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Abstract State space methods have proven indispens-
able in neural data analysis. However, common meth-
ods for performing inference in state-space models with
non-Gaussian observations rely on certain approxima-
tions which are not always accurate. Here we review
direct optimization methods that avoid these approxi-
mations, but that nonetheless retain the computational
efficiency of the approximate methods. We discuss a
variety of examples, applying these direct optimiza-
tion techniques to problems in spike train smoothing,
stimulus decoding, parameter estimation, and inference
of synaptic properties. Along the way, we point out
connections to some related standard statistical meth-
ods, including spline smoothing and isotonic regression.
Finally, we note that the computational methods re-
viewed here do not in fact depend on the state-space
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setting at all; instead, the key property we are exploiting
involves the bandedness of certain matrices. We close
by discussing some applications of this more general
point of view, including Markov chain Monte Carlo
methods for neural decoding and efficient estimation of
spatially-varying firing rates.

Keywords Neural coding · State-space models ·
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1 Introduction; forward-backward methods
for inference in state-space models

A wide variety of neuroscientific data analysis problems
may be attacked fruitfully within the framework of
hidden Markov (“state-space”) models. The basic idea
is that the underlying system may be described as a
stochastic dynamical process: a (possibly multidimen-
sional) state variable qt evolves through time according
to some Markovian dynamics p(qt|qt−1, θ), as specified
by a few model parameters θ . Now in many situations
we do not observe the state variable qt directly (this
Markovian variable is “hidden”); instead, our observa-
tions yt are a noisy, subsampled version of qt, summa-
rized by an observation distribution p(yt|qt).

Methods for performing optimal inference and esti-
mation in these hidden Markov models are very well-
developed in the statistics and engineering literature
(Rabiner 1989; Durbin and Koopman 2001; Doucet
et al. 2001). For example, to compute the conditional
distribution p(qt|Y1:T) of the state variable qt given
all the observed data on the time interval (0, T],
we need only apply two straightforward recursions: a
forward recursion that computes the conditional dis-
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tribution of qt given only the observed data up to
time t,

p(qt|Y1:t) ∝ p(yt|qt)

∫
p(qt|qt−1)p(qt−1|Y1:t−1)dqt−1,

for t = 1, 2, . . . , T (1)

and then a backward recursion that computes the de-
sired distribution p(qt|Y1:T),

p(qt|Y1:T) = p(qt|Y1:t)
∫

p(qt+1|Y1:T)p(qt+1|qt)∫
p(qt+1|qt)p(qt|Y1:t)dqt

dqt+1,

for t = T−1, T−2, . . . , 1, 0. (2)

Each of these recursions may be derived easily from
the Markov structure of the state-space model. In
the classical settings, where the state variable q is dis-
crete (Rabiner 1989; Gat et al. 1997; Hawkes 2004;
Jones et al. 2007; Kemere et al. 2008; Herbst et al. 2008;
Escola and Paninski 2009), or the dynamics p(qt|qt−1)

and observations p(yt|qt) are linear and Gaussian, these
recursions may be computed exactly and efficiently:
note that a full forward-backward sweep requires com-
putation time which scales just linearly in the data
length T, and is therefore quite tractable even for
large T. In the linear-Gaussian case, this forward-
backward recursion is known as the Kalman filter-
smoother (Roweis and Ghahramani 1999; Durbin and
Koopman 2001; Penny et al. 2005; Shumway and Stoffer
2006).

Unfortunately, the integrals in Eqs. (1) and (2) are
not analytically tractable in general; in particular, for
neural applications we are interested in cases where the
observations yt are point processes (e.g., spike trains, or
behavioral event times), and in this case the recursions
must be solved approximately. One straightforward
idea is to approximate the conditional distributions
appearing in (1) and (2) as Gaussian; since we can com-
pute Gaussian integrals analytically (as in the Kalman
filter), this simple approximation provides a computa-
tionally tractable, natural extension of the Kalman filter
to non-Gaussian observations. Many versions of this
recursive Gaussian approximation idea (with varying
degrees of accuracy versus computational expediency)
have been introduced in the statistics and neuroscience
literature (Fahrmeir and Kaufmann 1991; Fahrmeir and
Tutz 1994; Bell 1994; Kitagawa and Gersch 1996; West
and Harrison 1997; Julier and Uhlmann 1997; Brown
et al. 1998; Smith and Brown 2003; Ypma and Heskes
2003; Eden et al. 2004; Yu et al. 2006).

These methods have proven extremely useful in a
wide variety of neural applications. Recursive estima-
tion methods are especially critical in online applica-

tions, where estimates must be updated in real time as
new information is observed. For example, state-space
techniques achieve state-of-the-art performance decod-
ing multineuronal spike train data from motor cortex
(Wu et al. 2006; Truccolo et al. 2005; Wu et al. 2009)
and parietal cortex (Yu et al. 2006; Kemere et al. 2008),
and these methods therefore hold great promise for the
design of motor neuroprosthetic devices (Donoghue
2002). In this setting, the hidden variable qt corresponds
to the desired position of the subject’s hand, or a cursor
on a computer screen, at time t; yt is the vector of
observed spikes at time t, binned at some predeter-
mined temporal resolution; the conditional probability
p(yt|qt) is given by an “encoding” model that describes
how the position information qt is represented in the
spike trains yt; and p(qt|Y1:t+s) is the desired fixed-
lag decoding distribution, summarizing our knowledge
about the current position qt given all of the observed
spike train data Y from time 1 up to t + s, where s
is a short allowed time lag (on the order of 100 ms
or so in motor prosthetic applications). In this setting,
the conditional expectation E(qt|Y1:t+s) is typically used
as the optimal (minimum mean-square) estimator for
qt, while the posterior covariance Cov(qt|Y1:t+s) quan-
tifies our uncertainty about the position qt, given the
observed data; both of these quantities are computed
most efficiently using the forward-backward recur-
sions (1–2). These forward-backward methods can also
easily incorporate target or endpoint goal information
in these online decoding tasks (Srinivasan et al. 2006;
Yu et al. 2007; Kulkarni and Paninski 2008; Wu et al.
2009).

State-space models have also been applied success-
fully to track nonstationary neuron tuning properties
(Brown et al. 2001; Frank et al. 2002; Eden et al. 2004;
Czanner et al. 2008; Rahnama et al. 2009). In this case,
the hidden state variable qt represents a parameter vec-
tor which determines the neuron’s stimulus-response
function. Lewi et al. (2009) discusses an application
of these recursive methods to perform optimal online
experimental design — i.e., to choose the stimulus at
time t which will give us as much information as possi-
ble about the observed neuron’s response properties,
given all the observed stimulus-response data from
time 1 to t.

A number of offline applications have appeared as
well: state-space methods have been applied to per-
form optimal decoding of rat position given multiple
hippocampal spike trains (Brown et al. 1998; Zhang
et al. 1998; Eden et al. 2004), and to model behavioral
learning experiments (Smith and Brown 2003; Smith
et al. 2004, 2005; Suzuki and Brown 2005); in the
latter case, qt represents the subject’s certainty about
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the behavioral task, which is not directly observable
and which changes systematically over the course of
the experiment. In addition, we should note that the
forward-backward idea is of fundamental importance
in the setting of sequential Monte Carlo (“particle-
filtering”) methods (Doucet et al. 2001; Brockwell et al.
2004; Kelly and Lee 2004; Godsill et al. 2004; Shoham
et al. 2005; Ergun et al. 2007; Vogelstein et al. 2009;
Huys and Paninski 2009), though we will not focus on
these applications here.

