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Abstract— We analyze a model of social learning in which
agents desire to identify an unknown state of the world using
both their private observations and information they obtain
when communicating with agents in their social neighborhood.
Every agent holds a belief that represents her opinion on how
likely it is for each of several possible states to be the true
one. At each time period, agents receive private signals, and
also observe the beliefs of their neighbors in a social network.
They then update their beliefs by integrating the information
available to them in a boundedly rational fashion. We show that
in spite of agents’ making new private observations perpetually
and the myopic and local updating rule employed by them,
agents will eventually reach consensus in their beliefs. This is
proved by first showing that agents’ beliefs over any state whose
truth is inconsistent with their collective observations go to zero
exponentially fast.

I. INTRODUCTION

Individuals form opinions about economic, political, and
social issues using both their personal experiences and infor-
mation they obtain through communication with their friends,
neighbors, and colleagues. These beliefs determine the decisions
they make when faced with different options. The best course
of action available to each agent is, however, oftentimes not
obvious and depends on unknown parameters (i.e., “states of
the world”). Lack of access to all the relevant information
about the unknown variables is a stimulus for individuals to
share their opinions in order to learn from personal experiences
of others. Agents might not be aware of the quality of the
information they obtain when communicating with other agents.
This could happen due to lack of knowledge both about the
informativeness of other agents’ observations and the source
of their information. Limited knowledge combined with local
and myopic processing of information could result in informed
agents being either misled or their learning slowed down, as a
result of communicating with uninformed agents.1 In light of
this, an important question one could ask is whether individuals
come to hold common beliefs, whether these beliefs are correct,
and if so, how quickly beliefs become correct. In this paper
we provide answers to these questions.

We base our analysis on a non-Bayesian model of social
learning proposed in [3]. We consider a society of n agents
trying to learn the true state of the world, which can take
values in a finite set. Communications between agents are
captured by a weighted and possibly directed network where
the weights correspond to the trust agents put in the opinions
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1See [1] and [2] for examples of failure of learning and consensus,
respectively, as a result of existence of stubborn agents.

of their neighbors. Agents have beliefs about the likelihood
for each of the possible states of the world being the true
one. In the beginning of each time step, agents receive private
signals and also observe the beliefs held by their neighbors
in the previous time step. However, instead of processing
new information in a Bayesian way, agents use a simple rule
to update their beliefs: Each agent first forms the Bayesian
posterior given her observed private signal, as an intermediate
step. She then updates her belief to the convex combination of
her Bayesian posterior and the beliefs of her neighbors. In [3]
the authors show that—under some assumptions—this update
eventually leads to social learning, even in finite networks;
namely, agents can eventually forecast the future correctly.
Furthermore, they will eventually learn the unknown state,
given that it is collectively identifiable.

In spite of not being fully Bayesian, this model provides a
tractable framework to study the opinion dynamics for agents
who repeatedly receive private signals in addition to observing
the opinions of their neighbors. This is our main motivation
for considering a non-Bayesian protocol. Repeated Bayesian
updating of beliefs in presence of social networks can be—
except for very simple networks—computationally complicated
to carry out. Part of the complications is because there is
no reason to believe that agents know the source of their
neighbors’ information; rather, Bayesian agents have to form
beliefs (and repeatedly update them) over possible networks
and agents’ signal structures. The complexities of Bayesian
updating limit its applicability in practice. This is why the
Bayesian social learning literature often focuses on simple
networks (see, e.g., [4], [5]) or sequential interactions between
agents where each agent updates her belief only once (see,
e.g., [6]–[10]).

We complement and strengthen the results of Jadbabaie et al.
in two different ways while maintaining the same assumptions
(which are presented and discussed in Section III).

In Section IV we show that, if the true state of the world
is identifiable, the probabilities agents assign to wrong states
go to zero exponentially fast. This result signifies that, under
some mild assumptions, communications between informed
and uninformed agents do not hinder learning for informed
agents in a fundamental way: not only agents learn the true
state as if they were Bayesian learners with access to all the
observations, but also they do so exponentially fast similar
to Bayesian agents. Proof of this proposition makes use of
results regarding exponential stability of ergodic dynamical
systems. We treat the beliefs of agents as the trajectory of a
random dynamical system and use a linearization argument to
conclude almost sure exponential stability.

