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Abstract

A numerical method using implicit surface representations is proposed to solve
the linearized Poisson-Boltzmann equation that arises in mathematical models for the
electrostatics of molecules in solvent. The proposed method uses an implicit boundary
integral formulation to derive a linear system defined on Cartesian nodes in a nar-
rowband surrounding the closed surface that separates the molecule and the solvent.
The needed implicit surface is constructed from the given atomic description of the
molecules, by a sequence of standard level set algorithms. A fast multipole method is
applied to accelerate the solution of the linear system. A few numerical studies involv-
ing some standard test cases are presented and compared to other existing results.

Key words. Poisson-Boltzmann equation, implicit boundary integral method, level set method,
fast multipole method, electrostatics, implicit solvent model.
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1 Introduction

The mathematical modeling and numerical simulation of electrostatics of charged macromolecule-
solvent systems have been extensively studied in recent years, due to their importance in
many branches of electrochemistry; see, for instance, [8, 23, 26, 27, 39, 53, 57, 60, 65, 71,
76, 89] and references therein for recent overviews of the developments in the subject.

There are roughly two classes of mathematical models for such macromolecule-solvent
systems, depending on how the effect of the solvent is modeled: explicit solvent models
in which solvent molecules are treated explicitly, and implicit solvent models in which the
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solvent is represented as a continuous medium. While explicit solvent models are believed
to be more accurate, they are computationally intractable when modeling large systems.
Implicit models are therefore often an alternative for large simulations, see [6, 19, 22, 50, 90]
and references therein for recent advances. The Poisson-Boltzmann model is one of the
popular implicit solvent models in which the solvent is treated as a continuous high-dielectric
medium [16, 21, 28, 41, 51, 56, 69, 70, 80]. This model, and many variants of it, has important
applications, for instance in studying biomolecule dynamics of large proteins [4, 5, 10, 12,
33, 90]. Many efficient and accurate computational schemes for the numerical solution of
the model have been developed [3, 7, 9, 18, 24, 30, 31, 36, 51, 54, 81, 88].

To introduce the Poisson-Boltzmann model, let us assume that the macromolecule has
Nc atoms centered at {zj}Ncj=1, with radii {rj}Ncj=1 and charge number {qj}Ncj=1 respectively.
Let Γ be the closed surface that separates the region occupied by the macromolecule and
the rest of the space. The typical choice of Γ is the so-called solvent excluded surface, which
is defined as the boundary of the region outside the macromolecule which is accessible by a
probe sphere with some small radius, say ρ0; see Figure 1 for an illustration. We use Ω to
denote the region surrounded by Γ that includes the macromolecule.

We use a single function ψ to denote the electric potential inside and outside of Ω. In
the Poisson-Boltzmann model, ψ solves the Poisson’s equation for point charges inside Ω,
that is,

−∇ · (εI∇ψ(x)) =
Nc∑
k=1

qkδ(x− zk), in Ω

where εI denotes the dielectric constant in Ω. Outside Ω, that is in the solvent that excludes
the interface Γ, ψ solves the Poisson’s equation for a continuous distribution of charges that
models the effect of the solvent, that is,

−∇ · (εE∇ψ) = ρB(T,x, ψ(x)), in R3 \ Ω

where εE denotes the dielectric constant of the solvent, which often has much higher value
than that of the macromolecule, εE � εI . The source term ρB is a nonlinear function
coming from the Boltzmann distribution with T denoting the temperature of the system.
More precisely, for solvent containing m ionic species,

ρB(T,x, ψ(x)) := ec

m∑
i=1

ciq̄ie
−ecq̄iψ(x)/kBT , x ∈ R3 \ Ω

where ci, q̄i are the concentration and charge of the ith ionic species, ec is the electron charge,
kB is the Boltzmann constant, and T is the absolute temperature.

The nonlinear term ρB(T,x, ψ) in the Poisson-Boltzmann system poses significant chal-
lenges in the computational solution of the system. In many practical applications, it is

replaced by the linear function −κ̄2
Tψ(x) where the parameter κ̄T =

√
2e2I
kBT

is called the

Debye-Huckel screening parameter with kB, e, and I being the Boltzmann constant, the unit
charge, and the ionic strength respectively. This leads to the linearized Poisson-Boltzmann
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equation (PBE) for the electrostatic potential ψ. It takes the following form

−∇ · (εI∇ψ(x)) =
Nc∑
k=1

qkδ(x− zk), in Ω,

−∇ · (εE∇ψ(x)) = −κ̄2
Tψ(x), in Ω

c
,

ψ(x)|Γ+ = ψ(x)|Γ− , on Γ,

εE
∂ψ

∂n |Γ+

= εI
∂ψ

∂n |Γ−
, on Γ,

|x|ψ(x)→ 0, |x|2|∇ψ(x)| → 0, as |x| → ∞.

(1)

Here the operator ∂/∂n ≡ n(x) · ∇ denotes the usual partial derivative at x ∈ Γ in the
outward normal direction n(x) (pointing from Γ outward). The usual continuity conditions,
continuity of the potential and the flux across Γ, are assumed, and the radiation condition,
which requires ψ decay to zero far away from the macromolecule, is needed to ensure the
uniqueness of solutions to the linearized Poisson-Boltzmann equation. See e.g. [3, 7, 10, 16,
30, 31, 50, 53, 70, 80, 81].

Computational solution of the linearized Poisson-Boltzmann equation (1) in practically
relevant configurations turns out to be quite challenging. Different types of numerical meth-
ods, including for instance finite difference methods [6, 15, 41, 32, 58, 64], finite element
methods [3, 38, 83, 84, 85, 86], boundary element methods [1, 2, 14, 44, 52, 54, 55, 87], and
many more hybrid or specialized methods [13, 79] have been developed; see [53] for the re-
cent survey on the subject. Each method has its own advantages and disadvantages. Finite
difference methods are easy to implement. They are the methods used in many existing
software packages [15, 41, 32, 58, 64]. Finite difference methods, except the ones that are
based on adaptive oct-tree structures [36, 62, 63], use uniform Cartesian grids and require
special care for implementing the interface conditions to high order while maintaining sta-
bility. Finite element methods provide more flexibility with the geometry. However, like
the finite difference methods, they often suffer from issues such as large memory storage re-
quirement and low solution speed when dealing with large problems. Moreover, both finite
difference and finite element methods need to truncate the domain in some way, therefore
the radiation condition is not satisfied exactly. Boundary element methods are based on in-
tegral formulations of the Poisson-Boltzmann equation. They require only the discretization
of the solvent excluded surface, i.e. Γ, not the macromolecule and solvent domains. The
radiation condition is usually exactly, although implicitly, integrated into the integral form
to be solved. However, the matrix systems resulting from boundary element formulations
are often dense. Efficient acceleration, for instance preconditioning, techniques are needed
to accelerate the solution of such dense systems.

