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Abstract

There has recently been a great deal of interest in inferring network connectivity

from the spike trains in populations of neurons. One class of useful models which can

be fit easily to spiking data is based on generalized linear point process models from

statistics. Once the parameters for these models are fit, the analyst is left with a

nonlinear spiking network model with delays, which in general may be very difficult

to understand analytically. Here we develop mean-field methods for approximat-

ing the stimulus-driven firing rates (both in the time-varying and steady-state case),

1



auto- and cross-correlations, and stimulus-dependent filtering properties of these net-

works. These approximations are valid when the contributions of individual network

coupling terms are small and, hence, the total input to a neuron is approximately

Gaussian. These approximations lead to deterministic ordinary differential equations

that are much easier to solve and analyze than direct Monte Carlo simulation of the

network activity. These approximations also provide analytical way to evaluate the

linear input-output filter of neurons and how the filters are modulated by network in-

teractions and some stimulus feature. Finally, in the case of strong refractory effects,

the mean-field approximations in the generalized linear model become inaccurate;

therefore we introduce a model that captures strong refractoriness, retains all of the

easy fitting properties of the standard generalized linear model, and leads to much

more accurate approximations of mean firing rates and cross-correlations that retain

fine temporal behaviors.

1 Introduction

One of the fundamental problems in the statistical analysis of neural data is to infer the

connectivity and stimulus-dependence of a network of neurons given an observed sequence

of extracellular spike times in the network [Brown et al., 2004]. Estimating the parameters

of network models from data is in general a computationally difficult problem because of

the high dimensionality of the parameter space and the possible complexity of the model’s

objective function given an observed data set of network spike times.

One class of models that has proven quite useful is known in the statistics literature
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as the “generalized linear model” (GLM) [Brillinger, 1988, Chornoboy et al., 1988] (see

also [Martignon et al., 2000, Kulkarni and Paninski, 2007, Nykamp, 2007b]), variants of

which have been applied successfully in the hippocampus [Harris et al., 2003,Okatan et al.,

2005], motor cortex [Paninski et al., 2004,Truccolo et al., 2005], retina [Pillow et al., 2007],

and cultured cortical slice [Rigat et al., 2006]. In its simplest form, this model incorporates

both stimulus-dependence terms and direct coupling terms between each observed neuron

in the network; fitting the model parameters leads to an inhomogeneous (stimulus-driven),

nonlinear coupled spiking model with delay terms. Statistically speaking, the model is

attractive due to its explicitly probabilistic nature, and because fitting the model parame-

ters is surprisingly simple: under certain simple conditions, the loglikelihood function with

respect to the model parameters is concave, and the maximum likelihood estimation of the

parameters can be easily performed via standard ascent methods [Paninski, 2004,Paninski

et al., 2007].

Once the model parameters are obtained, we are left with an obvious question: what do

we do next? One of the key applications of such a network model is to better understand

the input-output properties of the network. For example, we would like to be able to

predict the mean firing response of the network given a novel input, and to dissect out the

impact of the network coupling terms on this stimulus-response relationship (e.g., how does

local inhibition impact the stimulus filtering properties of the network?). We would also

like to know how the correlation properties of spike trains in the network might depend on

the stimulus, and in general how correlations might encode stimulus information [Riehle

et al., 1997,Hatsopoulos et al., 1998,Oram et al., 2001,Nirenberg et al., 2002, Schnitzer
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and Meister, 2003,Kohn and Smith, 2005,Pillow et al., 2007].

We can in general study these questions via direct Monte Carlo simulations. However,

simulation of a large scale probabilistic spiking network is computationally expensive, since

we often need to draw many samples (i.e., run many simulated trials) in order to compute

the quantities of interest to the desired precision. More importantly, direct numerical

simulation often provides limited analytical insight into the mechanisms underlying the

observed phenomena.

The goal of this study is to investigate how much of the behaviors of these GLM

networks can be understood using standard analytical “mean-field” approximations [Renart

et al., 2003,Wilson and Cowan, 1972,Amit and Tsodyks, 1991,Ginzburg and Sompolinsky,

1994,Hertz et al., 1991,Kappen and Spanjers, 2000,Gerstner and Kistler, 2002,Meyer and

van Vreeswijk, 2002]. In particular, we develop approximations for the mean firing rates of

the network given novel stimuli, as well as the auto- and cross-crosscorrelation and input-

output filtering properties of these networks. These approximations are valid when the

contributions of individual network coupling terms are small, and lead to deterministic

ordinary differential equations that are much easier to solve and analyze than direct Monte

Carlo simulation of the network activity.

However, in the case of strong refractory effects, these mean-field approximations be-

come inaccurate, since the spike-history terms in the generalized linear model must be large

to induce strong refractoriness, and this pushes our approximations beyond their region

of accuracy. Therefore we introduce a modified model, a generalized linear model with

Markovian refractoriness. This model has several advantages in this setting: it captures
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strong refractoriness, retains all of the easy fitting properties of the standard generalized

linear model, and leads to much more accurate mean field approximations.

