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Abstract
The objective of quantitative photoacoustic tomography (qPAT) is to reconstruct
the diffusion, absorption and Grüneisen thermodynamic coefficients of
heterogeneous media from knowledge of the interior absorbed radiation. It
has been shown in Bal and Ren (2011 Inverse Problems 27 075003), based on
diffusion theory, that with data acquired at one given wavelength, all three
coefficients cannot be reconstructed uniquely. In this work, we study the
multi-spectral qPAT problem and show that when multiple wavelength data
are available, all coefficients can be reconstructed simultaneously under minor
prior assumptions. Moreover, the reconstructions are shown to be very stable.
We present some numerical simulations that support the theoretical results.

(Some figures may appear in colour only in the online journal)

1. Introduction

In photoacoustic tomography (PAT), near infrared (NIR) light propagates into a medium of
interest. As a fraction of the incoming light energy is absorbed, the medium heats up. This
results in mechanical expansion and the generation of compressive (acoustic) waves. The
acoustic waves propagate to the boundary of the medium where they are measured. From
knowledge of these (time-dependent) acoustic measurements, one attempts to reconstruct
the diffusion, absorption and Grüneisen thermodynamic properties of the medium of interest
[2, 7, 19, 31, 33, 36, 39, 47, 55–57].

The reconstruction problem in PAT is a two-step process. In the first step, one reconstructs
the absorbed energy map (multiplied by a coefficient), H defined in (2) below, from the
measured acoustic signals on the surface of the medium. This is a relatively well-known
inverse source problem for the wave equation that has been extensively studied in the past
[1, 16, 21, 22, 25–28, 32, 34, 37, 39, 40, 50–53]. In the second step, often called quantitative
PAT (qPAT), the objective is to reconstruct the diffusion coefficient D in (1), the absorption
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coefficient σ in (1) and the Grüneisen coefficient � in (2), from the reconstructed energy data
H. This step has recently attracted significant attention from both mathematical [3, 4, 8–10]
and computational [11, 17, 18, 20, 24, 23, 35, 45, 46, 59, 61] perspectives. Mathematically,
the reconstruction problem in this step is very similar to the diffuse optical tomography (DOT)
problem except that in DOT we have boundary current data, while here in qPAT we have
interior absorbed energy data. The use of interior data improves the stability, and thus the
resolution, of the reconstruction significantly. This is the main advantage of PAT over DOT.

Most of the studies in the past have assumed that the Grüneisen coefficient is a constant
and is known so that only the absorption and diffusion coefficients are to be reconstructed. As
recently pointed out in [17, 19, 48], it is more realistic to consider � as a function of space. In
this work, we treat � also as an unknown. We thus aim at both � and the optical coefficients.
Note that unlike the reconstruction of the absorption coefficient σ and the diffusion coefficient
D, the reconstruction of � is a linear inverse problem since the data H we have are linearly
proportional to �. This means that if both σ and D are known, then we can simply solve the
diffusion equation (1) and compute the energy E = σu. Then � is reconstructed as � = H/E.

The work in [9] has shown that with data at only one wavelength, the reconstruction of
the three coefficients simultaneously is not unique. In fact, only two of the three coefficients
can be reconstructed without other a priori information. The objective of this work is exactly
to reconstruct all three coefficients by using measured data of different wavelengths and a
priori information on the form of the coefficients. We show that the reconstruction can be
done when the coefficients take specific forms. One specific case of practical importance is
that if the dependence of the coefficient on the spatial variable and on the wavelength variable
can be separated, then they can be reconstructed with spectral data stably.

The paper is structured as follows. In section 2, we reformulate the inverse problem of
quantitative PAT in the setting of multiple wavelength illuminations and present uniqueness
and stability theory regarding the inverse problem in simplified settings. We then present in
section 3 numerical procedures to reconstruct the unknown coefficients. We present some
numerical simulation results with synthetic data in section 4. Conclusions and further remarks
are offered in section 5.