However, the forward-backward approach is not al-
ways directly applicable. For example, in many cases
the dynamics p(qt|qt−1) or observation density p(yt|qt)

may be non-smooth (e.g., the state variable q may be
constrained to be nonnegative, leading to a discontinu-
ity in log p(qt|qt−1) at qt = 0). In these cases the forward
distribution p(qt|Y1:t) may be highly non-Gaussian, and
the basic forward-backward Gaussian approximation
methods described above may break down.1 In this
paper, we will review more general direct optimiza-
tion methods for performing inference in state-space
models. We discuss this approach in Section 2 below.
This direct optimization approach also leads to more
efficient methods for estimating the model parameters
θ (Section 3). Finally, the state-space model turns out
to be a special case of a richer, more general framework
involving banded matrix computations, as we discuss at
more length in Section 4.

2 A direct optimization approach for computing
the maximum a posteriori path in state-space models

2.1 A direct optimization interpretation
of the classical Kalman filter

We begin by taking another look at the classical
Kalman filter-smoother (Durbin and Koopman 2001;
Wu et al. 2006; Shumway and Stoffer 2006). The pri-
mary goal of the smoother is to compute the conditional
expectation E(Q|Y) of the hidden state path Q given
the observations Y. (Throughout this paper, we will use
Q and Y to denote the full collection of the hidden
state variables {qt} and observations {yt}, respectively.)
Due to the linear-Gaussian structure of the Kalman

1It is worth noting that other more sophisticated methods such
as expectation propagation (Minka 2001; Ypma and Heskes
2003; Yu et al. 2006, 2007; Koyama and Paninski 2009) may be
better-equipped to handle these strongly non-Gaussian observa-
tion densities p(yt|qt) (and are, in turn, closely related to the
optimization-based methods that are the focus of this paper);
however, due to space constraints, we will not discuss these
methods at length here.

model, (Q, Y) forms a jointly Gaussian random vector,
and therefore p(Q|Y) is itself Gaussian. Since the mean
and mode of a Gaussian distribution coincide, this im-
plies that E(Q|Y) is equal to the maximum a poste-
riori (MAP) solution, the maximizer of the posterior
p(Q|Y). If we write out the linear-Gaussian Kalman
model more explicitly,

qt = Aqt−1 + εt, εt ∼ N (0, Cq); q1 ∼ N (μ1, C1)

yt = Bqt + ηt, ηt ∼ N (0, Cy)

(where N (0, C) denotes the Gaussian density with
mean 0 and covariance C), we can gain some insight
into the the analytical form of this maximizer:

E(Q|Y) = arg max
Q

p(Q|Y)

= arg max
Q

log p(Q, Y)

= arg max
Q

(
log p(q1) +

T∑
t=2

log p(qt|qt−1)

+
T∑

t=1

log p(yt|qt)

)

= arg max
Q

[
− 1

2

(
(q1−μ1)

TC−1
1 (q1−μ1)

+
T∑

t=2

(qt− Aqt−1)
TC−1

q (qt− Aqt−1)

+
T∑

t=1

(yt−Bqt)
TC−1

y (yt−Bqt)

)]
.

(3)

The right-hand-side here is a simple quadratic func-
tion of Q (as expected, since p(Q|Y) is Gaussian, i.e.,
log p(Q|Y) is quadratic), and therefore E(Q|Y) may
be computed by solving an unconstrained quadratic
program in Q; we thus obtain

Q̂ = arg max
Q

log p(Q|Y) = arg max
Q

[
1

2
QT HQ + ∇T Q

]

= −H−1∇,

where we have abbreviated the Hessian and gradient of
log p(Q|Y):

∇ = ∇Q log p(Q|Y)
∣∣

Q=0

H = ∇∇Q log p(Q|Y)
∣∣

Q=0.

The next key point to note is that the Hessian matrix
H is block-tridiagonal, since log p(Q|Y) is a sum of sim-



110 J Comput Neurosci (2010) 29:107–126

ple one-point potentials (log p(qt) and log p(yt|qt)) and
nearest-neighbor two-point potentials (log p(qt, qt−1)).
More explicitly, we may write

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1 RT
1,2 0 · · · 0

R1,2 D2 RT
2,3 0

...

0 R2,3 D3 R3,4
. . .

...
. . .

. . .
. . . 0

DN−1 RT
N−1,N

0 · · · 0 RN−1,N DN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

where

Di = ∂2

∂q2
i

log p(yi|qi) + ∂2

∂q2
i

log p(qi|qi−1)

+ ∂2

∂q2
i

log p(qi+1|qi), (5)

and

Ri,i+1 = ∂2

∂qi∂qi+1
log p(qi+1|qi) (6)

for 1 < i < N. These quantities may be computed as
simple functions of the Kalman model parameters; for
example, Ri,i+1 = C−1

q A.
This block-tridiagonal form of H implies that the

linear equation Q̂ = H−1∇ may be solved in O(T) time
(e.g., by block-Gaussian elimination (Press et al. 1992);
note that we never need to compute H−1 explicitly).
Thus this matrix formulation of the Kalman smoother is
equivalent both mathematically and in terms of compu-
tational complexity to the forward-backward method.
In fact, the matrix formulation is often easier to im-
plement; for example, if H is sparse and banded, the
standard Matlab backslash command Q̂ = H\∇ calls
the O(T) algorithm automatically—Kalman smoothing
in just one line of code.

We should also note that a second key application
of the Kalman filter is to compute the posterior state
covariance Cov(qt|Y) and also the nearest-neighbor
second moments E(qtqT

t+1|Y); the posterior covariance
is required for computing confidence intervals around
the smoothed estimates E(qt|Y), while the second mo-
ments E(qtqT

t+1|Y) are necessary to compute the suf-
ficient statistics in the expectation-maximization (EM)
algorithm for estimating the Kalman model parameters
(see, e.g., Shumway and Stoffer 2006 for details). These
quantities may easily be computed in O(T) time in
the matrix formulation. For example, since the matrix
H represents the inverse posterior covariance matrix

of our Gaussian vector Q given Y, Cov(qt|Y) is given
by the (t, t)-th block of H−1, and it is well-known that
the diagonal and off-diagonal blocks of the inverse of
a block-tridiagonal matrix can be computed in O(T)

time; again, the full inverse H−1 (which requires O(T2)

time in the block-tridiagonal case) is not required
(Rybicki and Hummer 1991; Rybicki and Press 1995;
Asif and Moura 2005).

2.2 Extending the direct optimization method
to non-Gaussian models

From here it is straightforward to extend this approach
to directly compute Q̂MAP in non-Gaussian models of
interest in neuroscience. In this paper we will focus
on the case that log p(qt+1|qt) is a concave function of
Q; in addition, we will assume that the initial density
log p(q0) is concave and also that the observation den-
sity log p(yt|qt) is concave in qt. Then it is easy to see
that the log-posterior

log p(Q|Y) = log p(q0) +
∑

t

log p(yt|qt)

+
∑

t

log p(qt+1|qt) + const.

is concave in Q, and therefore computing the MAP
path Q̂ is a concave problem. Further, if log p(q0),
log p(yt|qt), and log p(qt+1|qt) are all smooth functions
of Q, then we may apply standard approaches such as
Newton’s algorithm to solve this concave optimization.

To apply Newton’s method here, we simply itera-
tively solve the linear equation2

Q̂(i+1) = Q̂(i) − H−1∇,

where we have again abbreviated the Hessian and gra-
dient of the objective function log p(Q|Y):

∇ = ∇Q log p(Q|Y)
∣∣

Q=Q̂(i)

H = ∇∇Q log p(Q|Y)
∣∣

Q=Q̂(i) .

Clearly, the only difference between the general non-
Gaussian case here and the special Kalman case

2In practice, the simple Newton iteration does not always in-
crease the objective log p(Q|Y); we have found the standard
remedy for this instability (perform a simple backtracking line-
search along the Newton direction Q̂(i) − δ(i) H−1∇ to determine
a suitable stepsize δ(i) ≤ 1) to be quite effective here.



