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Abstract— In this paper, we present a model of distributed the likelihood of its observation and its neighbors’ bedjef

parameter estimation in networks, where agents have access and uses the mode of the updated belief function as the
to partially mf_orma_t!ve measurements over time. Eac_h ageh  astimate for the unknown parameter.

faces a local identification problem, in the sense that it camot We sh that d ite th b £l | identifiabilit
consistently estimate the parametein isolation. We prove that, € show that despite the absence ot local 1aentnabriity

despite local identification problems, if agents update the across the network, agents’ estimates are weakly consisten
estimates recursively as a function of their neighbors’ bétfs, (i.e., converge to the truth in probability), provided that

they can consistently estimate the true parameter provided there exists a directed information path connecting any
that the communication network is strongly connected; that two agents in the network. In other words, we prove that

is, there exists an information path between any two agents | th derlvi twork & | ted
in the network. We also show that the estimates of all agents as long as the underlying networ rongly connecte

are asymptotically normally distributed. Finally, we compute information is properly aggregated over the network and the
the asymptotic variance of the agents’ estimates in terms local identification problems are resolved. We also show tha

of their observation models and the network topology, and as observations accumulate, the distribution of agents’ es
provide conditions under which the distributed estimatorsare 5465 converge to a normal distribution. The consistendy an
as efficient as any centralized estimator. . . , .
asymptotic normality of agents’ estimates hold regardless
of the distribution of their measurements and the structure
|. INTRODUCTION of the network (beyond of course, the strong connectivity

One of the central problems in the study of muIti-agenEequ'r.emem)' quthermore,_wg characte_rlze the_ asyneptot
covariance matrix of the distributed estimates in terms of

systems is the information aggregation problem. In many .
: . S agents’ signal structures, as well as the network topology.
scenarios, information is spread throughout the network i J 9 ’ pology

Gsmg this characterization, we show that in bidirectional
such a way that no agent has access to enough data to learn N : -
S . networks, distributed estimators are as efficient as any cen
relevant parameter in isolation, and therefore, agentsttae

. S .. tralized estimator with access to the collection of signals
task of recovering the truth by engaging in communication . . . .
. i . ; observed across the network. This efficiency is achieved eve
with one another. Such problems are ubiquitous in social an S L
it the communication network is highly sparse.

economic networks, as well as networks engineered for spe- : : .
o S . Our work is related to the collection of works on learning
cific applications. For example, Kotler [1] and loannided an. ; X o S
. o in networks in economics, as well as distributed estimation
Loury [2] document how people base their decisions on their . . .
d consensus algorithms in the control literature. The con

. ) . . n
nelghbor§ information when. purchasmg. consumer prOducgsensus literature (such as DeGroot [5], Jadbabaie, Lin, and
or adopting new technologies, respectively. Similarlye th

. L . . .Morse [3], and Golub and Jackson [6]) studies models in

main goal of distributed sensor and robotic networks is t0 . . !

. : : which a collection of agents asymptotically agree on the

aggregate relevant decentralized information, so thatea pr . "

o same value. Golub and Jackson provide conditions under

specified task can be performed properly (see e.g., J"’Kmab‘r\j/‘\llhich the asymptotic consensus value coincides with the tru
Lin, and Morse [3] and Bullo, Cortés, and Martinez [4]). ymp

: . : nderlying parameter ilarge networks. In the same spirit is
The goal of this paper is to develop a recursive model. .
. . . . iao, Boyd, and Lall [7], which uses the consensus update to
for aggregation of dispersed information over networks . - . :
. compute the maximum-likelihood estimate of the underlying
where the measurements of each agent are only partia

. . rameter in a distributed fashion. These papers, however,
informative about the unknown parameter. In order to resol . S
) e . do not address the problem of local identifiability, as they
the local identification problems they fateagents in our ) . : .
. . . s assume that all agents’ observations are equally infoveati
model update their estimates as a function of their neigdibor__, . " . : _
: e . .~ This is the main point of departure of this paper from the
beliefs. More specifically, we assume that at discrete tim .
above mentioned works, as we assume agents face local

intervals, each agent sets its belief as the geometric mieani8entification problems due to their different signal struc
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characterize the rate of convergence and the efficiencyeof th (A3) ¢;(s?|6) is a measurable function ef for all § € ©.
estimates. Finally, our work is also relevant to Kar, Moura, (A4) E[log®¢;(s%|0)] < oo for all i.