In this work, we propose a fast numerical method for solving the interface/boundary value
problem of the linearized Poisson-Boltzmann equation (1). The method is derived from the
implicit boundary integral formulation [47] of (1) and relies on some of the classical level
set algorithms [66, 67] for computing the implicit interfaces and the needed geometrical in-
formation. All the involved computational procedures are defined on an underlying uniform
Cartesian grid. Thus the proposed method inherits most of the flexibilities of a level set
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algorithm. On the other hand, since the method is derived from a boundary integral for-
mulation of (1), it treats the interface conditions and far field conditions in a less involved
fashion compared to the standard level set algorithms for similar problems. As such types
of implicit boundary integral approaches are relatively new, we describe in detail how to
set up a linear system and where a fast multipole method can be used for acceleration of
the common matrix-vector multiplications in the resulting linear system. We demonstrate
in our simulations involving non-trivial molecules defined by tens of thousands atoms that
standard “kernel-independent” fast multipole methods [29] can be used easily and effectively
as in a standard boundary integral method.

We conclude the introduction with the following remarks. The linearized Poisson-Boltzmann
model provides a sufficiently accurate approximation in many cases, in particular when the
solution’s ionic strength is relatively low; see [28] and references therein. In cases where
the linearized model is not accurate enough, solving the nonlinear Poisson-Boltzmann is
necessary. With appropriate far field conditions, finite difference or finite element methods
provide a way to compute solutions in such case; see [63] and references therein. The
computational method we develop in this work can potentially be combined with an iterative
scheme for nonlinear equations, such as methods of Newton’s type [45], to solve the nonlinear
Poisson-Boltzmann equation. At each iteration of the nonlinear solver, the proposed method
can be adapted to solve the linearized problem as long as the coefficients involved, mainly
the dielectric coefficients, are constants as currently assumed in our algorithm.

The rest of this paper is organized as follows. We first introduce in Section 2 the implicit
boundary integral formulation of the linearized Poisson-Boltzmann system (1). We then
present the details of the implementation of the method in Section 3. In Section 4, we
present some numerical simulation results to demonstrate the performance of the algorithm.
Concluding remarks are then offered in Section 5.

2 The implicit boundary integral formulation

The numerical method we develop in this work is based on a boundary integral formulation
of the linearized Poisson-Boltzmann equation that is developed in [44].

2.1 Boundary integral formulation

Throughout the rest of the paper, all the coefficients involved in the equations are assumed to
be constant, i.e. independent of the spatial variable. We define κ = κ̄T/

√
εE, and introduce

the fundamental solutions

G0(x,y) =
1

4π|x− y|
and Gκ(x,y) =

e−κ|x−y|

4π|x− y|
to the Laplace equation and the one with the linear lower order term −κ̄2

Tψ in (1).

Following the standard way of deriving boundary integral equations, we apply Green’s
theorem to the system formed by (i) the first equation in (1) and the equation for G0, and
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(ii) the second equation in (1) and the equation for Gκ, taking into account the interface
and the radiation conditions. A careful routine calculation leads to the following boundary
integral equations for the potential ψ and its normal derivative ψn ≡ ∂ψ/∂n on Γ:

1

2
ψ(x) +

∫
Γ

(
∂G0(x,y)

∂n(y)
ψ(y)−G0(x,y)ψn(y)

)
dy =

Nc∑
k=1

qk
εI
G0(x, zk),

1

2
ψ(x)−

∫
Γ

(
∂Gκ(x,y)

∂n(y)
ψ(y)− εI

εE
Gκ(x,y)ψn(y)

)
dy = 0.

(2)

This system of boundary integral equations is the starting point of many existing numerical
algorithms for the linearized Poisson-Boltzmann equation.

In our algorithm, we adopt the integral formulation proposed in [44]. This formulation
reads:

1

2

(
1 +

εE
εI

)
ψ(x) +

∫
Γ

(
∂G0(x,y)

∂n(y)
− εE
εI

∂Gκ(x,y)

∂n(y)

)
ψ(y)dy

−
∫

Γ

(G0(x,y)−Gκ(x,y))ψn(y)dy =
Nc∑
k=1

qk
εI
G0(x, zk),

(3)

1

2

(
1 +

εI
εE

)
ψn(x) +

∫
Γ

(
∂2G0(x,y)

∂n(x)∂n(y)
− ∂2Gκ(x,y)

∂n(x)∂n(y)

)
ψ(y)dy

−
∫

Γ

(
∂G0(x,y)

∂n(x)
− εI
εE

∂Gκ(x,y)

∂n(x)

)
ψn(y)dy =

Nc∑
k=1

qk
εI

∂G0(x, zk)

∂n(x)
.

(4)

The first equation in this formulation, (3), is simply the linear combination of the two
equations in (2), while the second equation in this formulation, (4), is nothing but the linear
combination of the derivatives of the two equations in (2). It is shown in [44] that the
potentially hypersingular integral in (4), involving the second derivatives of G0 and Gκ is
actually integrable on Γ, thanks to the fact that

∂2G0(x,y)

∂n(x)∂n(y)
− ∂2Gκ(x,y)

∂n(x)∂n(y)
∼ O(|x− y|−1), |x− y| → 0.

Moreover, when κ = 0, (3) is decoupled from (4), and the latter provides an explicit formula
for evaluating ∂ψ/∂n using ψ.

The main benefit of the formulation (3)-(4) is that it typically leads to, after discretiza-
tion, linear systems with smaller condition numbers than the formulation in (2). The typical
boundary element methods for this system (and others) require careful triangulation of the
interface Γ; see e.g. [1, 2, 14, 44, 52, 55, 87]. In the next subsection, we describe our method
to discretize the boundary integral system (3) and (4) on a subset of a uniform Cartesian
grid nodes in a narrowband surrounding Γ, without the need to parameterize Γ.
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2.2 Implicit boundary integral method

Let the interface Γ be a closed, C1,α surface (in two or three dimensions) with α > 0 so that
the distance function to Γ is differentiable in a neighborhood around it. Let dΓ denote the
signed distance function to Γ that takes the negative sign for points inside the region enclosed
by Γ, and Γε denote the set of points whose distance to Γ is smaller than ε. An implicit
boundary integral formulation of a surface integral defined on Γ is derived by projecting
points in Γε onto their closest points on Γ. With the distance function to Γ, the projection
operator can be evaluated by

PΓx := x− dΓ(x)∇dΓ(x). (5)

When ε is smaller than the maximum principal curvatures of Γ, the closest point projection
is well-defined in Γε.