In Section V we argue that even if the true state of the
world is not identifiable by agents, sharing of opinions will
lead agents to reach consensus. This is a direct consequence of
exponential convergence of agents’ beliefs over states that are
distinguishable from the true state: Once agents aggregate all
the information that is contained in their observations (which
happens exponentially fast), their observations contain no new



information and the Bayes’ rule becomes the same as identity
map. Thereafter, agents simply average their opinions with
those of their neighbors, which would eventually lead them to
reach consensus. In Proposition 3 we formalize this intuitive
argument.

Our paper is related to the line of research on consensus
—both in social and engineering networks—which focuses on
whether agents, mobile robots, sensors, etc. that have different
initial estimates of an unknown will reach an agreement.
Examples include the works by Tsitsiklis [11], Jadbabaie
et al. [12], Olfati-Saber and Murray [13], and Fagnani and
Zampieri [14]. What differentiates our paper is presence of
agents that repeatedly use new observations to update their
beliefs in a boundedly rational way. This makes the agents’
update rule both random and non-linear and necessitates use of
tools from the theory of random dynamical systems to analyze
the model. This paper is also related to a growing body of
literature on learning over social networks, especially those
with non-Bayesian updating rules. In this spirit are the works
by DeGroot [15], DeMarzo et al. [16], Acemoglu et al. [1],
Golub and Jackson [17], Jadbabaie et al. [3], and Rahnama
Rad and Tahbaz-Salehi [18].

II. MODEL

A. Environment

Our model assumes that time is discrete and there is a finite
number of agents, signals, and states of the world. Let Θ be
the finite set of possible states of the world. The true state is
determined at time zero by nature, and is unchanged thereafter.

Let N = {1, 2, . . . , n} be the set of agents. At time t ≥ 0
each agent i has a belief about the true state, denoted by
µi,t(θ), which is a probability distribution over Θ.

At each time period every agent observes a private random
signal. We let ωi,t ∈ Si denote the private signal observed by
agent i at time t, where Si is the set of possible signals for
agent i. We let S denote S1 × S2 × · · · × Sn. Conditional on
θ ∈ Θ being the state of the world, the observation profile
ωt = (ω1,t, ω2,t, . . . , ωn,t) ∈ S is generated according to
the likelihood function `(·| θ) with `i(·| θ) as its ith marginal.
Let Pθ = `(·| θ)N be the product measure that determines
the realization of sequence of signal profiles conditioned on
θ being the state of the world, where N stands for the set
of natural numbers. This definition allows for signals to be
correlated among agents at the same time period, but makes
them independent over time. We assume that `i(si |θ) > 0 for
all si ∈ Si and all θ ∈ Θ; i.e., likelihood functions have the
same support conditioned on any θ being the true state. We
make this assumption only to simplify the arguments and our
results do not critically depend on it.

The interactions between agents are captured by a directed
graph G = (N , E). Let Ni = {j ∈ N : (j, i) ∈ E} be the
set of neighbors of agent i. It is assumed that agent j can
observe the belief of agent i if there exists a directed edge
from i to j; that is, (i, j) ∈ E.

B. Belief Updates

Each agent i starts with the prior belief µi,0(θ) that θ is
the true state of the world. At the end of period t, each agent
observes the beliefs of her neighbors. At the beginning of the
next period, agent i receives the private signal ωi,t+1, and then

uses the following rule to update her belief:

µi,t+1(θ) = aiiµi,t(θ)
`i(ωi,t+1| θ)
mi,t(ωi,t+1)

+
∑
j∈Ni

aijµj,t(θ), (1)

where mi,t(si) is defined for any si ∈ Si as

mi,t(si) =
∑
θ∈Θ

`i(si| θ)µi,t(θ).

In the update in (1) each agent updates her belief to a
convex combination of her own Bayesian posterior given only
her private signal and neglecting the social network, and her
neighbors’ beliefs in the previous period. aij is the weight
that agent i assigns to the opinion of agent j, and aii, called
the self-reliance of agent i, is the weight she assigns to her
Bayesian posterior conditional on her private signal. We assume
that aij ≥ 0 and

∑
j∈Ni∪{i} aij = 1 for agents’ beliefs to

remain a probability distribution over Θ after they perform the
update.

