

respectively. Solid line: transport data ET ; Circles with error bar: wave data E{EW}
and its standard deviation σ(EW ).

corresponds to a correlation length lc ≈ 3.65λ. The strength of the scatterers is chosen
such that the mean free path is equal to 40λ. As the frequency increases, the transport
mean free path decreases as the third power of frequency as can be seen in (28). We show
in Fig. 2 a comparison between EW and ET at different frequencies with two different
sizes of the array of detectors. The average E{EW} and standard deviation σ(Ew) are
calculated based on 40 realizations of the random medium.

We observe that the wave and transport models agree quite well. The ensemble
average of the energy density is well captured by the radiative transfer equation. How-
ever, radiative transfer models are valid when energy is averaged over a sufficiently large
domain compared to the wavelength [4, 6]. When averaging takes place over too small
a detector, statistical instabilities are important.

These results generalize to the case where an inclusion is present in the random
medium. The comparison between the energy densities EW and ET is then qualitatively
very similar to the case shown in Fig. 2.

Statistical stability and density of scatterers. In the next numerical example,
we want to address the statistical stability of the transport model with respect to the
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number of random scatterers. The same average scattering medium, characterized by
a given mean free path, may be obtained from a low density of strong scatterers or
a high density of weak scatterers in such a way that τ 2n0 stays constant. We do not
have a theoretical model at present to characterize the statistical stability of the energy
EW when τ and n0 vary while the product τ 2n0 remains constant. Intuitively however,
we expect the random medium to be more mixing and thus more stable statistically
when the number of scatterers is large simply because the interactions of the wave fields
with the underlying structure happen more often. The following numerical simulations
confirm this. We show in Fig. 3 the energy measurements obtained from nine types

Figure 3: Statistical stability of wave data with respect to media properties at two
mean free paths: c0Σ

−1 = 30λ (left), c0Σ
−1 = 50λ (middle) and c0Σ

−1 = 100λ (right).
Each dot corresponds to the wave energy measured on the array of detectors for one
realization with an average of 6000 scatterers (top lines labeled 3; lc ≈ 3.65λ), 3000
scatterers (middle lines labeled 2; lc ≈ 5.16λ), and 1500 scatterers (bottom lines labeled
1; lc ≈ 7.30λ), respectively.

of random media corresponding to an average of 6000 scatterers (lc ≈ 3.65λ), 3000
scatterers (lc ≈ 5.16λ), and 1500 scatterers (lc ≈ 7.30λ), and to mean free paths c0Σ

−1

equal to 30λ, 50λ, and 100λ. We observe as expected that the standard deviation
increases with the correlation length in the medium (as statistical instability increases)
and that it increases when the mean free path decreases (as the random medium becomes
optically thicker); see the statistics in Tab. 1.

c0Σ
−1 = 30λ c0Σ

−1 = 50λ c0Σ
−1 = 100λ

6000 3000 1500 6000 3000 1500 6000 3000 1500
E{EW} × 103 1.145 1.150 1.150 0.500 0.496 0.495 0.251 0.253 0.249
σ(EW )× 104 0.425 0.711 1.156 0.123 0.204 0.383 0.055 0.093 0.181
σ(EW )
E{EW } × 102 3.71 6.18 10.05 2.46 4.11 7.73 2.19 3.69 7.27

Table 1: Average and standard deviation of the wave energy measurements presented
in Fig. 3.

4 Transport-based imaging in random media

We now examine the capabilities of the radiative transfer model to detect and image
inclusions buried in random media. As in the preceding section, all simulations are
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performed in a two-dimensional setting, which is appropriate for the experimental con-
figuration considered in e.g. [29]. Note that both the Foldy-Lax model and the Monte
Carlo method are independent of dimension so the proposed numerical method is es-
sentially independent of spatial dimension.

