Iterative detection for V-BLAST MIMO
communication systems based on
expectation maximisation algorithm
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By applying the expectation maximisation algorithm to the maximum
likelihood detection of layered space-time codes, the conditional log-
likelihood of a single layer is iteratively maximised, rather than
maximising the intractable likelihood function of all layers. Computer
simulations demonstrate the efficiency of the proposed detection
scheme.

System description: Consider the system of N transmit and M receive
antennas. The single data stream in the input is demultiplexed into N
substreams, and each substream is modulated independently then
transmitted over a rich-scattering wireless channel to M antennas.
Each antenna receives signals transmitted from the entire N transmit
antennas. The transmission is performed by burst of length /. We
adopt a quasi-static approximation of the fading channel, i.e. the
channel remains unchanged during each burst. For simplicity of
presentation, we consider a BPSK modulation for each layer. The
received signal at each instant time can be written as

where z=1[z,z, - --z),]" is assumed to be an symmetric i.i.d. complex
Gaussian noise vector with zero mean and unit variance, b=
[b1b; ---by]" is the transmitted signal where be2{—1, I}N, y=
w2 .- yM]T is the received signal, and H), y is the channel matrix.
In rich-scattering environments, the elements of the channel matrix
can be modelled as symmetric i.i.d. complex Gaussian random
variables with zero mean and variance equal to y/N. From the above
definitions, it is clear that y represents the average SNR at each receive
antenna.

The maximisation of the conditional probability density of the
received vector in (1) is equivalent to the following nonlinear optimisa-
tion problem:

b=arg max [2)''Hb — b’H"Hb] %)
be{—1,1}¥

Since the optimisation in (2) is performed over {—1, 1}V, its computa-
tional complexity is exponentially in N and thus becomes prohibitive
for even a moderate number of layers. By using the EM algorithm, we
decompose the N-dimensional maximisation problem in (2) into NV one-
dimensional maximisation problems. First, we define the complete data
set Xy, as required by the EM algorithm, as follows:

X, = hy b, + 7, 3)
where xy is an M element column vector, by, is the symbol bit of the ith
layer, zy is the complex M-dimensional AWGN, the components of

which are statistically independent with identical power o2, and hy is
the kth column of H. From (1) and (3), we have
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where ¢>=1. In [1] it is proven that the maximisation of the log-
likelihood function

L) = S (y — Hb)'(y — Hb) ©

is equivalent to the maximisation of the function U(b, b) over b, where
U(b, b) is:

U(b, b) = E[log(f;(x; b))ly, b = b] @)
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In (7-8), x=[x! x5 x} - - - x4]” and b is an estimate of b. The iterative
structure of the detection algorithm is straightforward. To decrease the
probability of error, in nth iteration, U(b, b)) is maximised over b to
obtain a new estimate of b"*V. After each iteration, the likelihood
function increases [1]. Now an analytical solution to the maximisation
of Ub, b™) is derived to reduce the N-dimensional maximisation
problem into N one-dimensional maximisation problems. We start by
expanding the log-likelihood function
No—1
log fi(x;b) = 3~ >—
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where C is a constant. We define A = [blh{/ o7 boh¥ / 63 .. by h{;/ J;ZV]T
and since bz =1, (9) can be simplified to

log, fy(x; b) = g(x) + 2Re(A"x) (10)

Ignoring the first term which has no effect on the maximisation process,
and substituting (10) into (7), we will have

U(b, b™) = Re(AT E[x]y, b™]) (11)
It can be easily shown that
Elxly, b)) = oty — HD®) 63(y — Hb®)T oy — Hb)Y
Sl oY Y (12)

Hence,

(n) y hi! (n) a; (n)
U(b, b ):kZlRe b [0 + 75 (v — HB®) (13)
= 3

Obviously, to maximise the whole sum, it is sufficient to maximise each

term in the sum, separately. Since b;’s can only take the values +1 and
—1, the following decisions on b;’s maximise (13):

. n 0-2 n
B = szgn{Re(b; )hi’hy, + G—gh’k’(y — Hp' >)) } (14)
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Fig. 1 Plot of average BER against SNR at each receive antenna

Simulation results: We have evaluated the performance of the
proposed algorithm by simulation. We considered N=8, M=38.
Also, we assumed a block fading model where the channel matrix
remains constant within each burst, but independently changes from
burst to burst. Fig. 1 compares the performance of our algorithm with
that of the nulling and cancelling with optimal ordering. As can be
realised, our proposed EM-based algorithm substantially outperforms
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the original nulling and cancelling with optimal ordering scheme
proposed in [2], over the whole SNR range.
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