When there is no arrival of new information, this update
rule is simplified to the one used in DeGroot’s naı̈ve learning
model. Likewise, when aij = 0 for all j 6= i, the model is
the same as the Bayesian learning model with no network
structure.

C. States of the World
Let θ∗ be the true state of the world that is determined

at time zero by nature. Let Θ̄i = {θ ∈ Θ : `i(si| θ) =
`i(si| θ∗) for all si ∈ Si} be the set of states that are
observationally equivalent to the true state θ∗ from the point
of view of agent i, and let Θ̄ = Θ̄1 ∩ · · · ∩ Θ̄n be the set of
states that are observationally equivalent to the true state of
the world from the point of view of all agents.

We use µ̄i,t to denote the restriction of µi,t to the states
which are observationally distinguishable from the true state
by at least one of agents. More explicitly, let µ̄i,t(θ) be a sub-
probability measure over Θ \ Θ̄ such that µ̄i,t(θ) = µi,t(θ),
for all θ ∈ Θ \ Θ̄. Whenever there is no risk of confusion, we
refer to both µi,t and µ̄i,t as the belief of agent i at time t.

The evolution of µ̄i,t is independent of the beliefs of agents
on the states that are not distinguishable from θ∗; that is,
knowledge of µ̄j,t, for all j ∈ N , in addition to ωi,t, is
sufficient to uniquely determine µ̄i,t+1. To see this note that
mi,t(si) can be written only in terms of µ̄i,t as

mi,t(si) = `i(si|θ∗)

1−
∑

θ∈Θ\Θ̄

µ̄i,t(θ)


+

∑
θ∈Θ\Θ̄

`i(si|θ)µ̄i,t(θ). (2)

Therefore, by (1) and (2), µ̄i,t+1(θ) can be written only in
terms of {µ̄j,t(θ)}j∈Ni

and ωi,t.

D. Some Notation
(Ω,F ,P) is the probability triple, where Ω = (

∏n
i=1 Si)

N,
F is the smallest σ-field that makes all ωi,t measurable,
and P = Pθ∗ is the probability distribution determining
the realization of signals. Let E be the expectation operator
corresponding to P. We use ω ∈ Ω to denote the infinite signal
sequence (ω1, ω2, . . . ). Let Fi,t = σ(ω1, ω2, . . . , ωt) be the
filtration generated by the observations of agents up to time t.



It is sometimes more convenient to use vector notation. We
use A to denote the n× n matrix with the element in ith row
and jth column given by aij , and use µt(θ) to denote the n
dimensional column vector whose ith element is µi,t(θ). We
also use µt to denote the n|Θ| dimensional column vector
obtained by concatenating the vectors representing µt(θ) for
different θ ∈ Θ. Likewise, µ̄t(θ) and µ̄t are n and n|Θ \ Θ̄|
dimensional column vectors, respectively, defined in a similar
ways. Furthermore, we use 1 to denote the column vector with
all elements equal to one, and the superscript T to denote the
transpose of a vector. Unless otherwise specified, ‖·‖ denotes
an arbitrary vector norm as well as the corresponding induced
norm on linear operators.2 Equation (1) can be written in vector
form as

µt+1(θ) = Aµt(θ) + diag
(
aii

(
`i(ωi,t+1| θ)
mi,t(ωi,t+1)

− 1

))
µt(θ),

(3)
where diag(vi) is the diagonal matrix with ith diagonal element
equal given by vi.

Given any fixed ω ∈ Ω, the belief sequence µ̄0, µ̄1, . . . forms
the trajectory of the dynamical system ϕ(ω) : N×Rn|Θ\Θ̄| 7→
Rn|Θ\Θ̄|, where ϕt(ω) is the function that maps the time t− 1
belief µ̄t−1 to the time t belief µ̄t. Interpreting agents’ beliefs
as the trajectory of a dynamical system enables us to use tools
from dynamical systems theory to analyze the evolution of the
beliefs. This is the approach we take while studying the rate
of learning.