An implicit boundary integral method (IBIM) [47] is built upon the following identity:

IΓ[f ] :=

∫
Γ

f(x)ds(x) =

∫
Γε

f(PΓx)δε(dΓ(x))J(x)dx, (6)

which reveals the equivalence between the surface integral and its extension into a volume
integral. We shall call the integral over Γε an implicit boundary integral. In this implicit
boundary integral, one has

1. The extension of f(x) as a constant along the normal of Γ at x.

2. The Jacobian J(x) which accounts for the change of variables between Γ and the level
set surface of dΓ that passes through x.

3. A weight function, δε compactly supported on [−ε, ε] satisfying∫ ε

−ε
δε(η)dη = 1. (7)

In R3, The Jacobian J takes the explicit form

J(x) = 1− dΓ(x)∆dΓ(x) + dΓ(x)2〈∇d,∇2dΓ∇dΓ〉. (8)

It can be further related to the products of the singular values of the Jacobian matrix of
PΓ, which provides an alternative, and in some cases easier way, for the computation of J .
See [48].

In the application of interest, the distance function to a solvent excluded surface will
be twice differentiable almost everywhere in some narrowband around the surface, together
with setting J ≡ 1, the proposed method is well-defined in there. In fact, the requirement
on the regularity of the surface (and its signed distance function) can be further relaxed
if the weight function is an even function and possesses enough vanishing moments. It is
shown in [49] that with J ≡ 1, the cosine weight function (27) and C1 integrands which are
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not necessarily constant along surface normals, IΓ[f ] is approximated to second order if ε.
It is further shown in [49] that if the weight function has more than two vanishing moments,
one may replace the Jacobian by J ≡ 1 while keeping the equality in (6) valid, even for
piecewise smooth surfaces containing corners and creases.

Numerically we approximate the implicit boundary integral by embedding the compu-
tational domain Ω into the rectangle U = [a, b]n, and subdivide U into the uniform grid
Uh = hZn ∩ [a, b]n with grid size h = (b − a)/N along each coordinate direction and xi at
each grid point. We approximate the integral by

IΓ[f ] ≈ ShΓε [f ] :=
∑
xi∈Γε

f(x∗i )δε(dΓ(xi))J(xi)h
n (9)

where x∗i = xi − dΓ(xi)∇dΓ(xi) is the projection of xi onto Γ.

Thus, a typical second kind integral equation of the form

g(x) = λβ(x) +

∫
Γ

K(x,y)β(y)ds(y), x ∈ Γ, (10)

can be approximated on Uh using the IBIM formulation. One would derive a linear system
for the unknown function β̄ defined on the grid nodes in Γε:

g(PΓxi) = λβ̄(xi) + hn
∑

yj∈Γε∩Uh

K(PΓxi, PΓyj)β̄(y)δε(dΓ(yj))J(yj), xi ∈ Γε ∩ Uh, (11)

with the property that as h→ 0

β̄(xi) −→ β(PΓxi), ∀xi ∈ Γε ∩ Uh;

i.e. the solution to the linear system (11) converges to “the function which is the constant
extension along the surface normal” of the solution of (10); see more discussions in [17, 47].

In the context of this paper, equations (3) and (4) will be discretized into

1

2
λ1ψ̄ (xi) + h3

∑
j

K11(xi,yj)ωjψ̄(yj)− h3
∑
j

K12(xi,yj)ωjψ̄n(yj) = g1(xi),

1

2
λ2ψ̄n(xi) + h3

∑
j

K21(xi,yj)ωjψ̄(yj)− h3
∑
j

K22(xi,yj)ωjψ̄n(yj) = g2(xi),
(12)

where

λ1 =
1

2

(
1 +

εE
εI

)
, λ2 =

1

2

(
1 +

εI
εE

)
,

ωj := J(yj)δε(dΓ(yj)), (13)

g1(xi) :=
Nc∑
k=1

qk
εI
G0(xi, zk), g2(xi) :=

Nc∑
k=1

qk
εI

∂G0(xi, zk)

∂n(xi)
,
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Figure 1: A view of the “solvent excluded surface” in 2D is shown by the middle solid curve,
and the narrowband Γε is shown here by the space bounded between the dashed curves.

and K11, K12, K21, K22 are respectively the regularized versions of the following weakly sin-
gular kernels:

∂G0(PΓx, PΓy)

∂n(PΓy)
− εE
εI

∂Gκ(PΓx, PΓy)

∂n(PΓy)
, G0(PΓx, PΓy)−Gκ(PΓx, PΓy),

∂2G0(PΓx, PΓy)

∂n(PΓx)∂n(PΓy)
− ∂2Gκ(PΓx, PΓy)

∂n(PΓx)∂n(PΓy)
, and

∂G0(PΓx, PΓy)

∂n(PΓx)
− εI
εE

∂Gκ(PΓx, PΓy)

∂n(PΓx)
,

A simple regularization that we used in our numerical implementation is described below in
the next subsection.

This formulation provides a convenient computational approach for computing boundary
integrals, where the boundary is naturally defined implicitly, as a level set of a continuous
function, and is difficult to parameterize. The geometrical information about the boundary
is restricted to the computation of the Jacobian J and the closest point extension of the
integrand f — both of which can be approximated easily by simple finite differencing applied
to the distance function dΓ(x) at grid point xi within Γε. Furthermore, the smoothness of
the weight function δε, along with the smoothness of the integrand will allow for higher order
in h approximation of I[f ] by simple Riemann sum ShΓε [f ], see for example the discussion
in [48].

8



2.2.1 Regularization of the kernels

While all the kernels (the Green’s functions and the particular linear combinations of them)
that appear in (3)-(4) are formally integrable, an additional treatment for the singularities
is needed in the numerical computation when x and y are close. Typically, the additional
treatment corresponds to either local change of variables so that in the new variables the
singularities do not exist or mesh refinement for control of numerical error amplification
(particularly for Nyström methods). The proposed simple discretization of the Implicit
Boundary Integral formulation on uniform Cartesian grid can be viewed as an extreme
case of Nyström method, in which no mesh refinement is involved (and thus no control of
numerical errors if the singularities of the kernels are left untreated). Therefore we need to
regularize the kernels analytically and locally only when PΓx and PΓy are sufficiently close
with respect to the grid spacing.

In the following, for brevity of the displayed formulas, let x∗ := PΓx, y∗ := PΓy and

Kθ(x,y) :=
∂G0(x∗,y∗)

∂n(y∗)
− θ∂Gκ(x

∗,y∗)

∂n(y∗)
, θ ∈ R.