As we saw in Section 2, the wave energy density is modeled by a radiative trans-
fer equation given by (21) outside of the buried inclusions and by specular reflection
conditions (32) at the inclusions’ boundary. The inclusions thus become constitutive
parameters in the radiative transfer equation, as is the mean free path c0Σ

−1(x). In
this section, we propose to reconstruct the mean free path and the inclusion in (21)-
(32) using energy measurements obtained by solving the Foldy-Lax equation (22)-(24).
Although inverse transport models have been used already, see e.g. [1, 32], this is to
our knowledge the first analysis of reconstructions based on a macroscopic (wavelength-
independent) transport model from microscopic (wave- and medium-dependent) wave
data.

We consider three slightly different settings: inclusions buried inside a random
medium; inclusions separated from the array of detectors by a random medium; and
inclusion buried in a random medium and located behind a large blocker that prevents
direct line of sight from the source location. The settings are shown in Fig. 4.

Figure 4: Three different setups for the reconstructions: inclusion inside the medium
(left), inclusion outside of the medium (middle), and inclusion behind a blocker (right).
The small circles and (green) squares represent the source and detector locations, re-
spectively. The small (blue) disks are the inclusions to be reconstructed. The large
(red) disk represents a blocker, whose location and geometry is assumed to be known.

The theory of inverse problems for transport equations is relatively well established
in the presence of phase-space measurements; see [18]. Here however, we assume that
EW and ET are available, not a(x, k̂) for all x ∈ D and k̂ ∈ Sd−1. As a consequence, and
even though no rigorous theoretical results exist in this domain, the measurements we
have are similar to partial knowledge of the Cauchy data in an inverse elliptic problem
[24]. The stability of such inverse problems is notoriously bad, in the sense that noise
is drastically amplified during the inversion. What this means in practice is that the
number of degrees of freedom about the random medium and the inclusion that we can
possibly retrieve from available data is small. The inverse transport problem thus needs
to be parameterized. Our choice of a parameterization is the following: we assume
that the mean free path c0Σ

−1 is constant in a rectangular domain whose geometry is
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known, and vanishes outside of that domain; and we assume that the inclusion is a disc
parameterized by its location x and its radius R. This hypothesis is slightly relaxed in
Section 4.3.

4.1 Transport-based imaging method

The reconstruction method for the parameters mentioned above is based on the following
least-square minimization procedure. Let F be the family of parameters we want to
reconstruct. We find these parameters by solving the following minimization problem:

Fb = arg min
F∈Ξ

O(F), (35)

where Ξ = [Fmin,Fmax] is a family of a priori box-constraints that define a region
in which we search for optimal solutions. The objective function that measures the
mismatch between measured data and model prediction is given by:

O(F) =
1

2

J∑
j=1

|Ej
T − Ej

W |
2, (36)

where Ej
T is the model prediction on detector j, Ej

W the corresponding wave measure-
ment, and J the total number of detectors. We solve this minimization problem by a
quasi-Newton minimization algorithm with BFGS updating rules for the Hessian ma-
trix. Box constraints on decision variables are enforced by a gradient projection method.
The gradient of the objective function with respect to the parameters to be recovered
is calculated by using a finite difference approximation since we have only a few pa-
rameters to reconstruct. We refer the interested reader to [14, 30] for details on the
BFGS quasi-Newton method and [32] for application of the method in inverse transport
problems.

In all of the inversions run below, we consider 8 detectors of size 62.5λ× 80λ, as is
depicted in Fig. 4. We have mentioned that the energy density was statistically stable
only on sufficiently large domains. The size of the detectors thus needs to be sufficiently
large to average over local fluctuations. The number of detectors also needs to be
sufficiently large to increase the amount of available data. We do not possess a theory
for the energy-energy correlations that could guide us in the design of optimal detectors
array. Several scenarios have been tested and the number of 8 detectors is optimal
in terms of the statistical stability and the amount of non-redundant information it
provides.