J Comput Neurosci (2010) 29:107–126 111

described above is that the Hessian H and gradient
∇ must be recomputed at each iteration Q̂(i); in the
Kalman case, again, log p(Q|Y) is a quadratic function,
and therefore the Hessian H is constant, and one it-
eration of Newton’s method suffices to compute the
optimizer Q̂.

In practice, this Newton algorithm converges within
a few iterations for all of the applications discussed
here. Thus we may compute the MAP path exactly
using this direct method, in time comparable to that
required to obtain the approximate MAP path com-
puted by the recursive approximate smoothing algo-
rithm discussed in Section 1. This close connection
between the Kalman filter and the Newton-based com-
putation of the MAP path in more general state-space
models is well-known in the statistics and applied math
literature (though apparently less so in the neurosci-
ence literature). See Fahrmeir and Kaufmann (1991),
Fahrmeir and Tutz (1994), Bell (1994), Davis and
Rodriguez-Yam (2005), Jungbacker and Koopman
(2007) for further discussion from a statistical point
of view, and Koyama and Paninski (2009) for ap-
plications to the integrate-and-fire model for spiking
data. In addition, Yu et al. (2007) previously applied
a related direct optimization approach in the con-
text of neural decoding (though note that the conju-
gate gradients approach utilized there requires O(T3)

time if the banded structure of the Hessian is not
exploited).

2.3 Example: inferring common input effects
in multineuronal spike train recordings

Recent developments in multi-electrode recording
technology (Nicolelis et al. 2003; Litke et al. 2004)
and fluorescence microscopy (Cossart et al. 2003; Ohki
et al. 2005; Nikolenko et al. 2008) enable the simul-
taneous measurement of the spiking activity of many
neurons. Analysis of such multineuronal data is one
of the key challenges in computational neuroscience
today (Brown et al. 2004), and a variety of mod-
els for these data have been introduced (Chornoboy
et al. 1988; Utikal 1997; Martignon et al. 2000; Iyengar
2001; Schnitzer and Meister 2003; Paninski et al. 2004;
Truccolo et al. 2005; Nykamp 2005; Schneidman et al.
2006; Shlens et al. 2006; Pillow et al. 2008; Shlens
et al. 2009). Most of these models include stimulus-
dependence terms and “direct coupling” terms repre-
senting the influence that the activity of an observed
cell might have on the other recorded neurons. These
coupling terms are often interpreted in terms of “func-
tional connectivity” between the observed neurons; the

major question now is how accurately this inferred
functional connectivity actually reflects the true under-
lying anatomical connectivity in the circuit.

Fewer models, however, have attempted to include
the effects of the population of neurons which are
not directly observed during the experiment (Nykamp
2005, 2007; Kulkarni and Paninski 2007). Since we can
directly record from only a small fraction of neurons in
any physiological preparation, such unmeasured neu-
rons might have a large collective impact on the dy-
namics and coding properties of the observed neural
population, and may bias the inferred functional con-
nectivity away from the true anatomical connectivity,
complicating the interpretation of these multineuronal
analyses. For example, while Pillow et al. (2008) found
that neighboring parasol retinal ganglion cells (RGCs)
in the macaque are functionally coupled — indeed,
incorporating this functional connectivity in an opti-
mal Bayesian decoder significantly amplifies the in-
formation we can extract about the visual stimulus
from the observed spiking activity of large ensembles
of RGCs — Khuc-Trong and Rieke (2008) recently
demonstrated, via simultaneous pairwise intracellular
recordings, that RGCs receive a significant amount of
strongly correlated common input, with weak direct
anatomical coupling between RGCs. Thus the strong
functional connectivity observed in this circuit is in fact
largely driven by common input, not direct anatomical
connectivity.

Therefore it is natural to ask if it is possible to
correctly infer the degree of common input versus
direct coupling in partially-observed neuronal circuits,
given only multineuronal spike train data (i.e., we do
not want to rely on multiple simultaneous intracellular
recordings, which are orders of magnitude more dif-
ficult to obtain than extracellular recordings). To this
end, Kulkarni and Paninski (2007) introduced a state-
space model in which the firing rates depend not only
on the stimulus history and the spiking history of the
observed neurons but also on common input effects
(Fig. 1). In this model, the conditional firing intensity,
λi(t), of the i-th observed neuron is:

λi(t) = exp

⎛
⎝ki · x(t) + hi · yi(t) +

( ∑
i �= j

lij · y j(t)
)

+μi + qi(t)

⎞
⎠ , (7)

where x is the spatiotemporal visual stimulus, yi is cell
i’s own spike-train history, μi is the cell’s baseline log-
firing rate, y j are the spike-train histories of other cells
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Fig. 1 Schematic illustration of the common-input model de-
scribed by Eq. (7); adapted from Kulkarni and Paninski (2007)

at time t, ki is the cell’s spatiotemporal stimulus filter,
hi is the post-spike temporal filter accounting for past
spike dependencies within cell i, and lij are direct cou-
pling temporal filters, which capture the dependence
of cell i’s activity on the recent spiking of other cells
j. The term qi(t), the hidden common input at time t,
is modeled as a Gauss-Markov autoregressive process,
with some correlation between different cells i which
we must infer from the data. In addition, we enforce a
nonzero delay in the direct coupling terms, so that the
effects of a spike in one neuron on other neurons are
temporally strictly causal.

In statistical language, this common-input model is
a multivariate version of a Cox process, also known
as a doubly-stochastic point process (Cox 1955; Snyder
and Miller 1991; Moeller et al. 1998); the state-space
models applied in Smith and Brown (2003), Truccolo
et al. (2005), Czanner et al. (2008) are mathematically
very similar. See also Yu et al. (2006) for discussion of
a related model in the context of motor planning and
intention.

As an example of the direct optimization methods
developed in the preceding subsection, we reanalyzed
the data from Pillow et al. (2008) with this common
input model (Vidne et al. 2009). We estimated the
model parameters θ = (ki, hi, lij, μi) from the spiking
data by maximum marginal likelihood, as described
in Koyama and Paninski (2009) (see also Section 3
below, for a brief summary); the correlation time of Q
was set to ∼ 5 ms, to be consistent with the results of
Khuc-Trong and Rieke (2008). We found that this
common-input model explained the observed cross-
correlations quite well (data not shown), and the in-
ferred direct-coupling weights were set to be relatively
small (Fig. 2); in fact, the quality of the fits in our

preliminary experiments is indistinguishable from those
described in Pillow et al. (2008), where a model with
strong direct-coupling terms and no common-input ef-
fects was used.

Given the estimated model parameters θ , we used
the direct optimization method to estimate the sub-
threshold common input effects q(t), on a single-trial
basis (Fig. 2). The observation likelihood p(yt|qt) here
was given by the standard point-process likelihood
(Snyder and Miller 1991):

log p(Y|Q) =
∑

it

yit log λi(t) − λi(t)dt, (8)

where yit denotes the number of spikes observed in
time bin t from neuron i; dt denotes the temporal bin-
width. We see in Fig. 2 that the inferred common input
effect is strong relative to the direct coupling effects, in
agreement with the intracellular recordings described
in Khuc-Trong and Rieke (2008). We are currently
working to quantify these common input effects qi(t)
inferred from the full observed RGC population, rather
than just the pairwise analysis shown here, in order
to investigate the relevance of this strong common
input effect on the coding and correlation properties
of the full network of parasol cells. See also Wu et al.
(2009) for applications of similar common-input state-
space models to improve decoding of population neural
activity in motor cortex.