The regularization that we will use involves a small parameter τ > 0 and is defined by

Kreg
θ (x,y) =

{
Kθ(x), if ‖x∗ − y∗‖P < τ,

Kθ(x,y), otherwise,
(14)

where ‖x∗ − y∗‖P is the distance between projections of x∗ and y∗ onto the tangent plane
at x∗. Kθ(x) is the average of Kθ(x, ·) defined as

Kθ(x) =
1

V (x∗; τ)

∫
V (x;τ)

Kθ(x, z)ds(z), (15)

where V (x∗; τ) is the disc of radius τ in the tangent plane of Γ at x∗.

Thus,

K11(x,y) := Kreg
θ (x,y), with θ =

εE
εI
, Kθ(x) = 0, (16)

K22(x,y) := Kreg
θ (x,y), with θ =

εI
εE
, Kθ(x) = 0, (17)

Similarly, the averages of G0−Gκ and ∂2G0

∂n(x∗)∂n(y∗)
− ∂2Gκ

∂n(x∗)∂n(y∗)
are computed and we define:

K12(x,y) =

{
e−κτ−1+κτ

2πκτ2
, if ‖x∗ − y∗‖P < τ,

G0(x∗,y∗)−Gκ(x
∗,y∗), otherwise,

(18)

K21(x,y) =

{
0, if ‖x∗ − y∗‖P < τ,
∂2G0(x∗,y∗)
∂n(x∗)∂n(y∗)

− ∂2Gκ(x∗,y∗)
∂n(x∗)∂n(y∗)

, otherwise.
(19)

Finally, we refer the readers to [17] for a recent approach for dealing with hypersingular
integrals via extrapolation.
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3 The proposed algorithm

The proposed algorithm consists of a few stages which are outlined below:

Stage (1) Preparation of the signed distance function to the “solvent excluded sur-
face” on a uniform Cartesian grid.

This includes definition of an initial level set function (Section 3.1), followed by an
“inward” eikonal flow of the level set function (Section 3.1.1). After the eikonal
flow, we apply a step that removes from the implicit surface the interior cavities
which are not accessible to solvent (Section 3.1.2). See Figure 2 for an illustration
of this process and the various surfaces involved in it.

Finally we apply the reinitialization procedure (Section 3.1.3) to the level set func-
tion obtained from cavity removal. At the end of this stage, one shall obtain the
signed distance function to the “solvent excluded surface” on which the linearized
Poisson-Boltzmann boundary integral equation (BIE) is solved. The constructed
signed distance function has the same sign as the function F , defined in (20) that
is used to defined the van der Waals surface, at the prescribed molecule centers.

Stage (2) Preparation of the linear system.

This involves computation of geometrical information, including the closest point
mapping and the Jacobian (Section 3.2).

Stage (3) Solution of the linear system via GMRES with a fast multipole acceleration for
the matrix-vector multiplication (Section 3.2).

At the end of this stage, one obtains the density ψ̄ defined on the grid nodes lying
in Γε. This density function will be used in the evaluation of the polarization
energy.

Stage (4) Evaluation of surface area and polarization energy. (Sections 3.4 and 3.5)

The surface area is computed by using f ≡ 1 in (6) and the polarization energy
is computed through the density ψ̄ by the implicit boundary integral method.

All computations will be performed on functions defined on Uh. The inward eikonal
flow and the reinitialization in Stage (1) are computed with commonly used routines: i.e.
the third order total variation diminishing Runge-Kutta scheme (TVD RK3) [74] for time
discretization, and Godunov Hamiltonian [72] for the eikonal terms ±|∇φ| with the fifth
order WENO discretization [42] approximating ∇φ. We refer the readers to the book [66]
and [77] for more detailed discussions and references. We have also arranged our codes to
be openly available on GitHUB.1

A quick remark is in order regarding the algorithms used to generate an implicit repre-
sentation of a ”solvent excluded surface”. Of course there are other approaches to generate
the surfaces under the level set framework. While the general ideas appear to be similar,

1 https://github.com/GaZ3ll3/ibim-levelset
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they are different in many details that could potentially influence performance of the al-
gorithm that uses the prepared surfaces. We point out here that the procedure described
in [63] is different from the one that proposed in Section 3.1. In particular, our method
applies reinitialization after removing the cavities, and does not need additional numerical
solution of a Dirichlet problem for Laplace equation on irregular domain as in [63]. The
reinitialization after cavity removal is essential to our proposed approach which requires dis-
tance function in the narrowband surrounding the surface. If there is no cavity, our procure
does not require the reinitialization step. We refer to [63, 68] for a more extensive review of
other related algorithms.

;
0

Figure 2: The construction of the “solvent excluded surface” (SES) of a fictitious molecule
defined by five atoms. The final SES is shown as the solid curve on the right plot. The
van der Waals surface corresponding to the molecule is shown by the blue curve. The green
curve is the “solvent accessible surface”, from which an inward eikonal flow will shrink it by
a distance of ρ0 to arrive at the pink curves (solid and dashed). The dashed pink curve on
the right plot shows that boundary of the cavity enclosed by the molecules. It is removed
from our computation.

3.1 Creating a signed distance function to the solvent accessible
surface

From molecules description the van der Waals surface, ΓvdW , is defined as the zero level set
of

F (x) = inf
k

(‖x− zk‖ − rk) , (20)

where zk and rk denote respectively the coordinates of the molecule centers and their radii.

From the van der Waals surface, we shall define the so-called solvent excluded surface,
Γ, as the zero level set of a continuous function φSES. φSES is computed by a simple
inward eikonal flow, starting from an initial condition involving F , and is followed by a few
iterations of the standard level set reinitialization steps. See Figure 2 for an illustration of
this procedure in two dimensions. The details are described in the following subsections.

11



3.1.1 Inward eikonal flow

The van der Waals surface is extended outwards for a radius ρ0 to define the so-called
“solvent accessible surface”, which can be conveniently defined as the zero level set of φSAS:

φSAS(x) = F (x)− ρ0. (21)

The inward eikonal flow will produce a surface with smoothed out the corners when compared
to the original van der Waals surface, while keeping most of its smooth parts unchanged.
For 0 < t ≤ ρ0, we solve the following equation:

∂φ̃SAS(x, t)

∂t
− ‖∇φ̃SAS‖ = 0, x ∈ U,

φ̃SAS(x, 0) = φSAS(x),

(22)

with zero Neumann boundary conditions.