The box-constraints Ξ have also been chosen to be fairly non-constraining. For an
inclusion of radius R = 30λ and location (300λ, 400λ) in a random medium of size
[0 600λ] × [0 600λ] for instance, the constraints on the radius are R ∈ [10λ, 100λ] and
the constraints on the locations (x, y) are [50λ 550λ]× [50λ 550λ].

4.2 Imaging under different measurement scenarios

We consider two imaging scenarios: (i) when we have wave energy measurements in
the presence of the object; and (ii) when we have energy measurements in the presence
and in the absence of the inclusion. The former measurements are referred to as direct
measurements. The latter measurements are referred to as differential measurements.
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4.2.1 Scenario I: direct measurement

In this first scenario, we are not able to probe the random medium in the absence of
an inclusion. We distinguish two sub-scenarios, which essentially have the same recon-
struction capabilities. In Scenario Ia, we assume that we have access to measurements
in the absence of the inclusion for a given realization of the random medium, which we
call medium 1. We then assume that we have access to measurements in the presence of
the inclusion in a medium 2 that is completely uncorrelated to medium 1. In scenario
Ib, we assume that we have access to the measurements in medium 2 only, whence in
the presence of the inclusion. The difference is mostly pedagogical. In scenario Ia, we
first reconstruct the parameters of the random medium, i.e., here the mean free path
c0Σ

−1, and second reconstruct the inclusions’ parameters. In scenario Ib, we have to
reconstruct all parameters at once. We show numerical evidence that both scenarios
provide very similar reconstruction capabilities. In both cases, the inclusion’s influence
on the measurements needs to be greater than the noise level coming from our lack of
understanding of the specific realization of the random medium. In other words, the in-
clusion’s influence need be larger than the statistical instability of the radiative transfer
model. The reconstruction in scenario Ia is a two step process:

Step A. We measure the energy density of waves propagating in one realization of
the random medium described above. We then estimate the scattering cross-section Σ
by solving the following minimization problem:

Σb = arg min
Σ∈ΞA

O(Σ), (37)

where ΞA = [Σmin, Σmax] is the space in which we seek Σ, and the objective functional
is given by

O(Σ) =
1

2

J∑
j=1

|Ej
T − Ej

W |
2, (38)

where Ej
T is the model prediction detector j, and Ej

W is the corresponding wave energy
measurement.

Step B. We now perform the energy measurements in the presence of an inclusion
buried in a medium 2 uncorrelated with the medium used in Step A. Such a scenario is
realistic when we know that medium 2 has similar statistics to medium 1, on which more
refined estimates can be obtained before measurements in medium 2 are performed.

We use the scattering coefficient Σb (b for best fit) obtained in Step A and image
the inclusion from available measurements in medium 2. The position and radius of the
inclusion, assumed to be a disc, are obtained by the following minimization:

(xb, Rb) = arg min
(x,R)∈ΞB

O(x, R). (39)

Here O(x, R) is defined as in (36) with Ej
T the transport solutions with scattering cross-

section Σb and Ej
W the wave energy measurements in medium 2. Here, ΞB ⊂ Rd+1 is

the constraint set in which the solution (x, R) is looked for.
We show in Fig. 5 four typical reconstructions ((A)-(D) from left to right) with

this two-step procedure. The reconstructions in (A) and (B) are done for the first
configuration in Fig. 4 where the medium covers the domain [0 600λ]×[0 600λ] and
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Figure 5: Typical reconstruction of an inclusion from direct measurements under Sce-
nario Ia. (A) and (C) are for c0Σ

−1 = 200λ. (B) and (D) are for c0Σ
−1 = 100λ. Real

and reconstructed objects are plotted as solid and dotted circles, respectively.

the inclusion is located inside the medium. A few scatterers around the inclusions are
removed from the picture to make the plot clearer. The reconstructions in (C) and (D)
are done for the second configuration in Fig. 4 where the medium covers the domain [0
600λ]×[0 300λ] and the inclusion is located outside of the medium. The mean free path
(with c0 = 1) for the medium in (A) and (C) is c0Σ

−1 = 200λ and that for the medium
in (B) and (D) is c0Σ

−1 = 100λ. In all experiments, the correlation length is lc ≈ 7.75λ,
with an average of 6000 rods in experiments (A)&(C) and of 3000 rods in experiments
(B)&(D).