2.4 Constrained optimization problems
may be handled easily via the log-barrier
method

So far we have assumed that the MAP path may be
computed via an unconstrained smooth optimization.
In many examples of interest we have to deal with con-
strained optimization problems instead. In particular,
nonnegativity constraints arise frequently on physical
grounds; as emphasized in the introduction, forward-
backward methods based on Gaussian approximations
for the forward distribution p(qt|Y0:t) typically do not
accurately incorporate these constraints. To handle
these constrained problems while exploiting the fast
tridiagonal techniques discussed above, we can employ
standard interior-point (aka “barrier”) methods (Boyd
and Vandenberghe 2004; Koyama and Paninski 2009).
The idea is to replace the constrained concave problem

Q̂MAP = arg max
Q:qt≥0

log p(Q|Y)
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Fig. 2 Single-trial inference of the relative contribution of com-
mon, stimulus, direct coupling, and self inputs in a pair of retinal
ganglion ON cells (Vidne et al. 2009); data from (Pillow et al.
2008). Top panel: Inferred linear common input, Q̂: red trace
shows a sample from the posterior distribution p(Q|Y), black
trace shows the conditional expectation E(Q|Y), and shaded
region indicates ±1 posterior standard deviation about E(Q|Y),
computed from the diagonal of the inverse log-posterior Hessian
H. 2nd panel: Direct coupling input from the other cell, l j · y j.

(The first two panels are plotted on the same scale to facilitate
comparison of the magnitudes of these effects.) Blue trace indi-
cates cell 1; green indicates cell 2. 3rd panel: The stimulus input,
k · x. 4th panel: Refractory input, hi · yi. Note that this term is
strong but quite short-lived following each spike. All units are
in log-firing rate, as in Eq. (7). Bottom: Observed paired spike
trains Y on this single trial. Note the large magnitude of the
estimated common input term q̂(t), relative to the direct coupling
contribution l j · y j

with a sequence of unconstrained concave problems

Q̂ε = arg max
Q

log p(Q|Y) + ε
∑

t

log qt;

clearly, Q̂ε satisfies the nonnegativity constraint, since
log u → −∞ as u → 0. (We have specialized to the
nonnegative case for concreteness, but the idea may
be generalized easily to any convex constraint set; see
Boyd and Vandenberghe 2004 for details.) Further-
more, it is easy to show that if Q̂MAP is unique, then
Q̂ε converges to Q̂MAP as ε → 0.

Now the key point is that the Hessian of the
objective function log p(Q|Y) + ε

∑
t log qt retains the

block-tridiagonal properties of the original objective
log p(Q|Y), since the barrier term contributes a simple
diagonal term to H. Therefore we may use the O(T)

Newton iteration to obtain Q̂ε , for any ε, and then
sequentially decrease ε (in an outer loop) to obtain
Q̂. Note that the approximation arg maxQ p(Q|Y) ≈
E(Q|Y) will typically not hold in this constrained case,
since the mean of a truncated Gaussian distribution will
typically not coincide with the mode (unless the mode
is sufficiently far from the nonnegativity constraint).

We give a few applications of this barrier approach
below. See also Koyama and Paninski (2009) for a
detailed discussion of an application to the integrate-
and-fire model, and Vogelstein et al. (2008) for appli-
cations to the problem of efficiently deconvolving slow,
noisy calcium fluorescence traces to obtain nonnegative
estimates of spiking times. In addition, see Cunningham
et al. (2008) for an application of the log-barrier method
to infer firing rates given point process observations in
a closely-related Gaussian process model (Rasmussen
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and Williams 2006); these authors considered a slightly
more general class of covariance functions on the latent
stochastic process qt, but the computation time of the
resulting method scales superlinearly3 with T.

2.4.1 Example: point process smoothing
under Lipschitz or monotonicity
constraints on the intensity function

A standard problem in neural data analysis is to
smooth point process observations; that is, to estimate
the underlying firing rate λ(t) given single or multi-
ple observations of a spike train (Kass et al. 2003).
One simple approach to this problem is to model
the firing rate as λ(t) = f (qt), where f (.) is a convex,
log-concave, monotonically increasing nonlinearity
(Paninski 2004) and qt is an unobserved function of
time we would like to estimate from data. Of course,
if qt is an arbitrary function, we need to contend with
overfitting effects; the “maximum likelihood” Q̂ here
would simply set f (qt) to zero when no spikes are
observed (by making −qt very large) and f (qt) to be
very large when spikes are observed (by making qt very
large).

A simple way to counteract this overfitting effect is
to include a penalizing prior; for example, if we model
qt as a linear-Gaussian autoregressive process

qt+dt = qt + εt, εt ∼ N (0, σ 2dt),

then computing Q̂MAP leads to a tridiagonal optimiza-
tion, as discussed above. (The resulting model, again,
is mathematically equivalent to those applied in Smith
and Brown 2003, Truccolo et al. 2005, Kulkarni and
Paninski 2007, Czanner et al. 2008, Vidne et al. 2009.)
Here 1/σ 2 acts as a regularization parameter: if σ 2 is
small, the inferred Q̂MAP will be very smooth (since
large fluctuations are penalized by the Gaussian autore-
gressive prior), whereas if σ 2 is large, then the prior
term will be weak and Q̂MAP will fit the observed data
more closely.

A different method for regularizing Q was intro-
duced by Coleman and Sarma (2007). The idea is to

3More precisely, Cunningham et al. (2008) introduce a clever
iterative conjugate-gradient (CG) method to compute the MAP
path in their model; this method requires O(T log T) time per
CG step, with the number of CG steps increasing as a function of
the number of observed spikes. (Note, in comparison, that the
computation times of the state-space methods reviewed in the
current work are insensitive to the number of observed spikes.)

impose hard Lipschitz constraints on Q, instead of the
soft quadratic penalties imposed in the Gaussian state-
space setting: we assume

|qt − qs| < K|t − s|

for all (s, t), for some finite constant K. (If qt is a
differentiable function of t, this is equivalent to the
assumption that the maximum absolute value of the
derivative of Q is bounded by K.) The space of all such
Lipschitz Q is convex, and so optimizing the concave
loglikelihood function under this convex constraint re-
mains tractable. Coleman and Sarma (2007) presented
a powerful method for solving this optimization prob-
lem (their solution involved a dual formulation of the
problem and an application of specialized fast min-
cut optimization methods). In this one-dimensional
temporal smoothing case, we may solve this problem
in a somewhat simpler way, without any loss of effi-
ciency, using the tridiagonal log-barrier methods de-
scribed above. We just need to rewrite the constrained
problem

maxQ log p(Q|Y) s.t. |qt − qs| < K|t − s| ∀s, t

as the unconstrained problem

maxQ log p(Q|Y) +
∑

t

b
(

qt − qt+dt

dt

)
,

with dt some arbitrarily small constant and the hard
barrier function b(.) defined as

b(u) =
{

0 |u| < K

−∞ otherwise.

The resulting concave objective function is non-
smooth, but may be optimized stably, again, via the
log-barrier method, with efficient tridiagonal Newton
updates. (In this case, the Hessian of the first term
log p(Q|Y) with respect to Q is diagonal and the
Hessian of the penalty term involving the barrier func-
tion is tridiagonal, since b(.) contributes a two-point
potential here.) We recover the standard state-space
approach if we replace the hard-threshold penalty func-
tion b(.) with a quadratic function; conversely, we may
obtain sharper estimates of sudden changes in qt if we
use a concave penalty b(.) which grows less steeply than
a quadratic function (so as to not penalize large changes
in qt as strongly), as discussed by Gao et al. (2002).
Finally, it is interesting to note that we may also easily
enforce monotonicity constraints on qt, by choosing the
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penalty function b(u) to apply a barrier at u = 0; this
is a form of isotonic regression (Silvapulle and Sen
2004), and is useful in cases where we believe that
a cell’s firing rate should be monotonically increasing
or decreasing throughout the course of a behavioral
trial, or as a function of the magnitude of an applied
stimulus.