and Ramanan [9], who focus on a non-stationary update with (A5) E [supyejs ||V log 45(s4|0)]|]] < oo, for some
time-decaying weight sequences associated with consensus neighborhoodB of 6*, where Vy denotes the
and innovation updates. In contrast to [9], in this paper, we Hessian with respect to the parameter veétor

address general non-linear observation models and prasenthe above assumptions are quite mild and many of the
stationary update for the beliefs. usual distribution families, such as normals and expoakmti
The rest of the paper is organized as follows. In the nexatisfy them. We have made these assumptions for simplicity
section, we describe the model and present the dynamigfd our results hold under much weaker restrictions as well.
according to which agents update their estimates of the truefrinally, we define theFisher information matrixcorre-

parameter. In Section lIl, we prove that all agents’ estémat sponding to agents observation model as the covariance of
are consistent. Asymptotic normality is proved in Sectdn | its score function; that is,

where we also compute the asymptotic variance of agents’ Py P
estimates. In Section V, we investigate the efficiency of the Zi(0) = E [ vy(s1) % vy(s1)'] 1)

_dlsglbute_d eSt'TEt?LS agd compare our results with Tbgtr%herewg(si) £ log ¢;(s%]0) andVj denotes the gradient with
ized maximum likelihood estimation. Section VI conclu esrespect to the parameter vectbrAs the definition suggests
Z; is ad x d symmetric and positive semi-definite matrix.

Il. THE MODEL B. Network Structure

A. Agents and Observations In addition to signals{si}?°, observed privately over
Let N = {1,2...,n} denote a group of agents, locatedime, each agent can communicate with a subset of other

on a network, who are assigned the task of estimating &¢ents known as itseighbors We capture this neighborhood
unknown parametef* € ©, where® C R? is a convex relation with a directed grap& = (V, E), where each vertex
parameter space. At discrete time stéps N, each agent in V' corresponds to an agente N, and there exists a
observes noisy and partially informative signals that can tfirected edgej, i) € E from vertex; to vertexi if agent:
used in estimating the parameter. More specifically, at arfyS access to the belief function of aggritve denote the set
given time perioct, agenti observes a random signail € of nqg.hbors of agent with N;, and impose the following
RP, drawn from a distribution with conditional probability "estriction on the network:

density ¢;(-|#). We assume that agents’ signals are i.i.d. Assumption (C)The communication grap8' is strongly
over time and independent from the observations of all othebnnected; that is, there exists a directed path from artgxer
agents. to any other vertex irG.

The signals observed by a single agent, although poten-jny itively, Assumption (C) guarantees the possibility of

tially informative, do not reveal the parameter completelyinormation flow between any two agents (either directly or
i.e., each agent faces an |de_nt|f|cat|on problem. Two ParaMygirectly) in the network. The next sections will highligh
eters are said to be observationally equivalent from thetpoiy,e rgle played by this assumption in guaranteeing consis-

of view of an agent if the conditional distributions of thetency and asymptotic normality of agents’ estimates.
signals coincide. We denote the set of parameters that are

observationally equivalent t6* from the point of view of C. Belief Dynamics and Estimates

agenti by ©; = {0 € © : P[{,(s'|0) = £;(s|6%)] = 1}.2 In order to aggregate the information provided to them
Despite the local identification problems faced by theyer time — either through observations or communication

agents, we assume that the true parameter is identifiableyifth neighbors — agents hold and update beliefs over the

one has access to the signals observed by all agents.  parameter spac®. More specifically, we denote the belief
Assumption (Gl):The true parameter iglobally identifi- Of agenti at time ¢ with y;; : © — R™, a probability

able that is,—, ©; = {0*}. measure ove®. As for the dynamics, we assume that each

The above assumbption plavs a kev role in our main resultagent updates its belief function as a geometric mean of
P play y ? neighbors’ beliefs and its own observation likelihood

Clearly, in its absence, even an agent with access to all the

data collected across the network over time would not bfémctlon; or equivalently, the log-posterior beliefs ofcha

able to consistently estimate. agent is a linear combination of its neighbors’ log-beliefs

In addition to Assumption (Gl), we impose the followingand its log-likelihood function:
regularity conditions on the observation models of the &gen , t11(0) = \ilog gi(5§+1|9)+ Z wijv;(0)+cie (2)
(A1) ¢;(-|0) is twice continuously differentiable il for JEN;U{d}
all realizations of data.