3.1.2 Cavities removal

The zero level set of φ̃SAS may contain some pieces of surfaces that isolate cavities that are
believed to be void of solvent. Figure 3 provides an example of such cavities in a protein
that we used for computation. The cavity removal step uses a simple sweep to remove (the
boundaries of) these regions and create a level set function, φSES, that describes only the
exterior, closed and connected surface — the solvent excluded surface:

φ̃SAS(x, ρ0) −→ φSES(x).

The cavity removal consists of following steps:

1. Identify a region Cε that contains the cavities. Cε is a superset of the cavities, con-
taining points outside of the cavities that are within ε distance to the cavity surface.
This can be done by a “peeling” process: by moving the set of markers initially placed
on the boundary of the computational domain inwards, using a breadth-first search
(BFS) algorithm. The first layer of the surfaces defined by the zero level set of φ̃SAS is
defined to be the “solvent excluded surface”. We could therefore remove the remaining
portion of φ̃SAS’s zero level sets, which are regarded as corresponding to the cavities.
From this process, one can easily compute a characteristic function supported on Cε.

2. Remove the cavity region by modifying the values of φ̃SAS in Cε:

φSES(x) :=

{
φ̃SAS(x), x /∈ Cε,
−ε, x ∈ Cε.
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Figure 3: Cavity in protein 1A63. The gray surface is the “solvent excluded surface” used
for computing the electric potential for protein 1A63. In the right subfigure, the rendering
of the gray surface is made semi-transparent in order to reveal the enclosed cavity surfaces
(red). The regions enclosed by the red surfaces are the cavities to be removed.

3.1.3 Reinitialization

The kinks on the solvent accessible surface (SAS) will lower the accuracy in the computation
for φSES(x, ρ0). In addition, the cavity removal step may introduce small jump disconti-
nuities near the removed cavity. We perform several iterations of the standard level set
reinitialization to improve the equivalence of the computed φSES(x, ρ0) and the signed dis-
tance function to Γ (which φSES is supposed to be). The reinitialization equation, first
appeared in [75], is defined as

∂φ̃SES(x, t)

∂t
+ sgnh(φSES(·, ρ0))(|∇φ̃SES| − 1) = 0,

φ̃SES(x, 0) = φSES(x, ρ0),

(23)

where the smoothed-out signum function is defined as

sgnh(φ) =
φ√

φ2 + h2
. (24)

Suppose that the reinitialization equation is solved until t = tn, i.e. φ̃SES(x, tn) is our
approximation to the signed distance function dΓ(x), we shall compute Γε by

Γε := {x ∈ Rd : −ε < φ̃SES(x, tn) < ε}. (25)

We use the standard fifth order WENO for space and third order TVD-RK scheme for
time to compute the reinitialization. In general, lower order schemes will result in larger
perturbation of the zero level surface, which is not supposed to be moved.

The smoothness of the signum function sgnh may influence the efficiency and effectiveness
of the reinitialization procedure. In our simulations, with the regularized signum function
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defined in (24), it suffices to solve (23) for O(ε) amount of time, in a neighborhood close to
the zero level set. With ∆t = k0h, and ε = k1h, k0, k1 > 0, we run constant number of time
steps for reinitialization, independent of h. Since the fifth order WENO approximation of
∇φ uses central differencing with seven grid nodes along each grid lines, the minimal number
of time steps needed to create the signed distance in Γε is (k1 + 4)/k0. We refer the readers
to [20] for some more detailed discussion on reinitialization of level set functions and (closest
point) extension of functions from Γ to Γε., and an alternative higher order algorithm.

3.2 Projections and weights

We locate all grid points xi ∈ Uh satisfying that |φSES(xi)| < ε and compute projections
x∗i ∈ Γ by

x∗i = xi − φ̃SES(xi, tn)∇φ̃SES(xi, tn). (26)

∇φ̃SES(xi, tn) can be approximated either by standard central differencing or by the fifth
order WENO routines. More precisely, on each grid node for each Cartesian coordinate direc-
tion, WENO returns two approximations of ∇ψ̃, say p− and p+, which are generalizations of
the standard forward and backward finite differences of ψ. In our numerical simulations, we
use

∇φ̃SES ≈
p− + p+

2
.

For weight function δε, we adopt the following cosine function with vanishing first mo-
ment,

δε(η) =

{
1
2ε

(
1 + cos ηπ

ε

)
, |η| < ε,

0, |η| ≥ 0.
(27)

For general smooth nonlinear integrands and ε ∼ o(1) for h→ 0, the above weight function
provides at most second order in h convergence. Since the chosen δε is an even function
of the distance to the surface, it has one vanishing moment. Therefore, the zeroth order
(in distance to the surface) approximation of the Jacobian will lead to a zero order in ε
error. See [49] for more in depth analysis on the properties of different choices of δε. In the
simulations reported in this paper, we set J(x) ≡ 1.

3.3 Fast linear solvers

Equations (12)-(13) in Section 2.2, together with the regularization of the kernels described
in Section 2.2.1, one arrives at the final linear system:

Λp + KWp = g, (28)

with p denoting the vector containing both ψ̄(xj) and ψ̄n(xj),

Λ :=
1

2

 (
1 + εE

εI

)
I 0

0
(

1 + εI
εE

)
I

 ,
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and W is a diagonal matrix defined by the weights ωj := J(yj)δε(dΓ(yj)) as defined in
Section 2.2.

We solve this system by a standard GMRES algorithm. In the GMRES algorithm, we use
the black-box fast multipole method (BBFMM) [29] to accelerate the multiplication of the
operator K to any vector. In particular, the solution of the diagonal part of (28) is used
as a preconditioner. This means that the GMRES algorithm starts with the particular initial
condition:

p(0) := (Λ + D)−1g,

where

D :=

(
0 0
0 0

)
comes from the regularization of the kernels.

3.4 Computing surface area

In our IBIM approach, the evaluation of the surface area of Γ is computed by ShΓε [f ] defined
in (9) with f ≡ 1. See [48].

3.5 Computing the polarization energy

The polarization energy Gpol of the system is given by

Gpol =
1

2

Nc∑
k=1

qkψrxn(zk) (29)

where ψrxn(zk) is computed by evaluating the following boundary integral at the center of
atom k, zk:

ψrxn(z) =

∫
Γ

((
εE
εI

∂Gκ(z,y)

∂n(y)
− ∂G0(z,y)

∂n(y)

)
ψ(y) + (G0(z,y)−Gκ(z,y))

∂ψ

∂n
(y)

)
ds(y).