III. ASSUMPTIONS

We maintain the following assumptions throughout the paper.
Assumption 1: The social network is strongly connected.3
This assumption allows for information to flow from any

agent to any other one. One can always assume connectivity
without loss of generality, since otherwise each connected
component could be analyzed separately. Strong connectivity,
on the other hand, requires that any agent that influences other
agents be influenced back by them, either directly or indirectly.
It excludes the scenarios where some agents place zero total
weight on the beliefs of all other agents in the network. If
there are agents who influence without being influenced back,
then the society can be misled. A simple example of such
outcomes is studied in [3].

Assumption 2: there exists at least one agent with positive
prior belief on the true state θ∗.

This assumption is similar to the condition that is commonly
known as a “grain of truth” in agents’ prior beliefs which
requires all agents to have positive priors over θ∗. If Assump-
tion 2 is violated, we have the rather uninteresting outcome
where all agents continue to have zero belief in the true state
at all time periods.

Assumption 3: Self-reliance of all agents is strictly positive.
The purpose of this assumption is twofold. First, the

requirement for all agents to have positive self-reliance is
sufficient to ensure that the network is aperiodic.4 which is

2If a vector norm on a vector space V is given, then one defines the
corresponding induced norm or operator norm on the space of bounded linear
operators on V as

‖M‖ = sup {‖Mv‖ : v ∈ V with ‖v‖ = 1} .

3A graph is called strongly connected if there exists a directed path from
any vertex to any other one.

4A network is called aperiodic if the greatest common divisor of the lengths
of its simple cycles is one, For more on this see [17].

a necessary condition for agents to reach consensus in their
beliefs. Second, Assumption 3 requires agents not to disregard
their private observations. If all agents fail to incorporate
their observations into their beliefs, information agents cannot
accumulate the information that is needed for them to learn
the unknown state.

One can show that these assumptions can be weakened
significantly by relaxing the strong connectivity assumption
and requiring only informed agents to have positive self-
reliance [19]. There only needs to be “sufficient” flow of
information in the social network; however, to simplify the
proofs we maintain Assumptions 1–3 in this paper.

IV. LEARNING

A central question of interest in study of learning in social
networks is whether agents using a certain update rule will
learn the true state of the world, and if they learn the state, how
fast they do so. Furthermore, one is interested in characterizing
the weakest set of assumptions that guarantee learning. In this
section we show that if Assumptions 1–3 are satisfied, agents
learn an identifiable state asymptotically almost surely and also
exponentially almost surely.

Several notions of learning have been studied in the literature.
Here, we say that agents learn the true state if their beliefs
in all states except for the true state θ∗ go to zero. 5 In our
model, agents who have generic prior beliefs cannot learn the
true state in finite time; however, the first result presented
here states that agents learn the true state if it is identifiable,
asymptotically for almost surely sequences of observations
profiles. Our second result, which is the main result of this
section, strengthens the first one by showing that agents’ beliefs
over the incorrect states go to zero exponentially fast.

A. Asymptotic Learning
The following result presents a set of conditions under which

beliefs of agents over the states that are distinguishable from
the true state converge to zero. The proof together with a
thorough discussion can be found in [3].

Proposition 1: If Assumptions 1–3 are satisfied, then for
all i ∈ N ,

µi,t(θ)→ 0 as t→ +∞ ∀i ∈ N , ∀θ ∈ Θ \ Θ̄,

with P-probability one.
We say that the true state of the world is observationally

distinguishable (or identifiable), if there is no θ ∈ Θ that is
observationally equivalent to θ∗ from the point of view of all
agents; that is,

Θ̄ = {θ∗}.

Since µi,t(·) is a probability distribution over Θ for all i and
t, the following corollary of Proposition 1 is immediate.

Corollary 1: If Assumptions 1–3 are satisfied and θ∗ is
observationally distinguishable, then for all i ∈ N

µi,t(θ
∗)→ 1 as t→ +∞,

with P-probability one.
Note that observational distinguishability is necessary for

learning. Agents who are bound to know only the marginal
likelihood functions cannot distinguish the states in Θ̄, no
matter the update they might use.

5This is different—and in this model is stronger—than the notion of learning
known as “weak merging” of opinions. For a discussion of different notions
of learning and how they are related see [20], [21].