2. Uniqueness and stability results

Let us denote by X a bounded domain in R
d (d = 2, 3) with the smooth boundary ∂X , and

� ⊂ R+ the set of wavelengths at which the interior data are constructed. In the diffusive
regime, the density of photons at the wavelength λ, u(x, λ) solves the following diffusion
equation:

−∇ · D(x, λ)∇u(x, λ) + σ (x, λ)u = 0, X × �

u(x, λ) = g(x, λ), ∂X × �,
(1)

where D(x, λ) > 0 and σ (x, λ) > 0 are the wavelength-dependent diffusion and absorption
coefficients, respectively, and g(x, λ) is the illumination pattern in photoacoustic experiments.
The wavelength-dependent interior data constructed from the inversion of the acoustic problem
are given by

H(x, λ) = �(x, λ)σ (x, λ)u(x, λ), (x, λ) ∈ X × �, (2)

where �(x, λ) > 0 is the non-dimensional Grüneisen coefficient that relates the absorbed
optical energy σu to the increase in pressure H. The thermodynamic coefficient � measures
the photoacoustic efficiency of the medium.

The problem of multi-spectral qPAT is to reconstruct the coefficients D(x, λ), σ (x, λ)

and �(x, λ) from interior data of the form (2). The results in [9] state that without further
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a priori information, we cannot uniquely reconstruct all three coefficients. In fact, only two
quantities related to the three coefficients, i.e. the functionals χ(x, λ) and q(x, λ), defined
in (5) below can be reconstructed. The objective of this work is to show that when data of
multiple wavelengths are available, we can recover the uniqueness in the reconstructions with
relatively little additional a priori information. To obtain results that are as general as possible,
we allow the diffusion and absorption coefficients to be arbitrary functions of the wavelength
and assume that the Grüneisen coefficient can be written as the product of a function of space
and a function of wavelength. More precisely, the coefficients take the following form:

D = D(x, λ), σ = σ (x, λ), �(x, λ) = γ (λ)�(x), (3)

where γ (λ) is a function assumed to be known. This assumption is not sufficient to guarantee
unique reconstructions. We need to assume a little more on the coefficients. Our main
assumption is as follows.

(A1) There exist two known wavelengths λ1, λ2 ∈ � so that D(x, λ1) = ρD(x, λ2) for some
known positive constant ρ, while σ√

D
(x, λ1) �= σ√

D
(x, λ2) for all x ∈ X .

This assumption essentially requires that the dependence of the diffusion and
absorption coefficients is different for at least two wavelengths. Otherwise, we would
simply be able to eliminate the spectral dependence from equation (1). We will see later
on that this assumption is satisfied by most coefficient models employed by researchers
in the community. We also need some assumptions on the regularity and boundary values
of the coefficients. We assume, denoting by C p(X ) the space of p-times differentiable
functions in X , that

(A2) the function 0 < D(·, λ) ∈ C2(X̄ ), and its boundary value D|∂X is known. The functions
0 < σ (·, λ), 0 < �(·, λ) ∈ C1(X̄ ).

We now present the main uniqueness result on reconstructions with multi-spectral data.

Theorem 2.1. Let (D, σ, �) and (D̃, σ̃ , �̃) be two sets of coefficients given in (3), with γ (λ)

known, satisfying assumptions (A1) and (A2). Then there exists an open set of illuminations(
g1(x, λ), g2(x, λ)

)
such that the equality of the data

{H1(x, λ), H2(x, λ)} = {H̃1(x, λ), H̃2(x, λ)}
in X × � implies that

{D(x, λ), σ (x, λ), �(x)} = {D̃(x, λ), σ̃ (x, λ), �̃(x)}
in X × � provided that the values of the diffusion coefficient agree on the boundary:
D|∂X = D̃|∂X for all λ ∈ �.

Proof. With the regularity assumptions on the diffusion coefficient, we can recast
equation (1), using the Liouville transform v = √

Du, as


v(x, λ) + q(x, λ)v(x, λ) = 0, X × �

v(x, λ) = g̃(x, λ) := √
D(x, λ)g(x, λ), ∂X × �,

(4)

with the interior data H(x, λ) = v(x, λ)/χ(x, λ), where χ and q are defined respectively as

χ =
√

D

�σ
, −q = 


√
D√

D
+ σ

D
. (5)

Let us denote by v1(x, λ) and v2(x, λ) the solutions of (4) with the illuminations g̃1(x, λ)

and g̃2(x, λ), respectively. Then it is straightforward to check that [9]

−∇ · v2
1∇

v2

v1
= 0, X × �

v2
1 (x, λ) = g̃2

1, ∂X × �.