Figure 6: Reconstructed parameters for the four cases in Fig. 5 based on 40 realizations.
Top row: distribution of the reconstructed inclusion’s locations. Bottom row: histogram
of the reconstructed radii.

The reconstructions are repeated for 40 different realizations of the random medium.
The results are presented in Fig. 6, where we have plotted the reconstructed locations
and radii for the four cases shown in Fig. 5. We observe that in all cases, the recon-
structions of the inclusion’s location are quite accurate. The radii are also good, though
not as accurate. Given the smallness (relative to the mean free path) of the inclusions,
we do not expect to reconstruct their size very precisely.

We have calculated the first two statistical moments (expectation and standard de-
viation) of the mean free path, the inclusions’ locations (measured by x- and y- coor-
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dinates), and the inclusions’ radii. The numbers are presented in Tab. 2. We observe
that the reconstruction of the inclusion’s location is relatively good, as the variance
is quite small. The error in the reconstruction of the inclusion’s geometry is however
significantly larger.

Inclusion Reconstructiona

c0Σ
−1 location R c0Σ

−1
b location R

Case A 200 (200, 450) 40 200.0 [2.7] (199.8 [2.4], 449.2 [2.1]) 41.5 [4.3]
Case B 100 (200, 450) 40 99.8 [2.7] (199.8 [1.8], 449.8 [1.7]) 40.0 [5.1]
Case C 200 (300, 400) 40 200.6 [3.3] (300.0 [1.8], 399.7 [2.1]) 40.4 [6.0]
Case D 100 (300, 400) 40 100.1 [2.9] (299.8 [1.9], 399.2 [2.4]) 39.3 [4.9]

Table 2: Reconstructed mean free paths, locations and radii from the four cases in
Fig. 5. All numbers are in units of the wavelength λ. aAveraged value and standard
deviation (numbers in bracket) calculated from 40 realizations.

Another way of looking at the instability in the reconstruction is to plot the func-
tional that appears in the minimization problem in the vicinity of the minimum. We
plot in Fig. 7 (left) the functional for different values of x in the vicinity of x = xmin

at y and R fixed and equal to their optimal values. Similarly, the middle plot shows
the functional as a function of y at x and R fixed and the right plot the functional
as a function of R at (x, y) fixed. The results presented in Fig. 7 for a specific real-

Figure 7: Plot of the objective function O(x) as a function of x (left) at y and R fixed,
as a function of y (middle) at x and R fixed and as a function of R (right) at (x, y)
fixed, for a typical realization of the random medium.

ization show a sharper resolution in the x (cross-range) variable than in the y (range)
variable. This may be explained by the fact that the detectors have a wide aperture in
the x variable and much less aperture in the y variable. The results presented in Tab.
2, however, show that the standard deviations in the x and y variables are somewhat
comparable (and on the order of 2− 3λ, less than 1% of the distance from the source to
the inclusion). This is an indication that the regime of wave propagation is quite highly
mixing so that there is no real privileged direction of propagation.