A . i i ;
(A2) log;(-|6) is concave ird for all observations. where v;,(0) = logpi.(6) is the logarithm of the belief

function, \; > 0 is the weight that agent assigns to

2Throughout the papeP refers to the probability distribution induced by Its prlvate_ Observat'onswlij .> 0 '.S the we|ght aSS|gped
the true parametef*, andE denotes expectation with respectito to the beliefs of agen§ in its neighborhood, and; ; is



a normalization constant which ensures tpat.(9) is a Lemma 1:Suppose thaf* € int ©. Then, there exists a
well-defined probability density ove®d. Note that constants measurable function of the daéa,t that solves (3).

¢i,+ do not depend on the paramefeThroughout the paper, The next lemma shows that the beliefs of all agents
we assume thah; = A, and ZjeNiU{i} w;; = 1, for all  converge asymptotically to a limit independent of theiopsi

1€ N. Lemma 2:Suppose that Assumption (C) holds. Then,
Given its beliefs at any given time period, ageig n
estimate of the true parameter is defined as a maximizer of ®; ,(0) 2, P (0) & Z sz[long(s{W)] (5)
its belief function; that is, =
0 € arg max vi(0). (3) forall @ € ©, wherez = [2;] is the stationary distribution of
S

a Markov chain withi¥ as its probability transition matrix.
Note thatél-_,t is a random variable that depends on the data Note that under Assumption (C), matiiik corresponds to
observed by agents up to time In the next section we an aperiodic and irreducible Markov chain, and therefoas, h
show that this point estimator always exists and is a mea-unique stationary distribution, with all elements strictly
surable function of the data. Moreover, note that due to thgositive. Moreover, the limiting normalized log-posterio
identification problem faced by each agent, the maximizdyelief function ®,,(¢) is independent ofi for all values
is not necessarily unique at all times. In that ca%,g,can of 6, and as a result, for large enoughthe beliefs of all

correspond to any solution of (3). agents get arbitrarily close. This implies that, as obgermna
In order to simplify notation, we write update (2) in matrixaccumulate, the agents’ estimates get closer to one another
form as The next lemma establishes that the limiting log-posterior

belief function ®..(6) is uniquely maximized at the true

ve1(0) = Win(0) + Mo (ser1) ¢ V0 €O parameterd*, if thé ?[ruth is globally identifiable and the
where W = [w;;] is a stochastic matrix witho;; = 0 if ~ network of agents is strongly connected.
j € N; U{i}, ande, is a vector of constants independent of Lemma 3:Suppose that Assumptions (C) and (GI) hold.
6. Thus, at any time, we have Then,

, argmax Do (0) = {6"},
9o
ve(0) = W'o(0) + XY W' Tehg(sr) + ¢},

T=1

where®,(0) is defined in (5).
. ) Both Assumptions (C) and (GI) are required for the
wherec; is a vector that depends on past observations of allygve lemma to hold. Clearly, in the presence of a global

agents, but noé. Finally, we define identification problem in the network, there exist# & #*
13> o for which ®,,(0) = ®,,(6*) on almost all sample paths,
®,;4(0) = 7 Z Z[W“T]ijw;(si) and therefore, the limiting log-posterior belief functismot
T=1j=1 uniguely maximized. On the other hand, a network which is
which is a function of agents’ observations as well as thBOt strongly connected corresponds to a random walk with
parameter. Therefore, some transient states which implies that vectowill have

n at least one element, say, equal to zero. As a result, the
Vit (0) = XDy 4(6) + Z Wv.0(0) + Cé,t (4) |dgnt|f|cat|on_ problem of aggrk_t pe.r5|sts and leads to a non-
pa unigue solution to the maximization problem.

