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Nearly Sharp Sufficient Conditions on
Exact Sparsity Pattern Recovery

Kamiar Rahnama Rad

Abstract—Consider the �-dimensional vector � � ���� where
� � � has only � nonzero entries and � � � is a Gaussian noise.
This can be viewed as a linear system with sparsity constraints cor-
rupted by noise, where the objective is to estimate the sparsity pat-
tern of � given the observation vector � and the measurement ma-
trix � . First, we derive a nonasymptotic upper bound on the prob-
ability that a specific wrong sparsity pattern is identified by the
maximum-likelihood estimator. We find that this probability de-
pends (inversely) exponentially on the difference of ����� and the
��-norm of �� projected onto the range of columns of � indexed
by the wrong sparsity pattern. Second, when� is randomly drawn
from a Gaussian ensemble, we calculate a nonasymptotic upper
bound on the probability of the maximum-likelihood decoder not
declaring (partially) the true sparsity pattern. Consequently, we
obtain sufficient conditions on the sample size � that guarantee al-
most surely the recovery of the true sparsity pattern. We find that
the required growth rate of sample size � matches the growth rate
of previously established necessary conditions.

Index Terms—Hypothesis testing, random projections, sparsity
pattern recovery, subset selection, underdetermined systems of
equations.

I. INTRODUCTION

F INDING solutions to underdetermined systems of equa-
tions arises in a wide array of problems in science and

technology; examples include array signal processing [1],
neural [2] and genomic data analysis [3], to name a few. In
many of these applications, it is natural to seek for sparse solu-
tions of such systems, i.e., solutions with few nonzero elements.
A common setting is when we believe or we know a priori that
only a small subset of the candidate sources, neurons, or genes
influence the observations, but their location is unknown.

More concretely, the problem we consider is that of esti-
mating the support of given the a priori knowledge
that only of its entries are nonzero based on the observational
model

(1)

where is a collection of input measurement vec-
tors, is the output measurement and is the ad-
ditive measurement noise, assumed to be zero mean and with
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known covariance equal to 1. Each row of and the cor-
responding entry of are viewed as an input and output mea-
surement, respectively.

The output of the optimal (sparsity) decoder is defined as the
support set of the sparse solution with support size that
minimizes the residual sum of squares where

(2)

is the optimal estimate of given the a priori information of
sparseness. The support set of is optimal in the sense of min-
imizing the probability of identifying a wrong sparsity pattern.

First, we are concerned with the likelihood of the sparsity
pattern of as a function of and . We obtain an upper bound
on the probability that has any specific sparsity pattern and
find that this bound depends (inversely) exponentially on the
difference of and the -norm of projected onto the
range of columns of indexed by the wrong sparsity pattern.

Second, when the entries of are independent and identi-
cally distributed (i.i.d.) random variables we are concerned with
establishing sufficient conditions that guarantee the reliability of
sparsity pattern recovery. Ideally, we would like to characterize
such conditions based on a minimal number of parameters in-
cluding the sparsity level , the signal dimension , the number
of measurements and the signal-to-noise ratio(SNR) which is
equal to

(3)

Assume that the absolute value of the nonzero entries of are
lower bounded by 2. Further, suppose that the variance of
the entries of is equal to one 11. Hence

and therefore it is natural to ask, how does the ability to reliably
estimate the sparsity pattern depend on .

We find that a nonasymptotic upper bound on the probability
of the maximum-likelihood decoder not declaring the true spar-
sity pattern can be found when the entries of the measurement
matrix are i.i.d. normal random variables. This allows us to
obtain sufficient conditions on the number of measurements

as a function of for reliable sparsity recovery.
We show that our results strengthen earlier sufficient conditions

1This entails no loss of generality, by standard rescaling of �.
2To the best of our knowledge, Wainwright [4] was the first to formulate the

information theoretic limitations of sparsity pattern recovery using � as one
of the key parameters.
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[4]–[7], and we show that the sufficient conditions on match
the growth rate of the necessary conditions in both the linear,
i.e., , and the sublinear, i.e., , regimes, as
long as is and .

A. Previous Work

A large body of recent work, including [4]–[10], analyzed
reliable sparsity pattern recovery exploiting optimal and sub-
optimal decoders for large random Gaussian measurement ma-
trices. The average error probability, necessary and sufficient
conditions for sparsity pattern recovery for Gaussian measure-
ment matrices were analyzed in [4] in terms of .
As a generalization of the previous work, using the Fano in-
equality, necessary conditions for general random and sparse
measurement matrices were presented in [8]. The sufficient con-
ditions in [6] were obtained based on a simple maximum cor-
relation algorithm and a closely related thresholding estimator
discussed in [11]. In addition to the well-known formulation of
the necessary and sufficient conditions based on ,
Fletcher et al. [6] included the maximum-to-average ratio3 of
in their analysis. Necessary and sufficient conditions for frac-
tional sparsity pattern recovery were analyzed in [5], [9].

