
Expected Value 
 
The expected value of a random variable indicates its weighted average. 
 
Ex. How many heads would you expect if you flipped a coin twice? 
 
X = number of heads = {0,1,2} 
p(0)=1/4, p(1)=1/2, p(2)=1/4 
Weighted average = 0*1/4 + 1*1/2 + 2*1/4 = 1 
 
Draw PDF 
 
Definition: Let X be a random variable assuming the values x1, x2, x3, ... with 
corresponding probabilities p(x1), p(x2), p(x3),..... The mean or expected value of X is 
defined by E(X) = sum xk p(xk). 
 
Interpretations: 
(i) The expected value measures the center of the probability distribution - center of mass. 
(ii) Long term frequency (law of large numbers… we’ll get to this soon) 
 
 
 



Expectations can be used to describe the potential gains and losses from games. 
 
Ex. Roll a die. If the side that comes up is odd, you win the $ equivalent of that side. If it 
is even, you lose $4. 
 
Let X = your earnings 
 
X=1   P(X=1) = P({1}) =1/6 
X=3   P(X=1) = P({3}) =1/6 
X=5   P(X=1) = P({5}) =1/6 
X=-4   P(X=1) = P({2,4,6}) =3/6 

E(X) = 1*1/6 + 3*1/6 + 5*1/6 + (-4)*1/2 = 1/6 + 3/6 +5/6 – 2= -1/2 

 
 
Ex. Lottery – You pick 3 different numbers between 1 and 12. If you pick all the numbers 
correctly you win $100. What are your expected earnings if it costs $1 to play? 
 
Let X = your earnings 
X = 100-1 = 99 
X = -1 
 
P(X=99) = 1/(12 3) = 1/220 
P(X=-1) = 1-1/220 = 219/220 
 
E(X) = 100*1/220 + (-1)*219/220 = -119/220 = -0.54 
 
 



Expectation of a function of a random variable 
 
Let X be a random variable assuming the values x1, x2, x3, ... with corresponding 
probabilities p(x1), p(x2), p(x3),..... For any function g, the mean or expected value of g(X) 
is defined by E(g(X)) = sum g(xk) p(xk). 
 
Ex. Roll a fair die. Let X = number of dots on the side that comes up. 
 
Calculate E(X2). 
 
E(X2) = sum_{i=1}^{6} i2 p(i) = 12 p(1) + 22 p(2) + 32 p(3) + 42 p(4) + 52 p(5) + 62 p(6) 
= 1/6*(1+4+9+16+25+36) = 91/6 
 
E(X) is the expected value or 1st moment of X. 
E(Xn) is called the nth moment of X. 
 
Calculate E(sqrt(X)) = sum_{i=1}^{6} sqrt(i) p(i) 
Calculate E(eX) = sum_{i=1}^{6} ei p(i) 
(Do at home) 
 
 
Ex. An indicator variable for the event A is defined as the random variable that takes on 
the value 1 when event A happens and 0 otherwise.  
 
IA =  1 if A occurs 
 0 if AC occurs 
 
P(IA =1) = P(A) and P(IA =0) = P(AC) 
The expectation of this indicator (noted IA) is E(IA)=1*P(A) + 0*P(AC) =P(A). 
 
One-to-one correspondence between expectations and probabilities. 
 
 
 
 
 
If a and b are constants, then E(aX+b) = aE(X) + b 
Proof: E(aX+b) = sum [(axk+b) p(xk)] = a sum{xkp(xk)} + b sum{p(xk)} = aE(X) + b 
 
 



Variance 
 
We often seek to summarize the essential properties of a random variable in as simple 
terms as possible. 
 
The mean is one such property. 
 
Let X = 0 with probability 1 
 
Let Y = -2 with prob. 1/3 
       -1 with prob. 1/6 
   1 with prob. 1/6 
   2 with prob. 1/3 
 
Both X and Y have the same expected value, but are quite different in other respects. One 
such respect is in their spread. We would like a measure of spread. 
 
 
Definition: If X is a random variable with mean E(X), then the variance of X, denoted by 
Var(X), is defined by Var(X) = E((X-E(X))2). 
 
A small variance indicates a small spread. 
 
Var(X) = E(X2) - (E(X)) 2 
 
 
Var(X) = E((X-E(X))2)  
             = sum (x- E(X))2 p(x)  
             = sum (x2-2x E(X)+ E(X)2) p(x)  
             = sum x2 p(x) -2 E(X) sum xp(x) + E(X)2 sum p(x) 
             = E(X2) -2 E(X)2 + E(X)2 = E(X2) - E(X)2 
 
 
 
 
Ex. Roll a fair die. Let X = number of dots on the side that comes up. 
 