h h q N d q h ) d th We now present the main result of this section.
where the second term only depends on the priors and thery e 1:Suppose that* € int © and that Assump-

last term is a constant not dependingoThis immediately i, (c) and (GI) hold. Then, the point estimators of all
implies that for large enough, the point estimatom, ; agents are weakly consistent; that is
coincides with the maximizer ob, .(6) over ©. A '
;0 = 0% Vi
Il CONsISTENCY Proof: First, note that for large enoughthe estimate
In this section, we prove that under relatively mild as9,, coincides with the maximizer ofb; ,(9) over ©. On
sumptions, all agents’ estimates of the true parameter aﬂﬁé other hand, by Lemma 2, the convex functidp, (6)
asymptotically consistent in probability; that &,; —— 6*  converges tab..(¢) in probability for all 0. As established
for all i ast — oo. Before presenting our results onpy Lemma 3,8, () is uniquely maximized a#*, and
consistency, we state a few lemmas. The proofs can be foufiérefore, by Theorem 2.7 of Newey and McFadden [10], the

in the Appendix. _ _ _ maximizer of ®; ;(f) converges in probability t¢* for all
Our first lemma establishes that the point estimator of eaghe N. Thus, the estimator of ever agent is weakly consistent.
agent is well-defined. u

S . . - , Theorem 1 establishes that as the number of observations
Given the fact thaflog is a monotone function, defining the estimate h . f h h
as the mode of the log-belief function is equivalent to dafinit as the grows, the estlmate of each agent Converg?s to the parame-
maximizer of the belief function itself. ter corresponding to the true data generating process. The



importance of this result lies in the fact that asymptotiSince H_i,t lies betweenf* and él-,t, it is a consistent
consistency is achieved despite the fact that all agents faestimator for#** and therefore, Lemma 4 implies that
some identification problem — in the sense that no agefk ®, (6, ;) —— —2?21 z3Z;(6*). Note that the global
can consistently estimate the true parameter in isolatioitlentifiability assumption guarantees thiat 23T;(6%) is
However, if agents have access to the information held hyon-singular. On the other hand, Lemma 5 guarantees that
their neighbors gnd thelcor.nmumcatlon graph is strongly/zy, ®; 4(6%) L>N(072?:1ijj(9*))- At this point, the
connected, then information is properly aggregated over theorem trivially follows by Slutsky’s theorefn. -
network, and the estimate of every agent converges t0 theTheorem 2 states that the agents’ estimates are normally

true parameter. ) ] distributed as the sample size grows. As the proof suggests,
The other notable fact about Theorem 1 is that consistengye key idea behind asymptotic normality is that in large

is achieved regardless of the network’s structure. M0r§amples, estimators are approximately equal to linear com-
§pecifical|y, as long as _the networ_k is strongly connecteginations of sample averages (a consequence of applying
its topology and the weights:;; assigned by the agents 0 {ne mean value theorem), so that the central limit theorem
their neighbors do not affect convergence of the estimates ¢ap e applied [10]. The theorem also states that distdbute
the truth. However, in the next sections, we show that thgstimators, like the centralized maximum likelihood estim
net_vvork structure determines the efficiency of the distedu {5, are \/z-consistent. Finally, expression (7) provides the
estimators. asymptotic covariance matrix of the estimates in terms ef th
network structure and information matrices correspontting
IV. ASYMPTOTIC NORMALITY agents’ observation models.

In this section, we prove that the agents’ estimates are
asymptotically normally distributed and characterizeirthe V. ESTIMATOR EFFICIENCY AND NETWORK TOPOLOGY

asymptotic covariance matrices. . In the previous section, we derived asymptotic variance of
We start by stating two auxiliary lemmas, which arépe gistributed estimators. In this section, we investigheir
proved in the Appendix. Lemma 4 is simply a weak lawefsiciency in terms of the network structure, as well as the
of large numbers for the Hessian of the log-likelihood of thepservation model of each agent. Our next theorem compares
observations, whereas Lemma 5 is a central limit theorefie gistributed estimator with a centralized estimato an