In our IBIM approach, evaluation of this integral is computed by ShΓε [f(z, ·)] defined
in (9) with

f(z,y) :=

(
εE
εI

∂Gκ(z, PΓy)

∂n(y)
− ∂G0(z, PΓy)

∂n(y)

)
ψ̄(y)+(G0(z, PΓy)−Gκ(z, PΓy))

∂ψ̄

∂n
(y). (30)

4 Numerical experiments

We now perform some numerical experiments using the computational algorithm we devel-
oped. In all the numerical simulations, we set the dielectric parameters εI = 1.0, εE = 80.0
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and Debye-Hückel constant κ = 0.1257Å
−1

. We use the following parameters for the implicit
boundary integral method:

h denotes the grid spacing in the uniform Cartesian grids,
ε ≡ 2h denotes the width for the narrowband Γε,
τ = h or h/2 denotes the regularization parameter used in K11, K12, K21, K22.

We set the tolerance in the GMRES algorithm to be 10−5, and use 4th order Chebyshev
polynomials in the BBFMM preconditioner to achieve tolerance 10−4 there. In general, smaller
τ results in more accurate approximations, if the resulting linear systems can be solved
successfully. However, it cannot be too small with respect to the grid spacing, otherwise the
resulting linear system becomes badly conditioned, as the current regularization approach
becomes ineffective.

Most of the numerical experiments are performed on a desktop with quad-core CPU at
3.40GHz, 16GB RAM. The computations involving more than one million unknowns are
performed on an older Linux computer with similar cache memory but sufficient RAM;
for convenience in comparison, the timings presented in the tables below for simulations
performed on this computer are scaled according to the clock speed and processor differences
between the two computers. We think that such ad hoc scaling of timing is reasonable for
the size of computations and the machines involved. We put an * sign next to the scaled
CPU timings in the Tables.

In Section 4.1, we first compare the surface areas computed by our method to the ones
computed by a published algorithm. In all later subsections, we present simulations of our
algorithms with molecules of different sizes. In certain examples, we compare our computa-
tional results to the available published data. Particularly, we perform simulations on more
realistic benchmark macromolecules taken from the RCSB Protein Data Bank (PDB) [11],
and add missing heavy atoms through software PDB2PQR [25]. The atom charges and radius
parameters that we will be using in our simulations are all generated through force field
CHARMM [15]. The number of atoms reported in each subsection below corresponds to the
number in the respective pqr file of each molecule.

Here are some general remarks on the numerical simulations using our algorithm. In
the tables presented in this section, the columns titled “D.O.F.” show the total number of
unknowns in the discrete systems and provides a basis to observe the rate of convergence for
the computed solutions, surface areas and polarization energies. In the figures presented in
the this section, the electrostatics computed on two different grid resolutions are painted on
top of the respective computed solvent excluded surfaces. In practice, the most important
information that one would like to extract from such computations is the locations of the
extrema; see e.g. [43, 82]. As the figures show, the extrema of the potentials computed at
the coarser grid resolutions are already at the “correct” locations on the surfaces.

As we shall see from the numerical accuracy study in Section 4.2, the foremost bottleneck
of the proposed algorithm is the low order regularization for the singular integrals. However,
regularization is essential, and smaller amount of it (smaller values of τ) leads to systems
which require more GMRES iterations unless the the grid spacing h is sufficiently small. See,
for instance, the simulations presented in Tables 4, 5 and 6. Despite the regularization issue,
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the boundary integrals can be computed very accurately if wider ε (with respect to the grid
spacing h) and the full expression of the Jacobian J are used. However, wider ε implies
a larger dense linear system needs to be solved. Most of the reported computation times
are spent on the evaluation of the matrix-vector multiplications. Thus, in the simulations
presented below, we choose a regime in which ε is narrow but sufficient in practice for the
adopted simple quadrature to resolve the surface geometry. Finally, regarding to how small
h should be for a given molecule and probe size ρ0:

h ≈ min
j=1,··· ,N

{ρ0, rj, 2ε}/7 < 4

where 4 is the minimal distance between “different parts of the surface” (think of the thin
part of a dumb bell) and we define it as

4 = inf
x∈Γ
{−dΓ(x− sn(x))|`(x) > s > 0, where x− `(x)n(x) ∈ Γ}. (31)

We shall see in the following examples, that our algorithm seems to perform well even when
the discretized system is slightly outside of the above regime.

4.1 Molecular SES surface area

We compare the performance of our algorithm for calculating surface areas of different
proteins with that of the MSMS (Michel Sanner’s Molecular Surface) algorithm developed
in [73]. For MSMS algorithm, the probe radius is set to be ρ0 = 1.4Å and the density
parameter is 1.0 for mesh generation. We use the online implementation by the High-
Performance Computing at the NIH group [37] to produce the data for MSMS. In Table 1, we
compare results from our method to these from MSMS for seven different proteins on a grid
of size 1283. We observe that the surface areas computed by our algorithm are quite close
to the MSMS’s approximate values in general. Since the MSMS results are only approximations
to the true values, we did not attempt to tune algorithmic parameters (e.g. grid size, weight
function) of our method to obtain results that are even closer to the MSMS results.

Table 1: Comparison of surface areas computed by the proposed IBIM method and by MSMS

for seven different proteins from the RCSB Protein Data Bank.

Protein id Surface area (IBIM) Surface area (MSMS)
4INS 4732 4761
1HJE 825 801
1A2B 7540 7936
1PPE 7979 8340
2AID 8061 8304
1F15 22000 22725
1A63 6583 6659
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4.2 The single ion model

We start with the single ion model developed in [46] to benchmark the solution accuracy of
our numerical algorithm. We use three different relative errors, between exact and numeri-
cally represented quantities, to measure the quality of numerical solutions. They are defined
as:

solution error =

√√√√∫Γ
|ψ(x)− ψ∗(x)|2 + |∂ψ(x)

∂n
− ∂ψ∗(x)

∂n
|2∫

Γ
|ψ∗(x)|2 + |∂ψ∗(x)

∂n
|2

,

surface area error =
|A − A∗|
A∗

,

energy error =
|Gpol − G∗pol|
G∗pol

.

(32)

For a single atom with radius r and charge q, the solution to the Poisson-Boltzmann
equation is given as [46]

ψ∗(x) =


q

4πεI |x|
+

q

4πr

(
1

εE(1 + κr)
− 1

εI

)
, if |x| < r

qe−κ(|x|−r)

4πε(1 + κr)|x|
, otherwise

(33)

We can therefore compute the associated polarization energy

G∗pol =
q2

8πr

(
1

εE(1 + κr)
− 1

εI

)
, (34)

using the fact that the surface is a sphere with area A∗ = 4πr2. We set the atom’s radius
to be r = 1Å and assigned charge to be q = 1ec.