This result signifies that for agents in a strongly connected
social network to learn an identifiable state of the world, they
only need to take their own signals into account in a Bayesian
fashion and have non-zero self-reliance (i.e., do not discard
their private experiences). The averaging of opinions with their
neighbors will eventually lead all agents in the social network
to learn the true state as if they had access to everyone’s
observations.

B. Exponential Learning
It is also important to understand when agents are able to

learn the true state “sufficiently fast”. For instance, if agents
are required to make a decision before an exogenous deadline,
it is important for them to be sufficiently sure about the true
state by the given time. Likewise, if the state is changing
exogenously, efficient learning entails the rate of learning to
be much faster than the rate by which the true state varies.

We next show that agents who use update (1) learn an
identifiable state exponentially fast; that is, as t goes to infinity,
µi,t(θ) goes to zero exponentially fast for all agents and all
θ ∈ Θ \ Θ̄. The following proposition formalizes this result
and provides a characterization of the rate of learning.

Proposition 2: If Assumptions 1–3 are satisfied and µ̄0 6= 0,
then for all ω in a set of P-probability one and all ε > 0,

lim sup
t→+∞

1

t
log ‖µ̄t‖ ≤ λ1 + ε,

where λ1 < 0 is the (deterministic) top Lyapunov exponent of
Mt(ω) = Dϕt(ω; 0), the Jacobian matrix of ϕt(ω) evaluated
at the origin.

We prove the proposition by first proving two auxiliary
lemmas. Note that the origin is a fixed point of ϕ(ω) for all
ω ∈ Ω. Moreover, for any ω ∈ Ω, the dynamical system ϕ(ω)
can be decomposed into the sum of its linear part and a higher
order term as

ϕt(ω;x) = Mt(ω)x+ ft(ω;x), (4)

where Mt(ω) is the Jacobian of ϕt(ω;x) evaluated at the
origin. We first show that the linear dynamical system M(ω)
is asymptotically stable.

Lemma 1: If Assumptions 1 and 3 are satisfied, then for
P-almost all ω the linear dynamical system M(ω) is globally
asymptotically stable.

Proof: Let Φ(ω; t) be the state transition matrix corre-
sponding to the linear dynamical system M(ω) defined as

Φ(ω; t) = Mt(ω) . . .M1(ω).

Furthermore, for any ω ∈ Ω let z0, z1, . . . denote the trajectory
of M(ω) with initial state z0. We suppress the dependence
of zt on ω in the rest of the proof. The linear map Mt(ω) =
Dϕt(ω; 0) can be represented as a block diagonal matrix with
diagonals consisting of n× n matrices

Mθ
t (ω) = A+ diag

(
aii

(
`i(ωi,t| θ)
`i(ωi,t| θ∗)

− 1

))
.

Therefore, zt can be written in terms of zt−1 as

zt(θ) = Azt−1(θ) + diag
(
aii

(
`i(ωi,t| θ)
`i(ωi,t| θ∗)

− 1

))
zt−1(θ).

(5)
To prove almost sure global asymptotic stability, we have to
show that zt goes to zero on a set of P-measure one and for all

initial states z0 ∈ Rn|Θ\Θ̄|. However, we initially assume that
zi,0(θ) is non-negative for all θ ∈ Θ \ Θ̄ and i ∈ N . For all
t ∈ N and ω ∈ Ω, positive orthant is invariant under the action
of Φ(ω; t). Consequently, zt is non-negative for all t ∈ N.
This enables us to use the martingale convergence theorem.
A is a stochastic matrix. Moreover, since the network is

strongly connected, A is irreducible.6 Hence, A has a positive
left eigenvector v whose corresponding eigenvalue is equal to
one.7 Left multiplying both sides of (5) by v,

vT zt(θ) = vT zt−1(θ)+

n∑
i=1

viaii

(
`i(ωi,t| θ)
`i(ωi,t| θ∗)

− 1

)
zi,t−1(θ).

Taking conditional expectations of the above equation results
in

E
[
vT zt(θ)|Ft−1

]
= vT zt−1(θ),

which since vT zt(θ) ≥ 0 implies that

E
[
|vT zt(θ)|

]
= E

[
vT zt(θ)

]
= vT z0(θ) <∞.