2.4.2 Example: inferring presynaptic inputs
given postsynaptic voltage recordings

To further illustrate the flexibility of this method,
let’s look at a multidimensional example. Consider the
problem of identifying the synaptic inputs a neuron
is receiving: given voltage recordings at a postsynap-
tic site, is it possible to recover the time course of
the presynaptic conductance inputs? This question has
received a great deal of experimental and analytical
attention (Borg-Graham et al. 1996; Peña and Konishi
2000; Wehr and Zador 2003; Priebe and Ferster 2005;
Murphy and Rieke 2006; Huys et al. 2006; Wang et al.
2007; Xie et al. 2007; Paninski 2009), due to the impor-
tance of understanding the dynamic balance between
excitation and inhibition underlying sensory informa-
tion processing.

We may begin by writing down a simple state-space
model for the evolution of the postsynaptic voltage and
conductance:

Vt+dt = Vt + dt
[
gL(VL − Vt) + gE

t (VE − Vt)

+gI
t (V I − Vt)

] + εt

gE
t+dt = gE

t − gE
t

τE
dt + NE

t

gI
t+dt = gI

t − gI
t

τI
dt + NI

t . (9)

Here gE
t denotes the excitatory presynaptic conduc-

tance at time t, and gI
t the inhibitory conductance;

VL, VE, and V I denote the leak, excitatory, and
inhibitory reversal potentials, respectively. Finally, εt

denotes an unobserved i.i.d. current noise with a log-
concave density, and NE

t and NI
t denote the presynaptic

excitatory and inhibitory inputs (which must be non-
negative on physical grounds); we assume these inputs
also have a log-concave density.

Assume Vt is observed noiselessly for simplicity.
Then let our observed variable yt = Vt+dt − Vt and our
state variable qt = (gE

t gI
t )

T . Now, since gI
t and gE

t
are linear functions of NI

t and NE
t (for example, gI

t

is given by the convolution gI
t = NI

t ∗ exp(−t/τI)), the
log-posterior may be written as

log p(Q|Y) = log p(Y|Q) + log p(NI
t , NE

t ) + const.

= log p(Y|Q) +
T∑

t=1

log p(NE
t )

+
T∑

t=1

log p(NI
t ) + const., NE

t , NI
t ≥ 0;

in the case of white Gaussian current noise εt with
variance σ 2dt, for example,4 we have

log p(Y|Q)=− 1

2σ 2dt

T∑
t=2

[
Vt+dt−

(
Vt+dt

(
gL(VL−Vt)

+gI
t (V I −Vt)+gE

t (VE−Vt)
))]2+const.;

this is a quadratic function of Q.
Now applying the O(T) log-barrier method is

straightforward; the Hessian of the log-posterior
log p(Q|Y) in this case is block-tridiagonal, with
blocks of size two (since our state variable qt is
two-dimensional). The observation term log p(Y|Q)

contributes a block-diagonal term to the Hessian; in
particular, each observation yt contributes a rank-1
matrix of size 2 × 2 to the t-th diagonal block of H. (The
low-rank nature of this observation matrix reflects the
fact that we are attempting to extract two variables—
the excitatory and inhibitory conductances at each time
step—given just a single voltage observation per time
step.)

Some simulated results are shown in Fig. 3. We
generated Poisson spike trains from both inhibitory and
excitatory presynaptic neurons, then formed the postsy-
naptic current signal It by contaminating the summed
synaptic and leak currents with white Gaussian noise as
in Eq. (9), and then used the O(T) log-barrier method
to simultaneously infer the presynaptic conductances

4The approach here can be easily generalized to the case that
the input noise has a nonzero correlation timescale. For exam-
ple, if the noise can be modeled as an autoregressive process
of order p instead of the white noise process described here,
then we simply include the unobserved p-dimensional Markov
noise process in our state variable (i.e., our Markov state vari-
able qt will now have dimension p + 2 instead of 2), and then
apply the O(T) log-barrier method to this augmented state
space.
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Fig. 3 Inferring presynaptic inputs given simulated postsynaptic
voltage recordings. Top: true simulated conductance input (green
indicates inhibitory conductance; blue excitatory). Middle: ob-
served noisy current trace from which we will attempt to infer
the input conductance. Bottom: Conductance inferred by nonneg-
ative MAP technique. Note that inferred conductance is shrunk
in magnitude compared to true conductance, due to the effects
of the prior p(NE

t ) and p(NI
t ), both of which peak at zero here;

shrinkage is more evident in the inferred inhibitory conductance,
due to the smaller driving force (the holding potential in this
experiment was −62 mV, which is quite close to the inhibitory
reversal potential; as a result, the likelihood term is much weaker
for the inhibitory conductance than for the excitatory term).
Inference here required about one second on a laptop computer
per second of data (i.e., real time), at a sampling rate of 1 KHz

from the observed current It. The current was recorded
at 1 KHz (1 ms bins), and we reconstructed the presy-
naptic activity at the same time resolution. We see that
the estimated Q̂ here does a good job extracting both
excitatory and inhibitory synaptic activity given a single
trace of observed somatic current; there is no need
to average over multiple trials. It is worth emphasiz-
ing that we are inferring two presynaptic signals here
given just one observed postsynaptic current signal,
with limited “overfitting” artifacts; this is made pos-
sible by the sparse, nonnegatively constrained nature
of the inferred presynaptic signals. For simplicity, we
assumed that the membrane leak, noise variance, and
synaptic time constants τE and τI were known here; we
used exponential (sparsening) priors p(NE

t ) and p(NI
t ),

but the results are relatively robust to the details of
these priors (data not shown). See Huys et al. (2006),
Huys and Paninski (2009), Paninski (2009) for further
details and extensions, including methods for inferring
the membrane parameters directly from the observed
data.

3 Parameter estimation

In the previous sections we have discussed the inference
of the hidden state path Q in the case that the system
parameters are known. However, in most applications,
we need to estimate the system parameters as well.
As discussed in Kass et al. (2005), standard modern
methods for parameter estimation are based on the
likelihood p(Y|θ) of the observed data Y given the
parameters θ . In the state-space setting, we need to
compute the marginal likelihood by integrating out the
hidden state path Q:5

p(Y|θ)=
∫

p(Q, Y|θ)dQ=
∫

p(Y|Q, θ)p(Q|θ)dQ. (10)

5In some cases, Q may be observed directly on some subset of
training data. If this is the case (i.e., direct observations of qt are
available together with the observed data Y), then the estimation
problem simplifies drastically, since we can often fit the models
p(yt|qt, θ) and p(qt|qt−1, θ) directly without making use of the
more involved latent-variable methods discussed in this section.
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This marginal likelihood is a unimodal function of
the parameters θ in many important cases (Paninski
2005), making maximum likelihood estimation feasi-
ble in principle. However, this high-dimensional inte-
gral can not be computed exactly in general, and so
many approximate techniques have been developed,
including Monte Carlo methods (Robert and Casella
2005; Davis and Rodriguez-Yam 2005; Jungbacker and
Koopman 2007; Ahmadian et al. 2009a) and expecta-
tion propagation (Minka 2001; Ypma and Heskes 2003;
Yu et al. 2006; Koyama and Paninski 2009).