As we have mentioned in Section 3, the statistical stability of the wave energy mea-
surements depends on the number of scatterers for a given mean free path. We now
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consider the reconstruction of inclusions for two random media with a mean free path
equal to c0Σ

−1 = 100λ. The first random medium has an average of 6000 point scat-
terers (lc ≈ 7.75λ) and the second random medium an average of 3000 point scatterers
(lc ≈ 10.95λ). The results are presented in Fig. 8. We have also calculated the two

Figure 8: Distributions of the reconstructed locations and radii for 200 realizations of
random media consisting of N = 3000 (left two plots) and N = 6000 (right two plots)
point scatterers on average.

first statistical moments of the inclusions’ location and radius. Results are reported in
Tab. 3. The averaged values are very similar for both reconstructions, which is expected

Inclusion Reconstructiona

c0Σ
−1 location R c0Σ

−1
b location R

N = 3000 100 (400, 350) 30 99.8 [4.4] (400.0 [2.9], 350.2 [3.2]) 30.1 [8.4]
N = 6000 100 (400, 350) 30 100.0 [2.9] (400.0 [2.2], 350.0 [2.2]) 29.0 [5.9]

Table 3: Reconstructed mean free path, location and radius from media with N = 3000
and N = 6000 point scatterers on average. aAveraged value and standard deviation
(numbers in bracket) calculated with 200 realizations. All numbers are in units of the
wavelength λ.

since radiative transfer is indeed valid for the ensemble averaged energy density. The
standard deviation however increases when the scatterers become fewer and stronger.
In that case, our lack of understanding of the specific realization of the random medium
creates large noise in the data, whence in the reconstructions. Such results are consistent
with our numerical analysis of the statistical instability done in Section 3.

Let us conclude this section by a remark on the resolution of the method. With
random media with 6000 scatterers on average and a mean free path of c0Σ

−1 = 100λ
on a square domain of size 600λ and an inclusion buried 375λ north of the source, we
have good reconstructions for radii larger than 20λ. At about 20λ, the “optimal” radius
obtained by minimization has a large probability of hitting the box constraints imposed
on the radius and is thus meaningless. In the same configuration with a random medium
with 3000 scatterers on average, the smallest radius we can confidently reconstruct
increases to R = 30. These results lead to the following conclusion. Even in the
presence of a highly mixing random medium (with 6000 scatterers, which may be large
for most practical situations [29]), the inclusion needs to be quite large compared to the
wavelength in order for its influence to be larger than the statistical instability of the
wave energy measurements. In such a context, the only solution to better resolution is
to have access to the measurements of Scenario II considered below.
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4.2.2 Scenario Ib: reconstructing all at once

We now consider the setting where Σ and the inclusion’s parameters are reconstructed
in a single step because we do not possess any a priori knowledge of the statistics of the
random medium. Compared to scenario Ib, we have one more parameter to reconstruct,
and possibly many more parameters when the power spectrum is spatially dependent,
However, the reconstruction of these parameters is more adapted to the random medium
2 than in Scenario Ia. Reconstructions are based on minimizing the functional:

(Σb,xb, Rb) = arg min
(Σ,x,R)∈Ξ

O(Σ,x, R), (40)

where Ξ ⊂ R3 is a set of constraints.
This scenario is of equivalent complexity to the previous one since only one additional

parameter is added. Moreover, so long as the inclusion is relatively small compared to
the size of the domain, it will not affect the reconstruction of Σ in any significant way.

We show in Fig. 9 the same reconstructions under scenario Ib as those obtained under
scenario Ia in Fig. 5 (A) and (B). The first two statistical moments of the reconstructed

Figure 9: Distribution of reconstructed locations and radii with the method in Scenario
Ib. Plots (A) and (B): for a medium with mean free path c0Σ

−1 = 200λ. Plots (C) and
(D): for a medium with c0Σ

−1 = 100λ.

locations and radii are listed in Tab. 4. We observe that the reconstructed mean free
paths, inclusion’s positions and radii are very similar to the parameters reconstructed
in Fig. 5.

Inclusion Reconstructiona

c0Σ
−1 location R c0Σ

−1
b location R

Medium 1 200 (200, 450) 40 200.6 [3.1] (199.5 [2.6], 450.7 [2.8]) 41.5 [5.7]
Medium 2 100 (200, 450) 40 99.0 [5.0] (199.5 [3.4], 450.1 [3.5]) 39.7 [7.0]

Table 4: Reconstructed mean free path, location and radius in Scenario Ib for two
different type of media. aAveraged value and standard deviation (numbers in bracket)
calculated from 40 realizations. All numbers are in units of the wavelength λ.

