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By applying the expectation maximisation algorithm to the maximum

likelihood detection of layered space-time codes, the conditional log-

likelihood of a single layer is iteratively maximised, rather than

maximising the intractable likelihood function of all layers. Computer

simulations demonstrate the efficiency of the proposed detection

scheme.

System description: Consider the system of N transmit and M receive

antennas. The single data stream in the input is demultiplexed into N

substreams, and each substream is modulated independently then

transmitted over a rich-scattering wireless channel to M antennas.

Each antenna receives signals transmitted from the entire N transmit

antennas. The transmission is performed by burst of length l. We

adopt a quasi-static approximation of the fading channel, i.e. the

channel remains unchanged during each burst. For simplicity of

presentation, we consider a BPSK modulation for each layer. The

received signal at each instant time can be written as

y ¼ Hbþ z ð1Þ

where z¼ [z1z2 � � � zM]
T is assumed to be an symmetric i.i.d. complex

Gaussian noise vector with zero mean and unit variance, b¼

[b1b2 � � � bN]
T is the transmitted signal where b2 2{�1, 1}N, y¼

[y1y2 � � � yM]
T is the received signal, and HM�N is the channel matrix.

In rich-scattering environments, the elements of the channel matrix

can be modelled as symmetric i.i.d. complex Gaussian random

variables with zero mean and variance equal to g=N. From the above

definitions, it is clear that g represents the average SNR at each receive

antenna.

The maximisation of the conditional probability density of the

received vector in (1) is equivalent to the following nonlinear optimisa-

tion problem:

b̂b ¼ arg max
b2f�1;1gN

½2yHHb� bHHHHb� ð2Þ

Since the optimisation in (2) is performed over {�1, 1}N, its computa-

tional complexity is exponentially in N and thus becomes prohibitive

for even a moderate number of layers. By using the EM algorithm, we

decompose the N-dimensional maximisation problem in (2) into N one-

dimensional maximisation problems. First, we define the complete data

set xk, as required by the EM algorithm, as follows:

xk ¼ hkbk þ zk ð3Þ

where xk is an M element column vector, bk is the symbol bit of the kth

layer, zk is the complex M-dimensional AWGN, the components of

which are statistically independent with identical power sk
2, and hk is

the kth column of H. From (1) and (3), we have

PN
k¼1

s2k ¼ s2 ð4Þ

and

y ¼
PN
k¼1

xk ð5Þ

where s2¼ 1. In [1] it is proven that the maximisation of the log-

likelihood function

LðbÞ ¼
�1

2
ð y�HbÞH ðy�HbÞ ð6Þ

is equivalent to the maximisation of the function U(b, b́) over b, where

U(b, b́) is:

U ðb; �bbÞ ¼ E½logð fxðx; bÞÞjy; b ¼ �bb� ð7Þ

and

f xðx; bÞ ¼
1

ð2pÞN=2PN
k¼1sk

� exp
PN
k¼1

�1

2s2k
ðxk � hkbk Þ

H
ðxk � hkbk Þ

� �
ð8Þ

In (7–8), x¼ [x1
T x2

T x3
T
� � � xN

T ]T and b́ is an estimate of b. The iterative

structure of the detection algorithm is straightforward. To decrease the

probability of error, in nth iteration, U(b, b(n)) is maximised over b to

obtain a new estimate of b(nþ1). After each iteration, the likelihood

function increases [1]. Now an analytical solution to the maximisation

of U(b, b(n)) is derived to reduce the N-dimensional maximisation

problem into N one-dimensional maximisation problems. We start by

expanding the log-likelihood function

loge fxðx; bÞ ¼
PN
k¼1

�1

2s2k
ðxHk xk þ b2kh

H
k hk � bkh

H
k xk � bkx

H
k hkÞ þ C

ð9Þ

where C is a constant. We define A¼ [b1h1
T=s1

2 b2h2
T=s2

2 . . . bN hN
T=sN

2 ]T

and since bk
2
¼ 1, (9) can be simplified to

loge fxðx;bÞ ¼ gðxÞ þ 2ReðAHxÞ ð10Þ

Ignoring the first term which has no effect on the maximisation process,

and substituting (10) into (7), we will have

U ðb; bðnÞÞ ¼ ReðAHE½xjy; bðnÞ�Þ ð11Þ

It can be easily shown that

E½xjy; bðnÞ� ¼
1

s2
½s21ðy�HbðnÞÞTs22ðy�HbðnÞÞT . . . s2N ðy�HbðnÞÞT �T

þ ½b
ðnÞ
1 hT1 b

ðnÞ
2 hT2 . . . b

ðnÞ
N hTN�

T
ð12Þ

Hence,

U ðb; bðnÞÞ ¼
PN
k¼1

Re bk
hHk

s2k
b
ðnÞ
k hk þ

s2k
s2

y�HbðnÞ
� �� �� �

ð13Þ

Obviously, to maximise the whole sum, it is sufficient to maximise each

term in the sum, separately. Since bk’s can only take the values þ1 and

�1, the following decisions on bk’s maximise (13):

b
ðnþ1Þ
k ¼ sign Re b

ðnÞ
k hHk hk þ

s2k
s2

hHk ðy�HbðnÞÞ

� �� �
ð14Þ

Fig. 1 Plot of average BER against SNR at each receive antenna

Simulation results: We have evaluated the performance of the

proposed algorithm by simulation. We considered N¼ 8, M¼ 8.

Also, we assumed a block fading model where the channel matrix

remains constant within each burst, but independently changes from

burst to burst. Fig. 1 compares the performance of our algorithm with

that of the nulling and cancelling with optimal ordering. As can be

realised, our proposed EM-based algorithm substantially outperforms
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the original nulling and cancelling with optimal ordering scheme

proposed in [2], over the whole SNR range.
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