(6)
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Since v2
v1

= H2
H1

is known, this is a transport equation for v2
1 (x, λ) with the vector field ∇ H2

H1
. By

the results of [9], there exist the well-chosen illuminations g1 and g2 (and thus g̃1 and g̃2) such
that the vector field is smooth enough with the positive modulus |∇ H2

H1
| > 0. This ensures that

the transport equation is uniquely solvable for v2
1. Once v2

1 is reconstructed, we can reconstruct
χ = v1/H1 and then q = −
v1/v1.

Now let λ1, λ2 ∈ � be two wavelengths as in assumption (A1). We first reconstruct the
two pairs of functionals (χ(x, λ1), q(x, λ1)) and (χ(x, λ2), q(x, λ2)). With the assumption
that D(x, λ1) = ρD(x, λ2), we obtain after some algebra using the above equations that



√

D(x, λ1) + Q(x)
√

D(x, λ1) = 0, X√
D(x, λ1) = √

D(x, λ1)|∂X , ∂X,
(7)

where the function Q(x) is defined as

Q(x) = γ (λ1)χ(x, λ1)q(x, λ1) − √
ργ (λ2)χ(x, λ2)q(x, λ2)

γ (λ1)χ(x, λ1) − √
ργ (λ2)χ(x, λ2)

. (8)

Using the conditions in assumptions (A1) and (A2), the denominator in Q does not vanish
and Q is bounded. The elliptic equation (7) can then be solved uniquely as shown in [9] to
reconstruct

√
D(x, λ1). We then find

σ (x, λ1) = − (Dq)(x, λ1) − (
√

D

√

D)(x, λ1), (9)

�(x) =
√

D(x, λ1)

χ(x, λ1)σ (x, λ1)
. (10)

Once �(x) is reconstructed, then so is �(x, λ) = �(x)γ (λ). The results in [9, corollary 2.3]
then allow us to reconstruct D(x, λ) and σ (x, λ) for all λ ∈ �. �

It has been shown in [9] that the reconstruction of v1 (and thus that of χ and q as well) is
Lipschitz stable for each fixed wavelength. Because the solution of (7) is stable with respect to
Q, we deduce that the reconstruction of the D(x, λ1) (and thus �(x)) is stable. Precise stability
estimates similar to those in [9, theorem 2.4] can be derived.

The coefficient model (3) is quite general and covers many of the models used in the
literature. For instance, we may consider the following standard model [13–15, 17, 19, 29, 35,
41, 42, 48, 49, 54, 58, 60]:

D(x, λ) = α(λ)D(x), �(x, λ) = γ (λ)�(x)

σ (x, λ) =
K∑

k=1

βk(λ)σk(x),
(11)

where the functions α(λ), {βk(λ)}K
k=1 and γ (λ) are assumed to be known. In other words,

all three-coefficient functions can be written as products of functions of different variables.
Moreover, the absorption coefficient contains multiple components. This is the parameter
model proposed in [17, 19, 29, 35, 42, 49] to reconstruct chromophore/fluorochrome
concentrations from optical measurements. The following result regarding model (11) is a
natural extension of theorem 2.1.

Corollary 2.2. Let D(x, λ), σ (x, λ) and �(x, λ) be as in (11) and satisfying assumptions (A1)

and (A2). Assume further that there exist K wavelengths such that the matrix B with elements
Bk j = βk(λ j) (1 � k, j � K) is non-singular. Then the coefficients

{D(x), {σk(x)}K
k=1, �(x)}

can be uniquely reconstructed from the well-chosen data (H1(x, λ), H2(x, λ)), (x, λ) ∈ X ×�.
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Proof. Theorem 2.1 allows the unique reconstruction of D(x), �(x) and {σ (x, λk)}K
k=1. Since B

is non-singular, we can invert the linear system σ (x, λ j) = ∑K
k=1 βk(λ j)σk(x), j = 1, . . . , K,

to recover {σk(x)}K
k=1. �

3. Reconstruction methods

We now present two numerical reconstruction methods for the multi-spectral qPAT problem.