4.2.3 Scenario II: differential measurement

Scenario II relies on much different measurements. We assume that we have access to
wave energy measurements in the presence and in the absence of the inclusion, and in
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both cases for the same realization of the random medium (except at the location of the
inclusion where the random scatterers are suppressed). However, we do not know the
random medium and thus have to model it macroscopically using a radiative transfer
model. As in the preceding case, the macroscopic model is parameterized by a unique
parameter, the mean free path c0Σ

−1.
As we said earlier, differential measurements allow for much more accurate recon-

structions. The reason is that the difference of the two measured energies depends
only on the inclusion. Therefore, with a kinematic picture in mind, where wave energy
packets are replaced by particles scattering in the random media, all the wave packets
that do not interact with the inclusion do not contribute to differential measurements.
These wave packets are the largest contributors to the statistical instability of the ran-
dom medium that hampers reconstructions of small objects in Scenario I. The measured
wave packets that have interacted with the inclusion are also statistically unstable. How-
ever, they are in some sense proportional to the inclusion, and in the absence of external
measurement noise, differential measurements allow one to reconstruct arbitrarily small
objects. They are not immune to the statistical instability, and a statistical instability
in the random medium of 10% may result in an error on the location and radius of
the inclusion on the order of 10% as well. However, the limit in the size of the objects
that can be reconstructed is governed by external measurement noise, and no longer by
the statistical instability in the medium. The two-step reconstruction process used in
scenario Ia applies here:

Step A. We use the measurements in the absence of an inclusion in the medium to
estimate the scattering cross-section of the medium. This is done by minimizing (37)
as before.

Step B. Once Σ has been found, we reconstruct the location (x) and the radius (R)
of the spherical inclusion by minimizing:

(xb, Rb) = arg min
(x,R)∈ΞB

δO(x, R) (41)

where

δO(x, R) =
1

2

J∑
j=1

|δEj
T − δEj

W |
2. (42)

Here, δEj
T and δEj

W correspond to the difference of energies with and without the
inclusion for the transport model and the wave data, respectively, at detector j. In
practice, δEW is calculated by estimating the difference of the solutions to two Foldy-Lax
equations and δEW is estimated by Monte Carlo using the variance reduction technique
introduced in [8]. The role of this variance reduction is to write the difference δEW as the
expectation of an appropriate process, rather than the difference of two expectations,
which requires a huge amount of particles to be accurate. We refer the reader to [8] for
additional details.

Reconstructions based on Scenario II have been performed for two different mean
free paths c0Σ

−1 = 200λ and c0Σ
−1 = 100λ, respectively. The random medium is again

formed of an average of 6000 scatterers over [0 600λ]×[0 600λ] so that the correlation
length lc ≈ 7.75λ. The inclusion is located at coordinate (375λ, 375λ) and has a radius
equal to R = 10λ, which is significantly smaller than what we can reconstruct under
scenario I.
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We show in Fig. 10 the distributions of the reconstructed locations and radii for the
two random media.

Figure 10: Distribution of reconstructed location and radius for 40 realizations with
differential measurement. Left: c0Σ

−1 = 200λ and Right: c0Σ
−1 = 100λ.

Real Reconstructiona

c0Σ
−1 location R c0Σ

−1
b location R

Medium 1 200 (375, 375) 10 199.8 [2.8] (374.8 [2.4], 374.6 [2.4]) 9.9 [2.3]
Medium 2 100 (375, 375) 10 100.1 [3.3] (375.8 [2.9], 375.0 [2.4]) 9.9 [2.2]

Table 5: Reconstructed mean free paths, locations and radii based on differential mea-
surements. aAveraged value and standard deviation (numbers in bracket) calculated
from 40 realizations. All numbers are in units of the wavelength λ.