Table 2: Benchmarking errors in solution of the single ion model.

grid size h(Å) τ/h D.O.F. GMRES solution error area error energy error

643 3.91E−1 1 22,756 4 1.11E−02 1.24E−03 1.21E−02
1283 1.95E−1 1 91,564 3 6.90E−03 2.88E−04 5.68E−03
2563 9.77E−2 1 366,868 3 3.57E−03 5.01E−05 2.90E−03

643 3.91E−1 0.5 22,756 2 5.93E−03 1.24E−03 5.98E−03
1283 1.95E−1 0.5 91,564 4 3.45E−03 2.88E−04 2.49E−03
2563 9.77E−2 0.5 366,868 3 2.15E−03 5.01E−05 1.31E−03

We performed simulations under different mesh and IBIM parameters. The results are
summarized in Table 2. Our method converges in very small numbers (usually 3 ∼ 4) of iter-
ations. This benchmark calculation shows that our numerical algorithms can indeed achieve
similar solution accuracies to those achieved by other algorithms developed recently [2, 14].
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4.3 Protein 1A63

In this numerical example, we compute the polarization energy for protein 1A63, the E.Coli
Rho factor, of the Protein Data Bank. The protein has 2065 atoms with different radii. The
information on the locations and radii of the atoms are all available in [11].

Figure 4: The electrostatic potential on the surface of the PDB-1A63 protein. Left: on grid
1283. Right: on grid 2563.

In Figure 4 we plot the potential ψ̄ on the constructed “solvent excluded surface”, com-
puted on two different grids, 1283 (left) and 2563 (right). Further computational results are
tabulated in Table 3. The computed values of the polarization energy Gpol can be compared
to the existing estimations, GTABI

pol = −2374.64 kcal/mol from the treecode-based boundary
integral solver TABI [31] and GAPBS

pol = −2350.58 kcal/mol from the finite difference solver
APBS [78]. The computational results are tabulated in Table 3.

Table 3: Numerical results on protein 1A63 under different algorithmic parameters.

grid size h(Å) τ/h D.O.F. GMRES Gpol (kcal/mol) CPU (s) area (Å
2
)

1283 6.11E−1 1 71,597 12 -2392.22 606.8 6583
2563 3.05E−1 1 293,627 13 -2366.40 3041 6801

1283 6.11E−1 0.5 71,597 13 -2345.41 772.3 6583
2563 3.05E−1 0.5 293,627 14 -2347.74 3808 6801

4.4 Protein 2AID

Here we compute the polarization energy for protein 2AID, a non-peptide inhibitor complexed
with HIV-1 protease. This protein has 3130 atoms. In Figure 5 we plot the potential ψ̄ on
the constructed “solvent excluded surface” of this protein, computed on two different grids.
Further computational results are tabulated in Table 4.
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Figure 5: The electrostatic potential on the surface of protein 2AID for two grids of size 1283

(left) and 2563 (right).

Table 4: Numerical results on protein 2AID under different algorithmic parameters.

grid size h(Å) τ/h D.O.F. GMRES Gpol (kcal/mol) CPU (s) area (Å
2
)

1283 5.80E−1 1 97,108 13 -2318.69 940.7 8061
2563 2.90E−1 1 397,930 14 -2321.72 4521 8335

1283 5.80E−1 0.5 97,108 24 -2282.14 1745 8601
2563 2.90E−1 0.5 397,930 15 -2306.70 4906 8335

4.5 Protein 1F15

In this example, we compute the polarization energy for protein 1F15, the cucumber mosaic
virus. The protein has 8494 atoms. In Figure 6 we plot the potential ψ̄ on the constructed
“solvent excluded surface”, computed on two different grids. Further computational results
are tabulated in Table 5.

Table 5: Numerical results on protein 1F15 under different algorithmic parameters.

grid size h(Å) τ/h D.O.F. GMRES Gpol (kcal/mol) CPU (s) area (Å
2
)

1283 7.72E−1 1 147,463 17 -7770.00 2586 22000
2563 3.86E−1 1 613,726 21 -7818.83 12357 22847
5123 1.93E−1 1 2,497,309 25 -7891.05 45681* 23238

1283 7.72E−1 0.5 147,463 31 -7682.67 4667 22000
2563 3.86E−1 0.5 613,726 26 -7774.76 14129 22847
5123 1.93E−1 0.5 2,497,309 29 -7875.86 52687* 23238
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Figure 6: The electrostatic potential on the surface of protein 1F15 for two different grids
of sizes 1283 (left) and 2563 (right).

4.6 Protein 1A2K

In this numerical example, we compute the polarization energy for protein 1A2K, the GTPase
RAN-NTF2 complex. The protein has 13627 atoms.

In Figure 7 we plot the potential ψ̄ on the constructed “solvent excluded surface”, com-
puted on two different grids. Further computational results are tabulated in Table 6.

Figure 7: The electrostatic potential on the surface of protein 1A2K for two different grids
of sizes 1283 (left) and 2563 (right).

4.7 Protein: 1PMA

In this example, we compute the polarization energy for proteasome from thermoplasma
acidophilum (PDB id: 1PMA) with 93017 atoms. In Figure 8 we plot the potential ψ̄
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Table 6: Numerical results on protein 1A2K under different algorithmic parameters.

grid size h(Å) τ/h D.O.F. GMRES Gpol (kcal/mol) CPU (s) area (Å
2
)

1283 1.08E+0 1 99,783 12 -7190.38 1032 29497
2563 5.42E−1 1 429,451 17 -8902.62 6120 31501
3843 3.61E−1 1 983,418 17 -8920.93 11948 32047
5123 2.71E−1 1 1,765,673 18 -8963.12 25496* 32364

1283 1.08E+0 0.5 99,783 21 -9004.68 2309 29497
2563 5.42E−1 0.5 429,451 43 -8789.45 15528 31501
3843 3.61E−1 0.5 983,418 40 -8859.47 26030 32047
5123 2.71E−1 0.5 1,765,673 23 -8921.64 33558* 32364

on the constructed “solvent excluded surface”, computed on two different grids. Further
computational results are tabulated in Table 7.

Figure 8: The electrostatic potential on molecular surface for the proteasome from thermo-
plasma acidophilum (PDB id: 1PMA). Left: the potential computed on a 1283 grid. Right:
the potential computed on a 5123 grid.