3.1. The vector field method

The first method is based on the constructive uniqueness proof in the previous section. The
proof provides an explicit procedure to reconstruct the unknown coefficients. The main step is
to solve the transport equation (6) for v2

1. Let us denote by {λ j}K
j=1 the wavelengths at which

data are measured. For a general pair of coefficients of the form (3) that satisfy assumptions
(A1) and (A2), the algorithm proceeds as follows.

The vector field algorithm

Step 1. Solve the transport equation (6) for v1(x, λ1) and v1(x, λ2).
Step 2. Construct

(
χ(x, λ1), q(x, λ1)

)
and

(
χ(x, λ2), q(x, λ2)

)
as

χ(x, λ j) = v1(x, λ j)

H1(x, λ j)
, q(x, λ j) = −
K(v1)(x, λ j)

v1(x, λ j)
, j = 1, 2. (12)

Step 3. Construct Q(x) as defined in (8) and solve the elliptic equation (7) for
√

D(x, λ1).
Step 4. Recover σ (x, λ1) and �(x) from formulas (9) and (10).
Step 5. Recover

(
D(x, λ2), σ (x, λ2)

)
from

(
χ(x, λ2), q(x, λ2)

)
.

Step 6. Solve for
(
D(x, λ j), σ (x, λ j)

)
by repeating the following steps for 3 � j � K.

Step 6(a). Solve the transport equation (6) for v1(x, λ j).
Step 6(b). Solve the following elliptic equation for 1/u1(x, λ j):

∇ · v2
1∇

1

u1
+ H(x, λ j)

γ (λ j)�(x)
= 0, in X,

1

u1
= 1

g1(x, λ j)
, on ∂X. (13)

Step 6(c). Reconstruct σ (x, λ j) = H1(x,λ j )

u1(x,λ j )
and D(x, λ j) = v2

1 (x,λ j )

u2
1(x,λ j )

.

Step 6 is the main algorithm that we used in [9] for solving the mono-spectral qPAT
problem for the case when �(x) is known. Equation (13) is obtained by rewriting the diffusion
equation (1) for u1 using the fact that Du2

1 = v2
1 . As long as g1 � c0 > 0 everywhere on the

boundary, this elliptic problem is well-posed for 1/u1. For more details on the vector field
method in the mono-spectral case, including the discussion on dealing with noisy data, we
refer to [9].

The same algorithm can be used when the simplified coefficient model (11) is considered.
In that case, step 6(b) is not needed anymore. This is because once D(x) and �(x) in (11) are
reconstructed, σ (x, λ j) (1 � j � K) can be reconstructed from the solution χ(x, λ j) to the
transport equation.

The uniqueness results we presented hold only for coefficients that are regular enough,
satisfying the regularity assumptions in (A2). So is this vector field algorithm that we
just described. In practice, we do not know a priori whether or not the coefficients to be
reconstructed satisfy this assumption. We thus have to make sure that v = √

Du is smooth
enough so that we can take the second-order derivatives without problem. That is the reason we

5
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Figure 1. The reconstructions of the coefficients (�(x), D(x), σ1(x), σ2(x)). From top to bottom:
true coefficients, reconstructions with clean data and reconstructions with data containing 5%
random noise.

added a smoothing process to v in step 2 of the algorithm. The kernel k(x) of the convolution
operator K(v)(x, λ) = ∫

X k(x − y)v(y, λ) dy is a smooth function. Here we take k(x) to be a
Gaussian whose variance is used to control the strength of the smoothing. The strength of the
smoothing is determined by looking at the image of 
K(v). The smoothing, however, does
not cause many problems for the solution of the next elliptic problem as we know that the
solution of the elliptic problem is stable with respect to changes in Q.