for the gradients. _ _ _ provides a bound for its performance.
Lemma 4:Suppose tha{f; . }icy are consistent estima- = Theorem 3:Suppose that Assumptions (Gl) and (C) hold.
tors of §*, and suppose Assumption (C) holds. Then, Then, asymptotic variance of the distributed estimatossat
_ " fies
—V®i(0:0) 2 Z z;Z;(6%) Vi. Avar > [Z,(07)] " (8)
=1
Lemma 5: Suppose that Assumption (C) holds. Then, fowhere Z.() denotes the Fisher information matrix of a
allie N centralized estimator with access to the observationslof al
J n agents. Moreover, the above bound is tight#if is doubly
VNG ®;4(0%) == N(0,> 22Z;(67)). stochastic.
=1 Before presenting the proof, a few remarks are in order.

Jj=
We are now ready to state and prove the main result f « e that[Z, (9*)]71
C

, ) is equal to asymptotic variance
this section.

of the maximume-likelihood estimator of a centralized gntit

Theorem 2:Suppose that Assumptions (C) and (GI) hold iy, 4ccess to the measurements of all agents. In other words
Then, . d equation (8) simply means that the distributed estimators
\/E(eivt —0") — N(0, Avar) (6) are never more efficient (in the Cramér-Rao sense) than

where the asymptotic covariance matrix is given by a centralized maximum likelihood estimator. This is not

1 surprising, as one expects that decentralization can eser
n n n to a more efficient estimation.
Avar = |3 2T (0%) | D 2T(0%) | > 2T (07)| - The second part of the theorem, however, is more strik-
j=1 j=1 J=1 ing. It basically states if the weight matri¥” is doubly
. ) stochastic, then the distributed estimator is as efficient a
Proof: By definition, 6, ; is a maximizer of®;.(f), any centralized estimator. For example, if all communéarati
and therefore, it must be the case tRat®; .(0; ;) = 0. On links are bidirectional and the weights that each pair of
the other hand, by the mean value theorem, we have agents assign to one another are equal (ig;, = wj;;),
% ¢i7t(éi7t) — 0. (07) + W q)i,t(éi,t)(éi,t _ o), then decentralization does not sacrifice efficiency, rdgasd

B X of how sparse the network is.
whered, ; is a mean value betweeit and§; .. Thus, we
can solve for(0; , — 6*) and get

-1

4Note that in Theorem 1 we established tﬁatt is consistent.

5Slutsky’s theorem states that 4, —% & andy; —> ¢ wherec is a

\/E(ém —-0") = —Vt [Vgg q)i,t(éi7t)] -1 Vo ©;.+(07). constant, thengz:y: — cY.



Proof of Theorem 3We first computeZ.(9) in terms VI. CONCLUSIONS
of the Fisher information matrices corresponding to agents

observation models. By independence of observations @cros In this paper, we studied a model of dlstrlbuteq estl_n_1at|(_)n
agents, we have over a network, where each agent faces a local identification

problem — in the sense that it cannot consistently estimate
0(s¢]0) = £1(55]0)02(57|0) - - - £,,(52]6), a parameter of interest in isolation. The agents engage in
communication with their neighbors in order to resolve tthei
identification problems. We showed that as long as the true
n n parameter is globally identifiable (i.e., there is enoudbrin
Z.(0") = E Z%wg*(s{)Zw%*(s@ mation across the network for it to be uniquely identified)
j=1 i=1 and the communication network is strongly connected (i.e.,

which implies

n o o there exists a direct or indirect information path conmegti
= ZIE [Vewé*(s{)%wé*(s{)’} any two agents), then all agents can consistently estimate
j=1 the true parameter as observations accumulate. Moreover,
" we proved that under some regularity assumptions on the
= Y Z;6"), observation models, the agents’ estimates are asymphiptica
j=1 normally distributed. Finally, we computed the asymptotic

where we have used the fact tHa{<j log ¢;(s}]6*)] = 0 variance of the distributed estimators, and showed that in
(see proof of Lemma 5). Therefore, in order to prove (8)Pidirectional networks, the agents’ estimators are asieffic

we need to show that as any centralized estimator, regardless of the sparsityeof
1 network.
. * * 2 * *
Q=Y T;(0")=>_%T;(0) | > T;(07)| Y Z;(67) ACKNOWLEDGMENTS
j=1 j=1 j=1 j=1
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is positive semi-definite. Note tha&p is the Schur comple- . )
comments and discussions.

ment of

Zj ZJQ'IJ' (%) Zj % Z;(07)
Zj %L (07) Zj Z;(67)

which can be easily verified to be positive semi-defifiite.
Thus, @ is also positive semi-definite, which proves the firs
part of the theorem.