We will discuss the relationship to this work below in more
depth, after describing our analysis and results in more detail.

B. Notation

The following conventions will remain in effect throughout
this paper. Calligraphic letters are used to indicate sparsity pat-
terns defined as a set of integers between 1 and , with cardi-
nality . We say has sparsity pattern if the entries
with indices are nonzero. stands for the set of
entries that are in but not in and for the cardinality of

. We denote by , the matrix obtained from by
extracting columns with indices obeying . Let
stand for the sparsity pattern or support set of . The matrix
norm of a matrix defined as

Note that if is a positive semi-definite matrix then is
equal to the top eigenvalue of . Except for the matrix norm

all vector norms are , . Finally, let the
orthonormal operator projecting into the subspace spanned by
the columns of be defined as .

II. RESULTS

For the observational model in (1), assume that the true spar-
sity model is ; as a result

(4)

3The maximum-to-average ratio of � was defined as �� ���� .

We first state a result on the probability of the event ,
i.e., , for any and any measure-
ment matrix .

Theorem 1: For the observational model of (4) and estimate
in (2), the following bound holds:

where .
The proof of Theorem 1, given in Section III, employs the

Chernoff technique and the properties of the eigenvalues of the
difference of projection matrices, to bound the probability of
declaring a wrong sparsity pattern instead of the true one
as function of the measurement matrix and the true parameter

. The error rate decreases exponentially in the norm of the pro-
jection of on the orthogonal subspace spanned by
the columns of . This is in agreement with the intuition that
the closer different subspaces corresponding to different sets of
columns of are, the harder it is to differentiate them, and
hence the higher the error probability will be.

The theorem below gives a nonasymptotic bound on the prob-
ability of the event that the declared sparsity pattern differs
from the true sparsity pattern in no more than indices, when
the entries of the measurement matrix are drawn i.i.d. from a
standard normal distribution. It is clear that by letting we
obtain an upper bound on the error probability of exact sparsity
pattern recovery.

Theorem 2: Suppose that for the observational model of (4)
and the estimate in (2) the entries of are i.i.d. and

. If we have the equation shown at the bottom of the
page, where

then

where and .
The key elements in the proof include Theorem 1, application

of union bounds (a fairly standard technique which has been



4674 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 7, JULY 2011

used before for this problem [4], [5], [7]), asymptotic behavior
of binomial coefficients and properties of convex functions.

Note that in the linear regime, i.e., , with
and the probability of misidentifying more than
any fraction (less than one) goes to zero exponentially fast as

. In words, if the SNR is fixed while the dimension of
the signal increases unboundedly, it is still possible to recover
reliably some fraction of the support. This is in agreement with
previous results on partial sparsity pattern recovery [5], [9].

If we let , , and scale as a function of , then
the upper bound of scales like .
For or equivalently , the probability of error as

is bounded above by for some . Therefore

(5)

is finite and as a consequence of the Borel-Cantelli Lemma, for
large enough , the decoder declares the true sparsity pattern al-
most surely. In other words, the estimate based on (2) achieves
the same loss as an oracle which is supplied with perfect infor-
mation about which coefficients of are nonzero. The following
corollary summarizes the aforementioned statements.

Corollary 3: For the observational model of (4) and the esti-
mate in (2), let , and scale as a function of . Then
there exists a constant such that if is and ,
and

then a.s. for large enough , achieves the same performance
loss as an oracle which is supplied with perfect information
about which coefficients of are nonzero and .

Remarks:
• is required to ensure that for a sufficiently

large , we have
where and are defined in Theorem 1.

• is required to ensure that for a sufficiently
large , we have where is defined
in Theorem 1.

The sufficient conditions in Corollary 3 can be compared against
similar conditions for exact sparsity pattern recovery in [4]–[7];
for example, in the sublinear regime , when

, [4], [7] proved that is sufficient, and
[5], [6] proved that is sufficient. In that
vein, according to Corollary 3

suffices to ensure exact sparsity pattern recovery; therefore, it
strengthens these earlier results.