Table 7: Protein 1PMA. IBIM’s result of relative error in polarization energy and total run
time w.r.t different grid sizes.

grid size h(Å) τ/h D.O.F. GMRES Gpol (kcal/mol) CPU (s) area (Å
2
)

1283 1.67E+0 1 222,478 15 -15544.35 3360 1.6014E+5
2563 8.35E−1 1 1,026,938 18 -46865.78 14141* 1.8034E+5
3843 5.56E−1 1 2,429,367 20 -50071.90 42927* 1.8851E+5
5123 4.17E−1 1 4,418,314 22 -50144.63 70880* 1.9262E+5
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5 Concluding remarks

We present in this paper a new numerical method for solving the boundary value problem
of the linearized Poisson-Boltzmann equation, which is widely used to model the electric
potential for macromolecules in solvent. Our new method relies on the standard level set
method [66, 67] for preparing the distance function to the “molecular surface”. Contrary to
the typical level set method, in which some partial differential equations are discretized with
some suitable boundary conditions, ours involves the solution of an integral equation which
is derived from an implicit boundary integral formulation [47]. Similar to the typical level
set methods, and contrary to the typical boundary integral methods, the proposed method
involves computation only with functions defined on uniform Cartesian grids. Our numerical
simulations show that in addition to the flexibility that comes from the level set methods,
the proposed method can be as computationally efficient as other boundary integral based
algorithms. We show by our numerical simulations that the solutions of the resulting linear
systems can be accelerated easily by some existing fast multipole methods. Furthermore,
the eikonal flow and reinitialization in Stage (1) of the proposed algorithm rely on widely
available explicit solvers and can be trivially parallelized.

There are several possible improvements that could be investigated in the future. First
of all, the quadrature for the implicit boundary integral formulation can be improved to
increase the order of accuracy. This includes improvement of the regularization of the kernel
singularities and the use of full expression of the Jacobian J . One may also consider differ-
ent grid geometries, as the underlying mathematical formulation does not require uniform
Cartesian grids. For example, the adaptive oct-tree structure used in [36] or radial basis
functions may be considered.

As all the presented simulations were computed on two moderate desktop computers,
the reported results show the potential of the proposed method for molecular dynamics
simulations involving very large molecules.

Finally, let us mention that the numerical method we proposed here can be generalized to
solve many similar model problems for electrostatics in related areas of electrochemistry [40,
59, 61, 34, 35].
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[36] A. Helgadóttira and F. Gibou, A Poisson-Boltzmann solver on irregular domains
with Neumann or Robin boundary conditions on non-graded adaptive grid, J. Comput.
Phys., 230 (2011), pp. 3830–3848.

[37] High-Performance Computing at the NIH. https://hpcwebapps.cit.nih.

gov/structbio/basic.html.

[38] M. J. Holst and F. Said, Numerical solution of the nonlinear Poisson-Boltzmann
equation: Developing more robust and efficient methods, J. Comput. Chem., 16 (1995),
pp. 336–364.

[39] B. Honig and A. Nicholls, Classical electrostatics in biology and chemistry, Science,
268 (1995), pp. 1144–1149.

[40] T. L. Horng, T. C. Lin, C. Liu, and B. Eisenberg, PNP equations with steric
effects: A model of ion flow through channels, J. Phys. Chem. B, 116 (2012), pp. 11422–
11441.

[41] W. Im, D. Beglov, and B. Roux, Continuum solvation model: Computation of elec-
trostatic forces from numerical solutions to the Poisson-Boltzmann equation, Comput.
Phys. Commun., 111 (1998), pp. 59–75.

26

https://hpcwebapps.cit.nih.gov/structbio/basic.html
https://hpcwebapps.cit.nih.gov/structbio/basic.html


[42] G.-S. Jiang and D. Peng, Weighted ENO schemes for Hamilton–Jacobi equations,
SIAM J. Sci. Comput., 21 (2000), pp. 2126–2143.

[43] S. Jones, H. P. Shanahan, H. M. Berman, and J. M. Thornton, Using elec-
trostatic potentials to predict dna-binding sites on dna-binding proteins, Nucleic acids
research, 31 (2003), pp. 7189–7198.

[44] A. Juffer, E. Botta, B. van Keulen, A. van der Ploeg, and H. Berendsen,
The electric potential of a macromolecule in a solvent: a fundamental approach, J.
Comput. Phys., 97 (1991), pp. 144–171.

[45] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadel-
phia, 1995.

[46] J. G. Kirkwood, Theory of solutions of molecules containing widely separated charges
with special application to zwitterions, J. Chme. Phys., 2 (1934), pp. 351–361.

[47] C. Kublik, N. Tanushev, and R. Tsai, An implicit interface boundary integral
method for Poisson’s equation on arbitrary domains, J. Comput. Phys., 247 (2013),
pp. 279–311.

[48] C. Kublik and R. Tsai, Integration over curves and surfaces defined by the closest
point mapping, Res. Math. Sci., 3 (2016).

[49] , An extrapolative approach to integration over hypersurfaces in the level set frame-
work, Math. Comp., (To appear).

[50] A. W. Lange and J. M. Herbert, A simple polarizable continuum solvation model
for electrolyte solutions, J. Chem. Phys., 134 (2011). 204110.

[51] J. Li and D. Xie, A new linear Poisson-Boltzmann equation and finite element solver
by solution decomposition approach, Commun. Math. Sci., 13 (2015), pp. 315–325.

[52] J. Liang and S. Subramaniam, Computation of molecular electrostatics with bound-
ary element methods, Biophys. J., 73 (1997), pp. 1830–1841.

[53] B. Lu, Y. Zhou, M. Holst, and J. McCammon, Recent progress in numeri-
cal methods for the Poisson-Boltzmann equation in biophysical applications, Commun.
Comput. Phys., 3 (2008), pp. 973–1009.

[54] B. Z. Lu, X. Cheng, J. Huang, and J. A. McCammon, Order n algorithm for
computation of electrostatic interactions in biomolecular systems, Proc. Natl. Acad.
Sci., 103 (2006), pp. 19314–19319.

[55] B. Z. Lu, X. Cheng, and J. A. McCammon, New-version-fast-multipole-method
accelerated electrostatic calculations in biomolecular systems, J. Comput. Phys., 226
(2007), pp. 1348–1366.

[56] R. Luo, L. David, and M. K. Gilson, Accelerated Poisson-Boltzmann calculations
for static and dynamic systems, J. Comput. Chem., 23 (2002), pp. 1244–1253.

27



[57] A. D. Mackerell Jr., Empirical force fields for biological macromolecules: Overview
and issues, J. Comput. Chem., 25 (2004), pp. 1584–1604.

[58] J. D. Madura, J. M. Briggs, R. C. Wade, M. E. Davis, B. A. Luty,
A. Ilin, J. Antosiewicz, M. K. Gilson, B. Bagheri, L. R. Scott, and J. A.
McCammon, Electrostatics and diffusion of molecules in solution - simulations with
the University-of-Houston brownian dynamics program, Comput. Phys. Commun., 91
(1995), pp. 57–95.
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