Therefore, vT zt(θ) is a martingale with respect to the filtration
Ft−1. It is also non-negative since v and zt(θ) are positive
as a result of Perron-Frobenius theorem and our assumption
above, respectively. Hence, by martingale convergence theo-
rem, vT zt(θ) converges P-almost surely. Consequently, the
martingale difference converges to zero P-almost surely; i.e.,
n∑
i=1

viaii

(
`i(ωi,t| θ)
`i(ωi,t| θ∗)

− 1

)
zi,t−1(θ)→ 0 as t→ +∞.

The dominated convergence theorem for conditional expecta-
tions implies that as t→ +∞,

E

[∣∣∣∣∣
n∑
i=1

viaii

(
`i(ωi,t| θ)
`i(ωi,t| θ∗)

− 1

)
zi,t−1(θ)

∣∣∣∣∣|Ft−1

]
−→ 0,

P-almost surely, which can be written as∑
s∈S

`(s| θ∗)

∣∣∣∣∣
n∑
i=1

viaii(
`i(si| θ)
`i(si| θ∗)

− 1)zi,t−1(θ)

∣∣∣∣∣ −→ 0,

P-almost surely. Therefore, since `i(·| ·) is strictly positive, for
all (s1, . . . , sn) ∈ S1 × · · · × Sn with P-probability one,
n∑
i=1

viaii

(
`i(si| θ)
`i(si| θ∗)

− 1

)
zi,t−1(θ) −→ 0 as t→ +∞.

Now choose ŝi = arg maxsi∈Si
`i(si| θ)/`i(si| θ∗). Since

`i(·| θ) is a probability distribution over Si, we have that
`i(ŝi| θ)/`i(ŝi| θ∗) ≥ 1 with equality if and only if agent i
cannot distinguish θ from θ∗; i.e., θ /∈ Θ̄i. Therefore, since
aii and vi are positive,(
`i(ŝi| θ)
`i(ŝi| θ∗)

− 1

)
zi,t−1(θ) −→ 0 as t→ +∞ ∀i ∈ N ,

with P-probability one. Consequently, zi,t(θ) converges to zero
P-almost surely, for all i such that θ /∈ Θ̄i. Since θ ∈ Θ \ Θ̄,
there exists at least one such agent, call it i. Since zj,t(θ)
is non-negative, (5) implies that zj,t(θ) also converges to
zero P-almost surely for all j ∈ Ni. Note that this happens

6The matrix A is called irreducible if for every pair of indices i and j,
there exists a natural number m such that (Am)ij is not equal to 0.

7This is a consequence of Perron-Frobenius theorem. See [22], for instance.



even if θ ∈ Θ̄j . Proceeding inductively and using the strong
connectivity assumption implies that zj,t(θ) converges to zero
P-almost surely for all j ∈ N .

For the proof of the general case, note that z0 can be
decomposed as z0 = z+

0 − z
−
0 , where z+

0 and z−0 are non-
negative. Since Φ(ω; t) is a linear map, zt is given by

zt = z+
t − z−t = Φ(ω; t)z+

0 − Φ(ω; t)z−0 ,

which by the above result goes to zero on a set of P-probability
one as t→ +∞.

The next lemma shows that ft(ω;x) = ϕt(ω;x)−Mt(ω)x,
as defined in (4), is negligible when x is small. For any s ∈ S
and θ ∈ Θ, let Gθ(s) : Rn|Θ\Θ̄| 7→ Rn×n be a diagonal
matrix valued function whose ith diagonal element is given by

Gθi (s;x) = aii

(
`i(si| θ)
gi(si;xi)

− `i(si| θ)
`i(si| θ∗)

)
, (6)

where gi(si;xi) is given by

gi(si;xi) = `i(si| θ∗)

1−
∑

θ̃∈Θ\Θ̄

xi(θ̃)

+
∑

θ̃∈Θ\Θ̄

`i(si| θ̃)xi(θ̃).

It is straightforward to show that fθt (ω;x) = Gθ(ωt;x)x(θ)
for all θ ∈ Θ \ Θ̄.