3.2. The nonlinear least-squares method

The second approach to solve numerically the inverse problem is to reformulate the
reconstruction problem as a data-driven minimization problem. More precisely, we look for
the coefficients in the form of (3) that minimize the following mismatch functional:

(D, σ, �) = 1

2

N∑
i=1

∫
X

∫
�

(
Hi(x, λ) − H∗

i (x, λ)
)2

dx dλ, (14)

where N � 2 is the number of different spatial source patterns used for a fixed wavelength.
In the theoretical results we presented in section 2, N = 2. The data predicted by the model
are denoted as Hi(x, λ) = �(x, λ)σ (x, λ)ui(x, λ), with ui(x, λ) being the solution of the
diffusion equation (1) with the ith source pattern gi(x, λ). The real interior data, that is, the
data constructed from acoustic measurement, are denoted by H∗

i (x, λ).
We solve the minimization problem by a quasi-Newton method with the BFGS updating

rule on the Hessian operator [12, 30, 38, 44]. This method requires the Fréchet derivatives of
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Figure 2. Cross-sections of plots in figure 1 along the axis y = 0.75. Shown are true coefficients
(solid line), reconstruction with noise-free data (red dashed) and reconstructions with noisy data
(blue dashed).

the functional  with respect to the unknowns D, σ and �. These derivatives can be computed
in the following way. Let us denote by wi(x, λ) the solution of the adjoint problem

−∇ · D(x, λ)∇wi(x, λ) + σ (x, λ)wi = �σZi, X × �

wi(x, λ) = 0, ∂X × �,
(15)

with Zi ≡ Hi(x, λ) − H∗
i (x, λ). Then it is standard to show that

Theorem 3.1. The nonlinear least-squares functional  : [L2(X × �)]3 	→ R is Fréchet
differentiable with respect to D, σ and �. The Fréchet derivatives are given respectively by

〈
∂

∂D
, D̂

〉
=

N∑
i=1

〈∇ui · ∇wi, D̂〉L2(X×�), (16)

〈
∂

∂�
, �̂

〉
=

N∑
i=1

〈Ziσui, �̂〉L2(X×�), (17)

〈
∂

∂σ
, σ̂

〉
=

N∑
i=1

〈�Ziui − wiui, σ̂ 〉L2(X×�), (18)

where 〈·〉L2(X×�) denotes the usual inner product in L2(X × �).

7
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Figure 3. The reconstructions of piecewise constant coefficients (�(x), D(x), σ1(x), σ2(x)). From
top to bottom: true coefficients, reconstructions with clean data and reconstructions with data
containing 5% random noise.

When model (11) is employed, the derivatives with respect to σ have to be replaced by the
derivatives with respect to each σk (1 � k � K). These derivatives can be simply computed
by using (18) and the chain rule. More precisely,

〈
∂

∂σk
, σ̂k

〉
=

N∑
i=1

〈�Ziui − wiui, βk(λ)σ̂k〉L2(X×�), 1 � k � K. (19)

Compared with the vector field method in the previous section, the nonlinear least-squares
method is a very general method. However, it is computationally more expensive. In each quasi-
Newton iteration, we need to solve several forward and adjoint problems to evaluate the value
of the objective function and the Fréchet derivatives. The method is thus slow. However, since
the diffusion equation (1) and its adjoint (15) are elliptic problems that can be solved efficiently
with finite-element methods, the overall reconstruction cost is reasonably low.

4. Numerical simulations

We now present some numerical simulations using synthetic data to support the theory
that is developed in the previous section. To simplify the presentation, we consider only
two-dimensional problems, even though the uniqueness results and the reconstruction
methods hold in three-dimensional domains as well. The domain we consider is the square:
X = (0, 2 cm) × (0, 2 cm). Material properties of the medium will be provided in specific
cases.

8
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Figure 4. Cross-sections of true coefficients (solid line) and the reconstructed coefficients with
noise-free data (red dashed) and a typical realization of noisy data (blue dashed) in figure 3 along
the axis y = 1.0.

