
Paninski, Intro. Math. Stats., October 5, 2005 29

Probability inequalities11

There is an adage in probability that says that behind every limit theorem lies
a probability inequality (i.e., a bound on the probability of some undesired
event happening). Since a large part of probability theory is about proving
limit theorems, people have developed a bewildering number of inequalities.

Luckily, we’ll only need a few key inequalities. Even better, three of them
are really just versions of one another. Exercise 29: Can you think of exam-
ple distributions for which each of the following inequalities are tight (that
is, the inequalities may be replaced by equalities)? Are these “extremal”
distributions unique?

Markov’s inequality

Figure 5: Markov.

For a nonnegative r.v. X,

P (X > u) ≤ E(X)

u
.

So if E(X) is small and we know X ≥ 0, then X must be near zero with
high probability. (Note that the inequality is not true if X can be negative.)

11HMC 1.10
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The proof is really simple:

uP (X > u) ≤
∫ ∞

u

tpX(t)dt ≤
∫ ∞

0

tpX(t)dt = E(X).

Chebyshev’s inequality

Figure 6: Chebyshev.

P (|X − E(X)| > u) ≤ V (X)

u2
,

aka

P

(

|X − E(X)|
σ(X)

> u

)

≤ 1

u2
.

Proof: just look at the (nonnegative) r.v. (X − E(X))2, and apply Markov.
So if the variance of X is really small, X is close to its mean with high

probability.

Chernoff ’s inequality

P (X > u) = P (esX > esu) ≤ e−suM(s).

So the mgf controls the size of the tail of the distribution — yet another
surprising application of the mgf idea.
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Figure 7: Chernoff.

The really nice thing about this bound is that it is easy to deal with
sums of independent r.v.’s (recall our discussion above of mgf’s for sums
of independent r.v.’s). Exercise 30: Derive Chernoff’s bound for sums of
independent r.v.’s (i.e., derive an upper bound for the probability that

∑

i Xi

is greater than u, in terms of M(Xi)).
The other nice thing is that the bound is exponentially decreasing in

u, which is much stronger than Chebyshev. (On the other hand, since not
all r.v.’s have mgf’s, Chernoff’s bound can be applied less generally than
Chebyshev.)

The other other nice thing is that the bound holds for all s simultaneously,
so if we need as tight a bound as possible, we can use

P (X > u) ≤ inf
s

e−suM(s),

i.e., we can minimize over s.

Jensen’s inequality

This one is more geometric. Think about a function g(u) which is curved
upward, that is, g′′(u) ≥ 0, for all u. Such a g(u) is called “convex.”
(Downward-curving functions are called “concave.” More generally, a convex
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Figure 8: Jensen.

function is bounded above by its chords:

g(tx + (1 − t)y) ≤ tg(x) + (1 − t)g(y),

while a concave function is bounded below.)
Then if you draw yourself a picture, it’s easy to see that

E(g(X)) ≥ g(E(X)).

That is, the average of g(X) is always greater than or equal to g evaluated
at the average of X. Exercise 31: Prove this. (Hint: try subtracting off
f(X), where f is a linear function of X such that g(X) − f(X) reaches a
minimum at E(X).)

Exercise 32: What does this inequality tell you about the means of
1/X? of −X log X? About Ei(X) vs. Ej(X), where i > j?

Cauchy-Schwarz inequality

|C(X,Y )| ≤ σ(X)σ(Y ),

that is, the correlation coefficient is bounded between −1 (X and Y are
anti-correlated) and 1 (correlated).
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The proof of this one is based on our rules for adding variance:

C(X,Y ) =
1

2
[V (X + Y ) − V (X) − V (Y )]

(assuming E(X) = E(Y ) = 0). Exercise 33: Complete the proof. (Hint:
try looking at X and −X, using the fact that C(−X,Y ) = −C(X,Y ).)

Exercise for the people who have taken linear algebra: interpret the
Cauchy-Schwarz inequality in terms of the angle between the vectors X and
Y (where we think of functions — that is, r.v.’s — as vectors, and define the
dot product as E(XY ) and the length of a vector as

√

E(X2)). Thus this
inequality is really geometric in nature.
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Limit theorems12

An approximate answer to the right question is worth a great deal more than
a precise answer to the wrong question.

The first golden rule of applied mathematics, sometimes attributed to
John Tukey

(Weak) law of large numbers

Chebyshev’s simple inequality is enough to prove perhaps the fundamental
result in probability theory: the law of averages. This says that if we take
the sample average of a bunch of i.i.d. r.v.’s, the sample average will be close
to the true average. More precisely, under the assumption that V (X) < ∞,
then

P

(

|E(X) − 1

N

N
∑

i=1

Xi| > ε

)

→ 0

as N → ∞, no matter how small ε is.
The proof:

E

(

1

N

N
∑

i=1

Xi

)

= E(X),

by the linearity of the expectation.

V

(

1

N

N
∑

i=1

Xi

)

=
V (X)

N
,

by the rules for adding variance and the fact that Xi are independent.
Now just look at Chebyshev.
Remember, the LLN does not hold for all r.v.’s: remember what happened

when you took averages of i.i.d. Cauchy r.v.’s? Exercise 34: What goes
wrong in the Cauchy case?

Stochastic convergence concepts

In the above, we say that the sample mean 1
N

∑N
i=1 Xi “converges in proba-

bility” to the true mean. More generally, we say r.v.’s ZN converge to Z in

12HMC chapter 4