What remains is to see whether the sufficient conditions in
Corollary 3 match the necessary conditions proved in [8]:

Theorem 4 [8]: Suppose that the entries of the measurement
matrix are drawn i.i.d. from any distribution with

zero-mean and variance one. Then a necessary condition for
asymptotically reliable recovery is that

where

The necessary condition in Theorem 4 asymptotically resem-
bles the sufficient condition in Corollary 3; recall that

. The sufficient conditions of Corollary 3 can be com-
pared against the necessary conditions in [8] for exact sparsity
pattern recovery, as shown in Table I. The first paper to estab-
lish the sufficient conditions in row 1 and row 4 of Table I is
[10]. The sufficient conditions presented in the first four rows
of Table I are a consequence of past work [4], also recovered
by Corollary 3. The new stronger result in this paper provides
the sufficient conditions in row 5 and 6, which did not appear in
previous studies [4]–[7], and match the previous necessary con-
ditions presented in [8]. (It is worth reminding that these results
are restricted to and .).

III. PROOF OF THEOREM 1

We first state three basic lemmas.

Lemma 5: If any columns of the matrix are lin-
early independent then for any sparsity pattern and such
that the difference of projection matrices

has pairs of nonzero positive and negative
eigenvalues, bounded above by one and bounded below by neg-
ative one, respectively, and equal in magnitude.

Lemma 6: For and , we have

Lemma 7: For and , we have

We defer the proofs of the lemmas 5 and 7 to after the proof of
Theorem 1. Lemma 6 follows standard Gaussian integrals [12].

A. Proof of Theorem 1

For a given sparsity pattern , the minimum residual sum of
squares is achieved by

where denotes the orthogonal projection operator into the
column space of ; that is, among all sparsity patterns with
size , the optimum decoder declares



RAD: NEARLY SHARP SUFFICIENT CONDITIONS ON EXACT SPARSITY PATTERN RECOVERY 4675

TABLE I
NECESSARY AND SUFFICIENT CONDITIONS ON THE NUMBER OF MEASUREMENTS � REQUIRED FOR RELIABLE SUPPORT RECOVERY IN THE LINEAR AND THE

SUBLINEAR REGIME. THE SUFFICIENT CONDITIONS PRESENTED IN THE FIRST FOUR ROWS ARE A CONSEQUENCE OF PAST WORK [4], ALSO RECOVERED BY

COROLLARY 3. THE NEW STRONGER RESULT IN THIS PAPER PROVIDES THE SUFFICIENT CONDITIONS IN ROW 5 AND 6, WHICH DID NOT APPEAR IN PREVIOUS

STUDIES [4]–[7], AND MATCH THE NECESSARY CONDITIONS PRESENTED IN [8]

as the optimum estimate of the true sparsity pattern in terms of
minimum error probability. Recall the definition of in (2) and
note that . If the decoder incorrectly declares

instead of the true sparsity pattern (namely ), then

or equivalently

The probability that the optimal decoder declares wrongly the
sparsity pattern instead of the true sparsity pattern is less
than the probability that . With the aid of the Chernoff
technique an upper bound on the probability that is
obtained

Note that is a random variable that has a quadratic form
in Gaussian random vectors. This allows us to use standard
Gaussian integrals to calculate . In order to
bound the expectation, is required to be bounded which is a
necessary condition in Lemma 6. From Lemma 6, we learned
that

(6)

where we made the following abbreviations:

For Lemma 6, we need and we prove in Lemma 5
that the eigenvalues of are bounded in absolute value by one;
consequently, (6) holds for .

With the aid of the definition of the norm of matrices and
applying it to the first term in the r.h.s. of
(6) can be bounded as follows:

(7)
Since lies in the subspace spanned by the columns of we
have

which yields the following:

and similarly

The aforementioned equations and the inequality (7) yields the
upper bound shown in (8), as found at the bottom of the page.
Lemma 7 introduces an upper bound for and
a lower bound for that can be used to further
simplify the upper bound of . The main ingredient
in the proof of Lemma 7 is the eigenvalue properties of

(8)
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that were established in Lemma 5. Substituting the bounds
obtained in Lemma 7 in (8), we have

(9)

Finally, to prove Theorem 1, we take the infimum of
over which is equal to at

and obtain the desired bound as shown in the equation
at the bottom of the page.

Now we prove the remaining lemmas.
Proof of Lemma 5: Before we prove the result, let us intro-

duce some notations.
• For any , is defined as the linear

subspace spanned by the columns of ,
• stands for the subspace orthogonal to ,
• and stand for and

, respectively,
• and finally for any subspace , designates the orthog-

onal projection onto . (With a slight abuse of notation,
for any sparsity pattern , we use instead of ).