In the neural applications reviewed in Section 1, the
most common method for maximizing the loglikelihood
is the approximate Expectation-Maximization (EM)
algorithm introduced in Smith and Brown (2003), in
which the required expectations are approximated us-
ing the recursive Gaussian forward-backward method.
This EM algorithm can be readily modified to optimize
an approximate log-posterior p(θ |Y), if a useful prior
distribution p(θ) is available (Kulkarni and Paninski
2007). While the EM algorithm does not require us
to compute the likelihood p(Y|θ) explicitly, we may
read this likelihood off of the final forward density
approximation p(qT , y1:T) by simply marginalizing out
the final state variable qT . All of these computations
are recursive, and may therefore be computed in O(T)

time.
The direct global optimization approach discussed

in the preceding section suggests a slightly different
strategy. Instead of making T local Gaussian approx-
imations recursively—once for each forward density
p(qt, y1:t)—we make a single global Gaussian approx-
imation for the full joint posterior:

log p(Q|Y, θ) ≈−T
2

log(2π)− 1

2
log | − Hθ |

+1

2
(Q− Q̂θ )

T Hθ (Q− Q̂θ ), (11)

where the Hessian Hθ is defined as

Hθ = ∇∇Q
(

log p(Q|θ) + log p(Y|Q, θ)
)∣∣∣∣

Q=Q̂θ

;

note the implicit dependence on θ through

Q̂θ ≡ arg max
Q

[
log p(Q|θ) + log p(Y|Q, θ)

]
.

Equation (11) corresponds to nothing more than a
second-order Taylor expansion of log p(Q|Y, θ) about
the optimizer Q̂θ .

Plugging this Gaussian approximation into Eq. (10),
we obtain the standard “Laplace” approximation (Kass

and Raftery 1995; Davis and Rodriguez-Yam 2005; Yu
et al. 2007) for the marginal likelihood,

log p(Y|θ) ≈ log p(Y|Q̂θ , θ) + log p(Q̂θ |θ)

−1

2
log | − Hθ | + const. (12)

Clearly the first two terms here can be computed
in O(T), since we have already demonstrated that
we can obtain Q̂θ in O(T) time, and evaluating
log p(Y|Q, θ) + log p(Q|θ) at Q = Q̂θ is relatively
easy. We may also compute log | − Hθ | stably and in
O(T) time, via the Cholesky decomposition for banded
matrices (Davis and Rodriguez-Yam 2005; Koyama
and Paninski 2009). In fact, we can go further: Koyama
and Paninski (2009) show how to compute the gradient
of Eq. (12) with respect to θ in O(T) time, which makes
direct optimization of this approximate likelihood fea-
sible via conjugate gradient methods.6

It is natural to compare this direct optimization
approach to the EM method; again, see Koyama and
Paninski (2009) for details on the connections be-
tween these two approaches. It is well-known that
EM can converge slowly, especially in cases in which
the so-called “ratio of missing information” is large;
see Dempster et al. (1977); Meng and Rubin (1991);
Salakhutdinov et al. (2003); Olsson et al. (2007) for
details. In practice, we have found that direct gradient
ascent of expression (12) is significantly more efficient
than the EM approach in the models discussed in this
paper; for example, we used the direct approach to
perform parameter estimation in the retinal example
discussed above in Section 2.3. One important advan-
tage of the direct ascent approach is that in some special
cases, the optimization of (12) can be performed in
a single step (as opposed to multiple EM steps). We
illustrate this idea with a simple example below.

3.1 Example: detecting the location of a synapse
given noisy, intermittent voltage observations

Imagine we make noisy observations from a dendritic
tree (for example, via voltage-sensitive imaging meth-
ods (Djurisic et al. 2008)) which is receiving synaptic in-
puts from another neuron. We do not know the strength

6It is worth mentioning the work of Cunningham et al. (2008)
again here; these authors introduced conjugate gradient methods
for optimizing the marginal likelihood in their model. However,
their methods require computation time scaling superlinearly
with the number of observed spikes (and therefore superlinearly
with T, assuming that the number of observed spikes is roughly
proportional to T).
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or location of these inputs, but we do have complete
access to the spike times of the presynaptic neuron (for
example, we may be stimulating the presynaptic neuron
electrically or via photo-uncaging of glutamate near the
presynaptic cell (Araya et al. 2006; Nikolenko et al.
2008)). How can we determine if there is a synapse
between the two cells, and if so, how strong the synapse
is and where it is located on the dendritic tree?

To model this experiment, we assume that the
neuron is in a stable, subthreshold regime, i.e., the
spatiotemporal voltage dynamics are adequately ap-
proximated by the linear cable equation

�Vt+dt = �Vt + dt
(

A �Vt + θUt
) + εt, εt ∼ N (0, CVdt).

(13)

Here the dynamics matrix A includes both leak terms
and intercompartmental coupling effects: for example,
in the special case of a linear dendrite segment with N
compartments, with constant leak conductance g and
intercompartmental conductance a, A is given by the
tridiagonal matrix

A = −gI + aD2,

with D2 denoting the second-difference operator. For
simplicity, we assume that Ut is a known signal:

Ut = h(t) ∗
∑

i

δ(t − ti);

h(t) is a known synaptic post-synaptic (PSC) current
shape (e.g., an α-function (Koch 1999)), ∗ denotes con-
volution, and

∑
i δ(t − ti) denotes the presynaptic spike

train. The weight vector θ is the unknown parameter
we want to infer: θi is the synaptic weight at the i-th
dendritic compartment. Thus, to summarize, we have
assumed that each synapse fires deterministically, with
a known PSC shape (only the magnitude is unknown)
at a known latency, with no synaptic depression or
facilitation. (All of these assumptions may be relaxed
significantly (Paninski and Ferreira 2008).)

Now we would like to estimate the synaptic weight
vector θ , given U and noisy observations of the spa-
tiotemporal voltage V. V is not observed directly here,
and therefore plays the role of our hidden variable Q.
For concreteness, we further assume that the observa-
tions Y are approximately linear and Gaussian:

yt = B �Vt + ηt, ηt ∼ N (0, Cy).

In this case the voltage V and observed data Y are
jointly Gaussian given U and the parameter θ , and

furthermore V depends on θ linearly, so estimating
θ can be seen as a rather standard linear-Gaussian
estimation problem. There are many ways to solve
this problem: we could, for example, use EM to alter-
natively estimate V given θ and Y, then estimate θ

given our estimated V, alternating these maximizations
until convergence. However, a more efficient approach
(and one which generalizes nicely to the nonlinear case
(Koyama and Paninski 2009)) is to optimize Eq. (12)
directly. Note that this Laplace approximation is in
fact exact in this case, since the posterior p(Y|θ)

is Gaussian. Furthermore, the log-determinant term
log | − Hθ | is constant in θ (since the Hessian is constant
in this Gaussian model), and so we can drop this term
from the optimization. Thus we are left with

arg max
θ

log p(Y|θ)

= arg max
θ

{
log p(Y|V̂θ , θ) + log p(V̂θ |θ)

}

= arg max
θ

{
log p(Y|V̂θ ) + log p(V̂θ |θ)

}

= arg max
θ

max
V

{
log p(Y|V) + log p(V|θ)

}; (14)

i.e., optimization of the marginal likelihood p(Y|θ)

reduces here to joint optimization of the function
log p(Y|V) + log p(V|θ) in (V, θ). Since this function is
jointly quadratic and negative semidefinite in (V, θ), we
need only apply a single step of Newton’s method. Now
if we examine the Hessian H of this objective function,
we see that it is of block form:

H = ∇∇(V,θ)

[
log p(Y|V) + log p(V|θ)

]

=
(

HVV HT
Vθ

HθV Hθθ

)
,

where the HVV block is itself block-tridiagonal, with T
blocks of size n (where n is the number of compart-
ments in our observed dendrite) and the Hθθ block is
of size n × n. If we apply the Schur complement to this
block H and then exploit the fast methods for solving
linear equations involving HVV , it is easy to see that
solving for θ̂ can be done in a single O(T) step; see
Koyama and Paninski (2009) for details.