The averaged value and standard deviation of the mean free path and the inclusion’s
location and radius are summarized in Tab. 5. As we can observe, the transport inversion
does a relatively good job at locating the inclusion. However, it misses the size of
the inclusion by a much larger amount. This is understandable because the specular
reflection model may not be totally consistent with the size of an object with radius of
order 10λ. For smaller objects, a more accurate radiation model than specular reflection
is necessary. We do not consider this issue further here.

4.3 Imaging the orientation of the inclusions

In the preceding sections, we have obtained satisfactory reconstructions of inclusions
based on low-dimensional parameterizations of the inclusion. Since, as we have men-
tioned in Section 4, the inverse transport problem is quite ill-posed, we should not expect
to reconstruct any fine geometrical information about the inclusion. To demonstrate
this, we consider the reconstruction of half discs from wave energy measurements. Half
discs are parameterized by their location, their radius, and the orientation θ of their flat
portion (with respect to the x-axis). We use the same minimization techniques as in
the preceding sections with this additional parameter θ in the functional in (36) in the
case of direct measurements and (42) in the case of differential measurements.

We show in Fig. 11 typical reconstructions obtained from direct and differential mea-
surement. The radius of the inclusion is R = 30λ for the case of differential measurement
and R = 50λ for the case of direct measurement. It both cases, the half disc is centered
at position (375λ, 375λ). The reconstruction of the orientation is relatively accurate.
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Figure 11: Reconstructions of half discs from direct and differential measurements in
random media with an average of 6000 scatterers and a mean free path c0Σ

−1 = 100λ.
From left to right: A typical reconstruction from differential measurement; an ensemble
averaged reconstruction from differential measurement; a typical reconstruction from
direct measurement; and an ensemble averaged reconstruction from direct measurement.
True inclusions are plotted with dotted lines amd reconstructed inclusions with solid
lines.

Based on simulations on 20 realizations, the averaged reconstructed angle is 0.68π and
the standard deviation 0.16π for the case with differential measurements. The averaged
angle is 0.81π and the standard deviation 0.19π for the case with direct measurements.
In each case, the exact angle is 3π

4
. The standard deviations on the orientation thus

correspond to roughly 20% of error. The reconstruction of the orientation is, however,
not as accurate as that of the radius (or equivalently the volume) and the location of
the inclusion. The orientation is a finer geometric property of the inclusion and is thus
more difficult to observe. Even with differential measurement, our experience is that we
can not faithfully reconstruct the orientation of half disks with a radius smaller than
25λ. For direct measurement, we can reconstruct the orientation when the radius of
the inclusion is larger than 45λ. Below these numbers, the reconstruction of θ becomes
extremely noisy.

4.4 Imaging in the presence of blockers

In all of the above reconstructions, the mean free path is sufficiently small so that
the energy leaving the source, hitting the inclusion, and coming back to the detectors
without having interacted with the underlying medium, i.e. the energy of the coherent
wave field, is relatively small. Inversions based only on the coherent information may
thus fail to provide meaningful information about the inclusion. One may however use
larger wavelengths, which are less affected by the random medium since the mean free
path is much larger as the latter scales like λ3. The assumption in Scenarios I and II
above is that we have access to wave measurements at frequencies for which there is
considerable multiple scattering, i.e., for which the mean free path is relatively small.

There are however situations in which the coherent wave field can hardly be used no
matter which frequency we consider, for instance when the inclusion we seek to image is
hidden by a large blocker. One can always argue that some energy reaches the hidden
inclusion by diffractive effects. Such fields however are quite weak and may well be
below noise level as soon as the propagating medium has unknown spatial fluctuations.