Var(X) = E(X2) - (E(X)) 2 
E(X2) = 91/6  
E(X) = 1/6(1+2+3+4+5+6) = 21/6 = 7/2 
Var(X) = 91/6 – (7/2)^2 = 91/6 – 49/4 = (182-147)/12 = 35/12 
 



If a and b are constants then Var(aX+b) = a2Var(X) 
 
E(aX+b) = a E(X) + b  
Var(aX+b) = E[(aX+b –(a E(X)+b))2]= E(a2(X– E(X))2) = a2E((X– E(X))2)= a2Var(X) 
 
The square root of Var(X) is called the standard deviation of X. 
SD(X) = sqrt(Var(X)): measures scale of X. 
 
 
 
 
 
 
 
 
Means, modes, and medians 
 
 
Best estimate under squared loss: mean 
 
i.e., the number m that minimizes E[(X-m)^2] is m=E(X).  Proof: expand and 
differentiate with respect to m. 
 
 
Best estimate under absolute loss: median.   
i.e., m=median minimizes E[|X-m|].  Proof in book.  Note that median is nonunique in 
general. 
 
Best estimate under 1-1(X=x) loss: mode.  Ie, choosing mode maximizes probability of 
being exactly right.  Proof easy for discrete r.v.’s; a limiting argument is required for 
continuous r.v.’s, since P(X=x)=0 for any x. 



Moment Generating Functions 
 
The moment generating function of the random variable X, denoted )(tM

X
, is defined for 

all real values of t by, 
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The reason )(tM

X
 is called a moment generating function is because all the moments of 

X can be obtained by successively differentiating )(tM
X

 and evaluating the result at t=0. 
 
First Moment: 
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(For any of the distributions we will use we can move the derivative inside the 
expectation). 
Second moment: 
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kth moment: 
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Ex. Binomial random variable with parameters n and p. 
 
Calculate )(tM

X
: 
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Later we’ll see an even easier way to calculate these moments, by using the fact that a 
binomial X is the sum of N i.i.d. simpler (Bernoulli) r.v.’s. 
 
 
 
 
 
 



Fact: Suppose that for two random variables X and Y, moment generating functions exist 
and are given by )(tM

X
and )(tM

Y
, respectively. If )(tM

X
= )(tM

Y
for all values of t, then 

X and Y have the same probability distribution. 
 
If the moment generating function of X exists and is finite in some region about t=0, then 
the distribution is uniquely determined. 
 
 



Properties of Expectation 
 
Proposition:  
 
If X and Y have a joint probability mass function pXY(x,y), then 
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If X and Y have a joint probability density function fXY(x,y), then 
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It is important to note that if the function g(x,y) is only dependent on either x or y the 
formula above reverts to the 1-dimensional case. 
 
Ex. Suppose X and Y have a joint pdf fXY(x,y). Calculate E(X). 
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Ex. An accident occurs at a point X that is uniformly distributed on a road of length L. At 
the time of the accident an ambulance is at location Y that is also uniformly distributed 
on the road. Assuming that X and Y are independent, find the expected distance between 
the ambulance and the point of the accident. 
 
Compute E(|X-Y|).  
 
Both X and Y are uniform on the interval (0,L).  

The joint pdf is 
2
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Expectation of sums of random variables 
 
Ex. Let X and Y be continuous random variables with joint pdf fXY(x,y). Assume that 
E(X) and E(Y) are finite. Calculate E(X+Y). 
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Same result holds in discrete case. 
 
 
Proposition: In general if E(Xi) are finite for all i=1,….n, then 
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Proof: Use the example above and prove by induction. 
 
 
Let X1, ….. Xn be independent and identically distributed random variables having 
distribution function FX and expected value µ. Such a sequence of random variables is 
said to constitute a sample from the distribution FX. The quantity X , defined by  
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 is called the sample mean.  

 
Calculate E( X ). 
 
We know that µ=)(
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When the mean of a distribution is unknown, the sample mean is often used in statistics to 
estimate it. (Unbiased estimate) 
 
 



Ex. Let X be a binomial random variable with parameters n and p. X represents the 
number of successes in n trials. We can write X as follows: 

 
n
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The Xi’s are Bernoulli random variables with parameter p. 
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Ex. A group of N people throw their hats into the center of a room. The hats are mixed, 
and each person randomly selects one. Find the expected number of people that select 
their own hat. 
 
Let X = the number of people who select their own hat. 
 
Number the people from 1 to N. Let 
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Ex. Twenty people, consisting of 10 married couples, are to be seated at five different 
tables, with four people at each table. If the seating is done at random, what is the 
expected number of married couples that are seated at the same table? 
 
Let X = the number of married couples at the same table. 
 
Number then couples from 1 to 10 and let,  
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To calculate E(X) we need to know ).(

i
XE   

 
Consider the table where husband i is sitting. There is room for three other people at his 
table. There are a total of 19 possible people which could be seated at his table. 
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Proposition: If X and Y are independent, then for any functions h and g, 
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In fact, this is an equivalent way to characterize independence: if 

))(())(())()(( YhEXgEYhXgE =  for any functions g(X) and h(Y) (but not any function 
f(X,Y)), then X and Y are independent.  To see this, just use indicator functions. 
 