To prove the second part, we use the fact thablifis
doubly stochastic, then its corresponding Markov chain h
a uniform stationary distribution, that is; = % Therefore,

X = APPENDIX: OMITTED PROOFS

Proof of Lemma 1:The proof is along the lines of
the proof of Lemma 7.1 in Hayashi [12], and therefore, is
bmitted. [ |

Proof of Lemma 2:We first show that variance of
a(ﬁi_,t(e) converges to zero, for allandé:

expression (7) reduces to Lo o
. “1 var[®; 1(0)] = 7z Z Z[W;T]Q var([ip(s1)]
Avar = | SL(0%) | = (207 Lo
j=1 < n Zvar[ ;(3{)] — 0,
which is the asymptotic covariance matrix of the centralize j=1
maximum likelihood estimator. This proves that the bound

and therefored; ;(9) — E[®; ;(6)] - 0. On the other hand,

is tight.

As a final remark, we emphasize that although sufficient® have
double stochasticity of’ is not necessary for efficiency o1 d o
of the distributed estimator. For example, it is possible to  E[®;;(0)] = Z [; ZWt_T Efyp(s1)]
achieve efficiency by assigning a zero weight on an agent j=1L" =1 ij
whose signals are non-informative, and have the rest of the n o
weights equally shared among the rest of the agents. A — Y 125 (s])]

j=1

complete characterization of efficiency conditions is prt
our ongoing research.

n
SR ACH
j=1
U,GEIO[S t:[a]t“/X“ = 2z +up)Ti (07)(zjur +uz) = 0forall\yhare e used the fact thall corresponds to an aperiodic
— 1 %21

“For more on Schur complement and its properties, see forgramBoyd a_nd_irre.dUCible Markov chain with thel unique Stationary
and Vandenberghe [11], page 650. distribution z (guaranteed by Assumption (C)), and that



Cesaro means preserve convergent sequences and thtsr limmplying thatEY, @, . (0*) = 0.
Thus, we have In order to apply the Lindeberg-Feller CLT, we need to
show that the Lindeberg condition is satisfied; that is

®;4(0) - zn: WACH) t.n .
= S E[I% v

2 .
Lwerw gw»ﬁ}} —0

for all i € N and allf € ©, which completes the proofm T=1j=1
for all e > 0, ast — oo, wherel denotes the indicator
Proof of Lemma 3By Jensen’s inequality, function, and for notational simplicity, we have dropped th
; i dependence of} ¢;. on the observations’. Verifying that
E |log fj(511|9) <logE fj(3.1|9) —0, _the Lindeberg condition is stra_ightforward: the left hagide
0;(s716%) 0;(s710%) is bounded above by expression
: . Jo2 .
mPving | | 228 B {I1% 5 Ly 7. 1>ev7)
Ellog ¢;(s110)] < E[log £;(s1]6")] which converges to zero for all > 0 ast — oo. Thus, by

_ . o d
with equality holding if and only if§ € ©,. Therefore, the Lindeberg-Feller CLTy/#®;,(6*) — N(0,S), where
the set of maximizers of[log ;(s?|6)] coincides with the S iS given by
set of parameters that are observationally equivalert‘to 138 o o
Thus, by Assumption (GI)§* is the unique maximizer of S tlilgo n ZZ(Wt‘T)fj]E [V@ U (s1)V Y (s7)
their weighted sum. Notice that once again we are using the T=1j=1
fact that all elements of vectar are strictly positive. = "
2 *
> A0
Proof of Lemma 4First, notice that by a simple weak i=1
law of large numbers argumenty®; ;(0) — EVip®, () where we have used the fact thH#f* — 12/, and the

converges to zero in probability, pointwise for @lle ©. definition of the Fisher information matrix in (1). [
Moreover, we have

n

EVig®:0(0) — > 2 E[Nwi(s])]

Jj=1
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