Lemma 2: If Assumption 3 is satisfied, then there exists a
neighborhood V of the origin and a constant Kθ > 0 such
that if x, y ∈ V , then

‖Gθ(s;x)−Gθ(s; y)‖ ≤ Kθ‖x− y‖ ∀s ∈ S.
The proof is standard, and thus, is omitted to save space. We

can now conclude that, as a result of asymptotic stability of
M(ω) and ft(ω;x) being small, ϕ(ω) is exponentially stable.

Proof of Proposition 2: First, note that by sub-multiplicativity
of norm and triangle inequality∥∥fθt (ω;x)− fθt (ω; y)

∥∥
≤
∥∥Gθ(ωt; y)

∥∥ ‖x(θ)− y(θ)‖
+
∥∥Gθ(ωt;x)−Gθ(ωt; y)

∥∥ ‖x(θ)‖ .

Since Gθ(ωt; 0) ≡ 0 and by Lemma 2,∥∥fθt (ω;x)− fθt (ω; y)
∥∥

≤ Kθ ‖x(θ)− y(θ)‖ (‖x(θ)‖+ ‖y(θ)‖) ,

which implies that

‖ft(ω;x)− ft(ω; y)‖ ≤ K ‖x− y‖ (‖x‖+ ‖y‖) ,

for some K > 0.
For any ω let Φ(ω; t) be the state transition matrix cor-

responding to M(ω), and let λ1(ω) be the top Lyapunov
exponent of Φ(ω; t) defined as

λ1(ω) = lim
t→+∞

1

t
log ‖Φ(ω; t)‖.

The Furstenberg-Kesten theorem [23] implies that for P-almost
all ω, the above limit exists and is independent of the
realization of ω; moreover, by Lemma 1, for P-almost all
Φ(ω; t) converges to zero. Hence, λ1(ω) = λ1 < 0 on a set
of P-probability one.

Therefore, for any ε > 0 there exists a neighborhood V (ω)
of the origin and C(ω) > 0 such that for all µ̄t0 ∈ V (ω) and
t ≥ t0, and P-almost all ω ∈ Ω,8

‖µ̄t‖ ≤ C(ω)e(λ1+ε)(t−t0)+2εt0‖µ̄t0‖. (7)

Proposition 1 implies that for any neighborhood V (ω) of the
origin, with P-probability one, there exists T (ω) such that
µ̄t ∈ V for all t ≥ T (ω). Therefore,

lim sup
t→+∞

1

t
log‖µ̄t‖ ≤ λ1 + ε,

with P-probability one.
This proposition strengthens Proposition 1 significantly by

stating that if the true state of the world is distinguishable,
agents will learn it exponentially fast. This result further
underscores the strength of the simple update used in enabling
social learning: in spite of bounded rationality of agents and
the locality of their interactions, all agents in the social network
learn the true state as if they were Bayesian agents observing
everyone’s signals. 9

V. CONSENSUS

Will agents’ beliefs fluctuate forever or will they eventually
converge? If agents’ beliefs converge, what are the limiting
beliefs? Proposition 1 gives a partial answer to these questions
by showing that agents’ beliefs over states that are observa-
tionally distinguishable from θ∗ go to zero. It implies that,
if Θ̄ = {θ∗}, agents will reach consensus exponentially fast
with P-probability one. On the other hand if Θ̄ = Θ, agents
will reach consensus exponentially fast regardless of their
observations. This is since when agents cannot distinguish any
of the states from the true state, the update in (1) is the same as
the one in DeGroot’s model of learning in which if agents have
positive self-reliance and the underlying network is strongly
connected, agents will reach consensus [17]. Convergence of
agents’ beliefs to common values in the two extreme cases
discussed above suggests that agents always reach consensus.
The following proposition shows that this is indeed true.

Proposition 3: If Assumptions 1–3 are satisfied, then for
all θ ∈ Θ and P-almost all ω,

µi,t(θ)→ µi,∞(θ) as t→ +∞ ∀i ∈ N ,
where µi,∞(·) is a probability distribution over Θ. Furthermore,
µi,∞(θ) = µj,∞(θ), for all i, j ∈ N and θ ∈ Θ.