In the first set of numerical experiments, we show reconstruction results for smooth
coefficients. The coefficients take the forms given in (11) with two components in the
absorption coefficient, i.e. K = 2. The spectral components of the coefficients are given
as follows:

α(λ) =
(

λ

λ0

)3/2

, γ (λ) = 1, β1(λ) = λ

λ0
, β2(λ) = λ0

λ
, (20)

where the normalization wavelength λ0 is included to control the amplitude of coefficients.
These weight functions are by no means what they should exactly be in practical applications.
However, the specific forms do not have impacts on the results of the reconstruction. The
spatial components of the coefficients are given as

�(x) = 0.8 + 0.4 tanh(4x − 4), D(x) = 0.03 + 0.02 sin(πx) sin(πy)

σ1(x) = 0.2 + 0.1e−(x−1)2−(y−1)2
, σ2(x) = 0.2 − 0.1e−(x−1)2−(y−1)2

.
(21)

Four illuminations are used, two at each wavelength. The reconstruction results with clean
data, i.e. synthetic data without being polluted by additional random noise, are shown in
the second row of figure 1. Note that the data used in this case indeed contain noise that
comes from the discretization of the continuous PDE model, which is very small since we
used a very fine discretization. The reconstructions are almost perfect, with overall quality
very similar to those presented in mono-spectral data [9], as can be seen from the plots and
the cross-sections (red dashed) in figure 2. The third row of figure 1 presents one typical

9
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realization of reconstruction results with data containing 5% extra additive random noise. The
cross-sections of the reconstruction along the line y = 1 are shown in figure 2 (blue dashed).
The results are still very accurate, with overall quality comparable to those results obtained
in [9].

In the second set of numerical experiments, we show reconstruction results for piecewise
constant coefficients with the numerical minimization algorithm that we introduced in the
previous section. The true coefficients are shown in the first row of figure 3. We again
use four illuminations of two different wavelengths. The reconstructions with clean and
noisy data are presented on the second and third rows of figure 3, respectively. In the
case of noisy data, we regularized the nonlinear least-squares problem with the Tikhonov
regularization term ρ

2 (‖∇D‖2
L2 + ‖∇σ‖2

L2 + ‖∇�‖2
L2 ). The strength ρ of the regularization

is taken after a few tests with different values. The effect of the regularization is mainly
to smooth out the additive noise in the data. It also smooths out part of the jumps across
the interfaces of coefficient discontinuities, as can be seen from the plots in the third row
of figure 3. To better visualize the quality of the reconstructions, we again plot the cross-
sections of the reconstructed coefficients in figure 4. We observe that discontinuous coefficients
can be reconstructed as accurately as smooth coefficients, even though the discontinuity is
smeared out in the former case.

5. Concluding remarks

We presented in this paper some theoretical results for quantitative photoacoustic
tomography with multi-spectral interior data to reconstruct the Grüneisen, absorption
and diffusion coefficients simultaneously. We showed the uniqueness of the solution
to the inverse problem under minor assumptions on the form of the coefficients.
One specific case of practical importance is that, if the dependence of the coefficient
on the spatial variable and on the wavelength variable can be separated, the spatial
components of all three coefficients can be reconstructed with spectral data uniquely and
stably.

We presented a vector field-based algorithm and a general nonlinear least-squares-based
method for the numerical reconstruction of smooth and rough coefficients. We showed by
numerical simulations that the reconstructions are very accurate for both types of coefficients,
assuming that the interior data H constructed from measured acoustic data are accurate enough.
The reconstructions are stable with Lipschitz type stability estimates that are identical to those
in [9].

The uniqueness results that we obtained in this paper depend on the illuminations that
are selected. In other words, uniqueness only holds when appropriate illuminations are used.
Fortunately, the characterization of these ‘well-selected’ illuminations is identical to that
presented in [9]. In fact, as pointed out in [9], many illumination pairs that we have used work,
in the sense that they generate the data H1 and H2 such that the condition |∇ H2

H1
| > 0 holds,

and thus the transport equation (6) is uniquely and stably solvable.
The results of this paper and [9] are all based on diffusion theory for light propagation

in tissues. It is well known that the phase-space radiative transport model [5, 6, 43] is a more
accurate light propagation model for this application. Uniqueness and stability results for the
transport model have been developed in [8] in the situation where measurements from all
possible illuminations are available. Numerical simulations have also been reported [20]. It
would be interesting to extend the study in [8] to include an unknown variable Grüneisen
coefficient.
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