Figure 4 shows a simulated example of this inferred
θ in which �U(t) is chosen to be two-dimensional (cor-
responding to inputs from two presynaptic cells, one
excitatory and one inhibitory); given only half a sec-
ond of intermittently-sampled, noisy data, the posterior
p(θ |Y) is quite accurately concentrated about the true
underlying value of θ .
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Fig. 4 Estimating the location and strength of synapses on a
simulated dendritic branch. Left: simulation schematic. By ob-
serving a noisy, subsampled spatiotemporal voltage signal on the
dendritic tree, we can infer the strength of a given presynaptic
cell’s inputs at each location on the postsynaptic cell’s dendritic
tree. Right: illustration of the method applied to simulated data
(Paninski and Ferreira 2008). We simulated two presynapic in-
puts: one excitatory (red) and one inhibitory (blue). The (known)
presynaptic spike trains are illustrated in the top panel, convolved
with exponential filters of τ = 3 ms (excitatory) and τ = 2 ms
(inhibitory) to form Ut. Second panel: True (unobserved) voltage
(mV), generated from the cable Eq. (13). Note that each presy-
naptic spike leads to a post-synaptic potential of rather small
magnitude (at most ≈ 1 mV), relative to the voltage noise level.

In this case the excitatory presynaptic neuron synapses twice on
the neuron, on compartment 12 and and a smaller synapse on
compartment 8, while the inhibitory neuron synapses on com-
partment 3. Third panel: Observed (raster-scanned) voltage. The
true voltage was not observed directly; instead, we only observed
a noisy, spatially-rastered (linescanned), subsampled version of
this signal. Note the very low effective SNR here. Bottom panel:
True and inferred synaptic weights. The true weight of each
synapse is indicated by an asterisk (*) and the errorbar shows
the posterior mean E(θi|Y) and standard deviation

√
Var(θi|Y) of

the synaptic weight given the observed data. Note that inference
is quite accurate, despite the noisiness and the brief duration (500
ms) of the data

The form of the joint optimization in Eq. (14) sheds a
good deal of light on the relatively slow behavior of the
EM algorithm here. The E step here involves inferring
V given Y and θ ; in this Gaussian model, the mean and
mode of the posterior p(V|θ, Y) are equal, and so we
see that

V̂ = arg max
V

log p(V|θ, Y)

= arg max
V

{
log p(Y|V) + log p(V|θ)

}
.

Similarly, in the M-step, we compute
arg maxθ log p(V̂|θ). So we see that EM here is simply
coordinate ascent on the objective function in Eq. (14):
the E step ascends in the V direction, and the M step
ascends in the θ direction. (In fact, it is well-known that
EM may be written as a coordinate ascent algorithm
much more generally; see Neal and Hinton (1999)
for details.) Coordinate ascent requires more steps
than Newton’s method in general, due to the “zigzag”

nature of the solution path in the coordinate ascent
algorithm (Press et al. 1992), and this is exactly our
experience in practice.7

7An additional technical advantage of the direct optimization
approach is worth noting here: to compute the E step via the
Kalman filter, we need to specify some initial condition for
p(V(0)). When we have no good information about the initial
V(0), we can use “diffuse” initial conditions, and set the initial
covariance Cov(V(0)) to be large (even infinite) in some or
all directions in the n-dimensional V(0)-space. A crude way
of handling this is to simply set the initial covariance in these
directions to be very large (instead of infinite), though this can
lead to numerical instability. A more rigorous approach is to take
limits of the update equations as the uncertainty becomes large,
and keep separate track of the infinite and non-infinite terms
appropriately; see Durbin and Koopman (2001) for details. At
any rate, these technical difficulties are avoided in the direct op-
timization approach, which can handle infinite prior covariance
easily (this just corresponds to a zero term in the Hessian of the
log-posterior).
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As emphasized above, the linear-Gaussian case we
have treated here is special, because the Hessian H is
constant, and therefore the log |H| term in Eq. (12) can
be neglected. However, in some cases we can apply a
similar method even when the observations are non-
Gaussian; see Koyama and Paninski (2009), Vidne et al.
(2009) for examples and further details.

4 Generalizing the state-space method: exploiting
banded and sparse Hessian matrices

Above we have discussed a variety of applications of
the direct O(T) optimization idea. It is natural to ask
whether we can generalize this method usefully beyond
the state space setting. Let’s look more closely at the
assumptions we have been exploiting so far. We have
restricted our attention to problems where the log-
posterior p(Q|Y) is log-concave, with a Hessian H
such that the solution of the linear equation ∇ = HQ
can be computed much more quickly than the stan-
dard O(dim(Q)3) required by a generic linear equa-
tion. In this section we discuss a couple of examples
that do not fit gracefully in the state-space framework,
but where nonetheless we can solve ∇ = HQ quickly,
and therefore very efficient inference methods are
available.

4.1 Example: banded matrices and fast optimal
stimulus decoding

The neural decoding problem is a fundamental ques-
tion in computational neuroscience (Rieke et al. 1997):
given the observed spike trains of a population of
cells whose responses are related to the state of some
behaviorally-relevant signal x(t), how can we estimate,
or “decode,” x(t)? Solving this problem experimentally
is of basic importance both for our understanding of
neural coding (Pillow et al. 2008) and for the design
of neural prosthetic devices (Donoghue 2002). Accord-
ingly, a rather large literature now exists on devel-
oping and applying decoding methods to spike train
data, both in single cell- and population recordings; see
Pillow et al. (2009), Ahmadian et al. (2009a) for a recent
review.

We focus our attention here on a specific example.
Let’s assume that the stimulus x(t) is one-dimensional,
with a jointly log-concave prior p(X), and that the
Hessian of this log-prior is banded at every point X.
Let’s also assume that the observed neural population
whose responses we are attempting to decode may be

well-modeled by the generalized linear model frame-
work applied in Pillow et al. (2008):

λi(t) = exp

⎛
⎝ki ∗ x(t) + hi · yi +

(∑
i �= j

lij · y j

)
+ μi

⎞
⎠ .

Here ∗ denotes the temporal convolution of the filter
ki against the stimulus x(t). This model is equivalent to
Eq. (7), but we have dropped the common-input term
q(t) for simplicity here.

Now it is easy to see that the loglikelihood
log p(Y|X) is concave, with a banded Hessian, with
bandwidth equal to the length of the longest stimu-
lus filter ki (Pillow et al. 2009). Therefore, Newton’s
method applied to the log-posterior log p(X|Y) re-
quires just O(T) time, and optimal Bayesian decoding
here runs in time comparable to standard linear decod-
ing (Warland et al. 1997). Thus we see that this stimulus
decoding problem is a rather straightforward extension
of the methods we have discussed above: instead of
dealing with block-tridiagonal Hessians, we are now
simply exploiting the slightly more general case of a
banded Hessian. See Fig. 5.

The ability to quickly decode the input stimulus x(t)
leads to some interesting applications. For example, we
can perform perturbation analyses with the decoder: by
jittering the observed spike times (or adding or remov-
ing spikes) and quantifying how sensitive the decoded
stimulus is to these perturbations, we may gain insight
into the importance of precise spike timing and correla-
tions in this multineuronal spike train data (Ahmadian
et al. 2009b). Such analyses would be formidably slow
with a less computationally-efficient decoder.

See Ahmadian et al. (2009a) for further applica-
tions to fully-Bayesian Markov chain Monte Carlo
(MCMC) decoding methods; bandedness can be ex-
ploited quite fruitfully for the design of fast precondi-
tioned Langevin-type algorithms (Robert and Casella
2005). It is also worth noting that very similar banded
matrix computations arise naturally in spline models
(Wahba 1990; Green and Silverman 1994), which are
at the heart of the powerful BARS method for neural
smoothing (DiMatteo et al. 2001; Kass et al. 2003); see
Ahmadian et al. (2009a) for a discussion of how to
exploit bandedness in the BARS context.