 
 
 
 
Fact: The moment generating function of the sum of independent random variables 
equals the product of the individual moment generating functions. 
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Covariance and correlation 
 
Previously, we have discussed the absence or presence of a relationship between two 
random variables, i.e. independence or dependence. But if there is in fact a relationship, 
the relationship may be either weak or strong. 
 
 
Ex.   (a) Let  X = weight of a sample of water 
  Y = volume of the same sample of water  
 

There is an extremely strong relationship between X and Y. 
 

(b) Let X = a persons weight 
  Y = same persons weight  
 

There is a relationship between X and Y, but not as strong as in (a). 
 
We would like a measure that can quantify this difference in the strength of a relationship 
between two random variables. 
 
Definition: The covariance between X and Y, denoted by Cov(X,Y), is defined by  
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Similarly as with the variance, we can rewrite this equation, 
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Note that if X and Y are independent, 
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The converse is however NOT true. 
 
Counter-Example: Define X and Y so that, 
 

P(X=0) = P(X=1) = P(X=-1) = 1/3 
and 
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X and Y are clearly dependent.  
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Proposition: 
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Proof: (i) – (iii) Verify yourselves. 
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Proposition: 
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" .  In particular, 

V(X+Y)=V(X)+V(Y)+2C(X,Y). 
 
Proof:   
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Ex. Let X1, ….. Xn be independent and identically distributed random variables having 

expected value µ and variance σ2. Let !
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Calculate (a) Var( X ) and  (b) E(S2). 
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(b) Rewrite the sum portion of the sample variance: 
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 (The sample variance is an unbiased estimate of the variance) 
 
 



Ex. A group of N people throw their hats into the center of a room. The hats are mixed, 
and each person randomly selects one.  
 
Let X = the number of people who select their own hat. 
 
Number the people from 1 to N. Let 
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We showed last time that E(X)=1. 
 
Calculate Var(X). 
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Definition: The correlation between X and Y, denoted by ρ(X,Y), is defined, as long as 
Var(X) and Var(Y) are positive, by  
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It can be shown that 
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"1# $(X,Y ) #1, with equality only if Y=aX+b (assuming E(X^2) 
and E(Y^2) are both finite).  This is called the “Cauchy-Schwarz” inequality. 
 
Proof: It suffices to prove (E(XY))^2<=E(X^2)E(Y^2).  The basic idea is to look at the 
expectations  E[(aX+bY)^2] and E[(aX-bY)^2].  We use the usual rules for adding and 
subtracting variance: 
 
0<= E[(aX+bY)^2] = a^2E(X^2)+b^2E(Y^2)+2abE(XY) 
0<= E[(aX-bY)^2] = a^2E(X^2)+b^2E(Y^2)-2abE(XY) 
 
Now let a^2=E(Y^2) and b^2=E(X^2).  Then the above two inequalities read 
 
0<=2a^2b^2+2abE(XY) 
0<=2a^2b^2-2abE(XY); 
 
dividing by 2ab gives 
 
E(XY)>=-sqrt[E(X^2) E(Y^2)] 
E(XY)<=sqrt[E(X^2) E(Y^2)], 
 
and this is equivalent to the inequality 

! 

"1# $(X,Y ) #1.  For equality to hold, either  
E[(aX+bY)^2]=0 or E[(aX-bY)^2]=0, i.e., X and Y are linearly related with a negative or 
positive slope, respectively. 
 
 
The correlation coefficient is therefore a measure of the degree of linearity between X 
and Y. If ρ(X,Y)=0 then this indicates no linearity, and X and Y are said to be 
uncorrelated.



Conditional Expectation 
 
Recall that if X and Y are discrete random variables, the conditional mass function of X, 
given Y=y, is defined for all y such that P(Y=y)>0, by   
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Definition: If X and Y are discrete random variables, the conditional expectation of X, 
given Y=y, is defined for all y such that P(Y=y)>0, by  
 

!! =====
x

YX

x

yxxpyYxXxPyYXE )|()|()|( | . 

 
Similarly, if X and Y are continuous random variables, the conditional pdf of X given 
Y=y, is defined for all y such that 0)( >yfY , by  
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Definition: If X and Y are continuous random variables, the conditional expectation of X, 
given Y=y, is defined for all y such that 0)( >yfY , by  
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Conditional expectations are themselves random variables. The conditional expectation 
of X given Y=y, is just the expected value on a reduced sample space consisting only of 
outcomes where Y=y.  
 
 
E(X|Y=y) is a function of y. 
 
 
It is important to note that conditional expectations satisfy all the properties of regular 
expectations: 
 

1. [ ] !==
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YX yxpxgyYXgE )|()(|)( |  if X and Y discrete. 
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3. [ ]yYXEyYXE i

n

i

n

i

i ==!
"

#
$
%

&
= ''

==

||
11

 

 
 
Proposition:  ))|(()( YXEEXE =  
 
 
If Y is discrete !==

y

Y ypYXEYXEEXE )()|())|(()(  

If Y is continuous !== )()|())|(()( yfYXEYXEEXE Y  

Proof: (Discrete case) 
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