Proof: We can assume that µ̄0 6= 0; otherwise, agents’
update rule is the same as in DeGroot’s model, in which case
the proposition is true. Moreover, for θ ∈ Θ \ Θ̄ the result is
true by Proposition 1.

For any t ∈ N and θ ∈ Θ̄, the belief vector µt(θ) can be
written in terms of agents’ earlier beliefs using the matrix
valued function Gθ defined in (6) as

µt(θ) = Aµt−1(θ) +Gθ(ωt; µ̄t−1)µt−1(θ)

=

t∏
τ=1

(
A+Gθ(ωτ ; µ̄τ−1)

)
µ0(θ).

By Lemma 2, there exists a neighborhood V of the origin
and a constant Kθ > 0 such that if µ̄τ−1 ∈ V , then∥∥Gθ(ωt; µ̄t−1))

∥∥ ≤ Kθ ‖µ̄t−1‖ .

8This is a corollary of Theorems 1 and 2 in [24] and Oseledets’ Theorem [25].
9The exponent is, however, generally better (and never worse) for a Bayesian

observer with access to all the information.



Proposition 1 implies that there exists T (ω) such that µ̄t ∈ V ,
for all t > T (ω). Therefore, by Proposition 2, we can conclude
that for any ε > 0 and for P-almost all ω, there exists L(ω)
such that ∥∥Gθ(ωt; µ̄t−1)

∥∥ ≤ L(ω)e(λ1+ε)(t−1). (8)

Therefore,
∞∑
t=1

∥∥Gθ(ωt; µ̄t−1)
∥∥ <∞

with P-probability one.
One the other hand, since A is an aperiodic irreducible

stochastic matrix, limt→+∞At = 1vT , where v is the left
eigenvector of A corresponding to the unit eigenvalue [26].

Hence, on a set of P-measure one,
t∏

τ=1

(
A+Gθ(ωτ ; µ̄τ−1)

)
converges.10 Consequently, µt(θ) converges P-almost surely
to some µ∞(θ). Since

µ∞(θ) = lim
t→+∞

t∏
τ=1

(
A+Gθ(ωτ ; µ̄τ−1)

)
µ0(θ),

and A+Gθ(ωt; µ̄t−1) converges to A asymptotically P-almost
surely, µ∞(θ) must satisfy

µ∞(θ) = Aµ∞(θ), (9)

which implies that µ∞(θ) is a right eigenvector of A cor-
responding to the unit eigenvalue. The vector of one is a
solution to (9). Since A is an irreducible stochastic matrix, by
Perron-Frobenius theorem, any other solution is a multiple of
1. Therefore, µi,∞(θ) = µj,∞(θ) for all i, j ∈ N .

Even though beliefs of all agents over the states which
are observationally distinguishable from θ∗ go to zero, for
generic prior beliefs, agents’ beliefs over the states in Θ̄ do not
converge to either zero or one. They are only constrained to
be in the convex hull of agents’ prior beliefs. Additionally, the
consensus beliefs over such states will generally depend both
on the distribution of agents’ prior beliefs and the realization of
their signals. This is unlike the consensus beliefs over the states
that are observationally distinguishable from θ∗; as shown in
Proposition 1, agents’ beliefs over such states converge to zero
independently of the realization of agents’ signals and their
prior beliefs.

VI. CONCLUSION

We analyzed a model of social learning where agents
repeatedly update their beliefs using a simple rule to incorporate
new information they obtain through both personal observations
and communications with their neighbors. We showed that if
the social network is strongly connected, at least one agent
has a positive prior on the true state, and agents do not discard
their private observations, they will learn the true state if it
is observationally distinguishable and reach consensus if it is
not. These results signify that under some mild assumptions,
agents will reach consensus in their beliefs, in spite of receiving
private signals that might not be consistent with the beliefs
communicated to them by their neighbors. In order to prove this,
we first showed that agents learn to assign zero probabilities

10This is a consequence of Theorem 6.8 on page 101 of [27].

to states that are observationally distinguishable from the true
state exponentially fast.

An important question that is left open is: how does the
speed of learning depends on network topology and agents’
signal structure? We defer a detailed analysis of the rate of
learning (and also that of consensus) and its dependence on
structural properties of the model to a future paper.
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