It is worthwhile noting that is empty. From [13,
Lemma 4.1], for any and in , it holds that

(10)

(11)

which yields

Consequently

(12)

Since any set of columns of with size less or equal to are
independent, for any and such that and

, we have

and

(13)

(14)

therefore

The dimension of which is the null space of
is equal to

We just proved that has eigenvalues with
eigenvalue zero. The range of is the dimensional
space . Therefore, has nonzero eigenvalues
with absolute value less or equal to one (The eigenvalues of

are equal to one only if .)
If is an eigenvector of with eigenvalue , then

we have

Next, we prove that the vector

is an eigenvector of with eigenvalue . The proof
presented in the following exploits the definition of the eigen-
vector :

This means that for every eigenvector with eigenvalue
there exist another eigenvector with eigenvalue .

Proof of Lemma 7: From Lemma 5, we know that
has pairs of nonzero positive and negative eigenvalues, whose
magnitudes are equal. Let the positive eigenvalues be denoted
by , then

Since, the eigenvalues are bounded by one, again by Lemma 5,
is lower bounded by ; consequently
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To prove , note that
has:

• eigenvalues equal to ;
• eigenvalues equal to ;
• and eigenvalues equal to one.

It is not hard to see that because and the top
eigenvalue of is bounded above by
and hence,

IV. PROOF OF THEOREM 2

We state two simple lemmas used to prove Theorem 2.

Lemma 8: For Gaussian measurement matrices, with
the average error probability that the optimum decoder

declares is bounded by

where .

Lemma 9: For the function

defined on positive integers if

(15)
then

Before we prove the two lemmas, let us see how they imply
Theorem 2.

A. Proof of Theorem 2

In order to find conditions under which
asymptotically goes to zero, we exploit the union bound in

conjunction with counting arguments and the previously stated
two lemmas.

First, note that the event can be written as
the union of the events for all sparsity patterns
such that . The union bound allows us to bound the
probability of the event by the sum of
probabilities of events like . In mathematical terms

Lemma 8 which is based on generating functions of chi-square
distributions introduces an upper bound for the event

; namely

with . If we replace with the lower
bound which follows the definition of we
obtain an upper bound for the event that does not
depend on as long as is fixed. The number of sparsity
patterns that are different from in exactly elements is

. Therefore, we can bound

by . To summarize, exploiting
inequality , we have

(16)

Let stand for the exponent in the previous equation

where we defined

From Lemma 9, we know that if

(17)

then and therefore

(18)

For , it suffices that and go
to fast enough. In the statement of Theorem 2, we have the
following condition:

that results in the following upper bound:

(19)

(20)
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Hence, if

(21)

then we get the equation shown at the bottom of the page. There-
fore, inequalities (17) and (21), which are the main conditions
in Theorem 1, imply that

where .

Now we prove the remaining lemmas.
Proof of Lemma 8: The columns of and are,

by definition, disjoint and therefore independent Gaussian
random matrices with column spaces spanning random inde-
pendent -and -dimensional subspaces, respectively.
The Gaussian random vector has i.i.d. Gaussian
entries with variance . Therefore, we conclude that,
since the random Gaussian vector is projected
onto the subspace orthogonal to the random column space of

, the quantity is a
chi-square random variable with degrees of freedom.
Thus

The first inequality follows from Theorem 1 and the second
equality comes from the well-known formula (see for example
[12]) for the moment-generating function of a chi-square
random variable; that is, for

.
Proof of Lemma 9: Let us first explain the idea behind this

Lemma. We aim to prove that under certain conditions, for some
, is a decreasing function for and an

increasing function for . This yields the desired upper
bound

(22)

We begin by taking derivatives of to prove the aforemen-
tioned claim

Note that in the following steps, we use inequality (15), i.e.,

to prove inequality (22).
1. has two solutions and such that .

Due to the positivity of the denominator and the quadratic
and concave nature of the numerator of , we have:
(a) for ;
(b) for ;
(c) for .

2. From inequality (15), we have

which ensures that . Therefore, we have
. This implies the convexity of for

and the negativity of for . We have two situa-
tions depending on whether or not:
1. : From inequality (15) we have

which implies that
. This, in conjunction with for , im-

plies that is decreasing for .
2. : is convex for .
3. Either case, i.e., is convex for or de-

creasing for all and convex for ,
proves the desired inequality (22).

V. CONCLUSION

In this paper, we examined the probability that the optimal
decoder declares an incorrect sparsity pattern. We obtained an
upper bound for any generic measurement matrix, and this al-
lowed us to calculate the error probability in the case of random
measurement matrices. In the special case when the entries of
the measurement matrix are i.i.d. normal random variables, we
computed an upper bound on the expected error probability.
Sufficient conditions on exact sparsity pattern recovery were
obtained, and they were shown to improve the previous results
[4]–[7]. Moreover, these results asymptotically match (in terms
of growth rate) the corresponding necessary condition presented
in [8]. An interesting open problem is to extend the sufficient
conditions derived in this work to non-Gaussian and sparse mea-
surement matrices.
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