4.2 Smoothness regularization and fast estimation of
spatial tuning fields

The applications discussed above all involve state-space
models which evolve through time. However, these
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ideas are also quite useful in the context of spatial
models Moeller and Waagepetersen (2004). Imagine
we would like to estimate some two-dimensional rate
function from point process observations. Rahnama
et al. (2009) discuss a number of distinct cases of this
problem, including the estimation of place fields in
hippocampus (Brown et al. 1998) or of tuning func-
tions in motor cortex (Paninski et al. 2004); for con-
creteness, we focus here on the setting considered in
Czanner et al. (2008). These authors analyzed repeated
observations of a spike train whose mean rate function
changed gradually from trial to trial; the goal of the
analysis here is to infer the firing rate λ(t, i), where t
denotes the time within a trial and i denotes the trial
number.

One convenient approach to this problem is to model
λ(t, i) as

λ(t, i) = f [q(t, i)],

and then to discretize (t, i) into two-dimensional bins in
which q(t, i) may be estimated by maximum likelihood
in each bin. However, as emphasized in Kass et al.
(2003); Smith and Brown (2003); Kass et al. (2005);
Czanner et al. (2008), this crude histogram approach
can lead to highly variable, unreliable estimates of the
firing rate λ(t, i) if the histogram bins are taken to be
too small; conversely, if the bins are too large, then

we may overcoarsen our estimates and lose valuable
information about rapid changes in the firing rate as a
function of time t or trial number i.

A better approach is to use a fine binwidth to es-
timate λ, but to regularize our estimate so that our
inferred λ̂ is not overly noisy. One simple approach is
to compute a penalized maximum likelihood estimate

Q̂ = arg max
Q

[
log p(Y|Q)−c1

∑
it

[q(t, i)−q(t−dt, i)]2

−c2

∑
it

[q(t, i)−q(t, i−1)]2

]
; (15)

the observation likelihood p(Y|Q) is given by the stan-
dard point-process log likelihood

log p(Y|Q) =
∑

it

yit log f [q(t, i)] − f [q(t, i)]dt,

where dt denotes the temporal binwidth; yit here de-
notes the number of spikes observed in time bin t
during trial i (c.f. Eq. (8)). The constants c1 and c2

serve as regularizer weights: if c1 is large, then we
penalize strongly for fluctuations in q(t, i) along the t-
axis, whereas conversely c2 sets the smoothness along
the i-axis.

Fig. 5 MAP decoding of the
spatio-temporal stimulus
ki ∗ x(t) from the
simultaneously recorded
spike trains of three pairs of
ON and OFF retinal ganglion
cells, again from Pillow et al.
(2008). The top six panels
show the true input ki ∗ x(t)
to each cell (jagged black line;
the filters ki were estimated
by maximum likelihood from
a distinct training set here),
and the decoded MAP
estimate (smooth curve) ±1
posterior s.d. (gray area). The
MAP estimate is quite
accurate and is computed in
O(T) time, where T is the
stimulus duration. In this
example, fully-Bayesian
Markov chain Monte Carlo
decoding produced nearly
identical results; see
Ahmadian et al. (2009a) for
details
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Fig. 6 An example of the fast
spatial estimation method
applied to data from Czanner
et al. (2008), Fig. 3. Top
panel: observed spike train
data. Note that the firing rate
qualitatively changes both as
a function of time t and trial
number i; 50 trials total are
observed here. Bottom: λ(t, i)
estimated using the fast
regularized methods
described in Rahnama et al.
(2009). See Rahnama et al.
(2009) for further
comparisons, e.g. to linear
kernel smoothing methods
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This quadratic penalty has a natural Bayesian inter-
pretation: Q̂ is the MAP estimate under a “smoothing”
Gaussian prior of the form

log p(Q) = −c1

∑
it

[q(t, i) − q(t − dt, i)]2

−c2

∑
it

[q(t, i) − q(t, i − 1)]2 + const. (16)

(Note that this specific Gaussian prior is improper,
since the quadratic form in Eq. (16) does not have full
rank—the sums in log p(Q) evaluate to zero for any
constant Q—and the prior is therefore not integrable.
This can be corrected by adding an additional penalty
term, but in practice, given enough data, the posterior
is always integrable and therefore this improper prior
does not pose any serious difficulty.)

Now the key problem is to compute Q̂ effi-
ciently. We proceed as before and simply apply
Newton’s method to optimize Eq. (15). If we represent
the unknown Q as a long vector formed by appending
the columns of the matrix q(t, i), then the Hessian with
respect to Q still has a block-tridiagonal form, but now
the size of the blocks scales with the number of trials
observed, and so direct Gaussian elimination scales
more slowly than O(N), where N is the dimensionality
(i.e., the total number of pixels) of q(t, i). Nonetheless,
efficient methods have been developed to handle this
type of sparse, banded matrix (which arises, for exam-
ple, in applied physics applications requiring discretized
implementations of Laplace’s or Poisson’s equation);
for example, in this case Matlab’s built in H\∇ code
computes the solution to Hx = ∇ in O(N3/2) time,
which makes estimation of spatial tuning functions with
N ∼ 104 easily feasible (on the order of seconds on
a laptop). See Fig. 6 for an example of an estimated

two-dimensional firing rate λ(t, i), and Rahnama et al.
(2009) for further details.

5 Conclusion

Since the groundbreaking work of Brown et al. (1998),
state-space methods have been recognized as a key
paradigm in neuroscience data analysis. These methods
have been particularly dominant in the context of on-
line decoding analyses (Brown et al. 1998; Brockwell
et al. 2004; Truccolo et al. 2005; Shoham et al. 2005; Wu
et al. 2006; Srinivasan et al. 2006; Kulkarni and Paninski
2008) and in the analysis of plasticity and nonstationary
tuning properties (Brown et al. 2001; Frank et al. 2002;
Eden et al. 2004; Smith et al. 2004; Czanner et al. 2008;
Lewi et al. 2009; Rahnama et al. 2009), where the need
for statistically rigorous and computationally efficient
methods for tracking a dynamic “moving target” given
noisy, indirect spike train observations has been partic-
ularly acute.

The direct optimization viewpoint discussed here
(and previously in Fahrmeir and Kaufmann 1991,
Fahrmeir and Tutz 1994, Bell 1994, Davis and
Rodriguez-Yam 2005, Jungbacker and Koopman 2007,
Koyama and Paninski 2009) opens up a number of
additional interesting applications in neuroscience, and
has a couple advantages, as we have emphasized. Prag-
matically, this method is perhaps a bit conceptually
simpler and easier to code, thanks to the efficient sparse
matrix methods built into Matlab and other modern nu-
merical software packages. The joint optimization ap-
proach makes the important extension to problems of
constrained optimization quite transparent, as we saw
in Section 2.4. We also saw that the direct techniques
outlined in Section 3 can provide a much more efficient
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algorithm for parameter estimation than the standard
Expectation-Maximization strategy. In addition, the
direct optimization approach makes the connections
to other standard statistical methods (spline smooth-
ing, penalized maximum likelihood, isotonic regression,
etc.) quite clear, and can also serve as a quick initializa-
tion for more computationally-intensive methods that
might require fewer model assumptions (e.g., on the
concavity of the loglikelihoods p(yt|qt)). Finally, this
direct optimization setting may be generalized signifi-
cantly: we have mentioned extensions of the basic idea
to constrained problems, MCMC methods, and spatial
smoothing applications, all of which amply illustrate the
flexibility of this approach. We anticipate that these
state-space techniques will continue to develop in the
near future, with widespread and diverse applications
to the analysis of neural data.
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