In such situations, randomness in the underlying medium may be helpful. In the
context considered in this paper of random media with multiple localized scatterers, the
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wave energy may be modeled by a radiative transfer equation, and both the blocker and
the unknown inclusion may be modeled as constitutive parameters in that equation.
We consider here a situation where the blocker is large, spherical, and known. It is
sufficiently large to block direct paths from the source term to the inclusion. The blocker
is treated as any other extended inclusion in the Foldy-Lax and transport models.

We consider the setup shown on the right in Fig. 4. The blocker is located at (300λ,
200λ) and its radius is 120λ. The inclusion’s center and radius are (300λ, 380λ) and
R = 40λ. All reconstructions are done based on differential measurements, i.e., under
Scenario II. The mean free path is estimated in the presence of the known blocker and
the inclusion’s parameters minimizing (42). Fig. 12 shows reconstructions in random

Figure 12: Reconstruction of an inclusion hidden behind a large blocker. Top row:
reconstruction in scattering media with c0Σ

−1 = 100λ. Bottom row: reconstruction
in scattering media with c0Σ

−1 = 75λ. From left to right: a typical reconstruction,
distribution of the reconstructed locations and histogram of the reconstructed radius.

media with (theoretical) mean free paths equal to c0Σ
−1 = 100λ and c0Σ

−1 = 75λ,
respectively. In each case, there would be a number of scatterers equal to 6000 on
average if the blocker was filled with scatterers so that lc ≈ 7.75λ. We are therefore in
the more stable of the two random media considered so far.

Inclusion Reconstructiona

c0Σ
−1 location R c0Σ

−1
b location R

Medium 1 100 (300, 380) 40 101.0 [2.9] (299.9 [2.6], 379.6 [2.9]) 39.7 [5.3]
Medium 2 75 (300, 380) 40 74.8 [3.3] (299.1 [3.1], 379.9 [2.6]) 39.0 [5.2]

Table 6: Reconstructed mean free path, location and radius in presence of blockers.
aAverage and standard deviation (numbers in bracket) calculated from 40 reconstruc-
tions. All numbers are in units of the wavelength λ.

The average and standard deviations of the reconstructed parameters are shown in
Tab. 6. We observe quite good reconstruction capabilities. The images obtained in the

25



presence of the blocker are of comparable quality to those obtained in the absence of
the blocker. Since the blocker is known and not so large so that no energy radiated
from the source can reach the inclusion and come back to the array of detectors, this is
consistent with what one expects from theoretical considerations.

5 Conclusions

We have derived a radiative transfer equation to model the energy density of mono-
frequency waves propagating in random media composed of localized scatters. We
have shown the validity of the model based on numerical simulations provided that
the medium is sufficiently mixing. In our context, this means that the number of scat-
terers need be sufficiently large so that sufficient mixing occurs. Otherwise, the energy
density becomes statistically less stable, i.e., depends more on the realization of the
random medium.

When the medium is sufficiently mixing, the radiative transfer model is sufficiently
stable to be used for imaging purposes. Inclusions buried in the random medium are
modeled as a constitutive parameter in the transport equation. We have shown numeri-
cal evidence that the inverse transport method indeed allows for accurate reconstruction
of sufficiently large inclusions from wave energy measurements. Because inverse trans-
port problems are quite ill-posed, in the sense that noise may be drastically amplified
during the reconstruction, we have parameterized the inclusion by a small number of
parameters, typically its location and its radius for spherical inclusions.

For smaller inclusions whose influence falls below the noise level coming from the
statistical instability of the random medium, we have shown that differential measure-
ments, i.e., wave energy measurements in the presence and in the absence of the in-
clusion, allowed for accurate reconstructions. Because the inclusions are modeled by
specular reflections of the wave energy at their boundaries, the inverse model works for
inclusions that are significantly larger than the wavelengths. For smaller inclusions, the
model needs to be modified and the inclusion treated as a point source in the trans-
port model with an appropriate radiation pattern that depends on geometry (isotropic
radiation pattern for a small spherical inclusion).
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