2 The generalized linear point process model

We begin by precisely defining the generalized linear point process model. We consider

N recurrently connected spiking neurons, modeled as a multivariate point process [Snyder

and Miller, 1991]. The firing rate (conditional intensity function) of neuron i at time t is

a function of the total input, ui(t), the neuron receives:

λi(t) = f(ui(t)), (1)

where f(.) is a smooth, nonnegative and monotonically increasing function. For numerical

simulations, we use exponential nonlinarity, i.e., f(u) = eu but the analysis in this paper

is not limited to this exponential nonlinearity. The total input to the neuron is expressed

as the sum of external input Ii and recurrent input Hi;

ui(t) = Ii(t) + Hi(t). (2)

The recurrent input is modeled as a sum of identical responses caused by each presynaptic

spike, and written as

Hi(t) =

N
∑

j=1

∑

tj,n<t

wj
i (t − tj,n), (3)

where wj
i (t) is a coupling term from neuron j (upper index) to i (lower index), tj,n is the

n-th spike time of neuron j. Without loss of generality, we may express each coupling term
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wj
i (t) as a weighted sum of exponential functions of different time constants. As we will

see below, this sum-of-exponentials representation is extremely useful: we will take full

advantage of the Markovian nature of the decaying exponential function. To keep notation

under control, we will restrict our attention to the case of a single exponential function

with time constant τ j
i , i.e.,

wj
i (t) = J j

i exp(−t/τ j
i )Θ(t), (4)

where Θ is the Heaviside step function, which takes one for positive arguments and takes

zero otherwise; generalizations to the case where wj
i (t) is given by a sum of exponentials

with different time constants will be left implicit and will be straightforward in all cases.

If we write the output spike train of neuron i as

Si(t) =
∑

n

δ(t − ti,n), (5)

the recurrent input of Eq. (3) is rewritten as the convolution of the synaptic filter and the

presynaptic spike train:

Hi(t) =
N
∑

j=1

∫

ds wj
i (t − s)Sj(s)

=
N
∑

j=1

J j
i h

j
i (t) (6)

with

hj
i (t) =

∫ t

−∞
e−(t−s)/τ j

i Sj(s)ds. (7)

This model is a generalization of the inhomogeneous Poisson process, since past output

spikes modulate the firing intensity function; if we set all the coupling weights J j
i to zero we
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recover the the inhomogeneous Poisson process model. The model is also closely related to

the “spike-response model” of [Gerstner and Kistler, 2002] and the inhomogeneous Markov

interval process of [Kass and Ventura, 2001], in which the firing rate depends only on the

last observed spike; note that in the GLM the firing intensity of a neuron may depend

not only on the last spike of the neuron but on the past several spikes of this neuron (see

e.g. [Paninski, 2004, Paninski et al., 2007] for further discussion). As mentioned in the

introduction, this model is attractive because it is fairly easy to fit to data and seems

to capture the firing statistics of neural populations in a variety of experimental settings.

However, in this paper we will not discuss the estimation problem, but rather limit our

attention to the problem of determining the network firing rate, etc., given fixed, known

model parameters.

3 Master equation

The main object we would like to compute here is P (h, t): this is the distribution of the

state variable h = (h1
1, . . . , h

N
N)T at time t. From Eq. (4), the recurrent interaction term

Hi can be expressed as Hi(t) =
∑

j J j
i h

j
i (t). These hj

i are the solutions of the multivariate

coupled Markov process

dhj
i (t)

dt
= −hj

i (t)

τ j
i

+ Sj(t), (8)

and therefore solving for P (h, t) will allow us to compute a number of important quantities.

For example, to compute the mean firing intensity νi(t) = E[Si(t)] of neuron i given some
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Figure 1: A schematic illustration of the generalized linear point process model.

input {Ii(t)}, we may compute

νi(t) =

∫

P (h, t)λi(t)dh

=

∫

P (h, t)f

(

Ii(t) +
∑

j

J j
i h

j
i

)

dh,

where E[.] is the average over the spike history {Si(t)|i = 1, . . . , N, 0 ≤ t < T} in an

entire duration T given external input {Ii(t)}. Hence, we can read the mean firing rate off

directly from P (h, t).

We begin by writing down the “master equation,” the Kolmogorov forward equation
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that governs the time evolution of this Markov process [Oksendal, 2002]:

∂P (h, t)

∂t
=
∑

i,j

(

1

τ j
i

∂[hj
i P (h, t)]

∂hj
i

)

+
∑

j

λj(h − ej, t)P (h − ej , t) −
∑

j

λj(h, t)P (h, t), (9)

with λi(h, t) = f(Ii(t) +
∑

j J j
i h

j
i ) as in Eq. (1) and the term ej denoting the vector with

its {i′j′} slot δjj′. Note that there are no diffusion terms here; the random nature of the

stochastic differential equation enters instead through the jump terms.

While this jump-advection partial differential equation in principle completely describes

the behavior of this system, unfortunately this equation remains difficult to handle either

analytically (due to the nonlinearity in the λ terms) or numerically (due to the large

dimensionality of the state variable h). We will pursue a direct analysis of this PDE

elsewhere; here we will attack this system using a different approach, based on a self-

consistent expansion of the first and second moments of Si(t).

In the one-dimensional case (i.e., a single neuron, with one h(.)), however, we may easily

solve the PDE numerically to obtain an exact solution for the mean firing rate. Figure 2

compares this exact solution versus the mean-field approximations derived in the following

section. As we will discuss, the mean-field approximation is reasonably good here, but not

perfect because of the fluctuation in the recurrent input (J = −1, τ = 10ms).

4 Mean-field approximation of GLM statistics

Now we turn to the main topic of this paper. As emphasized above, we would like to cal-

culate the mean-firing intensities of neurons, νi(t) = E[Si(t)], or the spike-cross-correlation

function between neurons, φij(t, t
′) = E[Si(t)Sj(t

′)]. The calculation of these statistics is
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difficult, however, because of the nonlinearity f and the recurrent input term H in the

model. A typical way of approximating these recurrent effects is to replace the interac-

tion term H by its “mean-field” [Renart et al., 2003,Wilson and Cowan, 1972,Amit and

Tsodyks, 1991,Ginzburg and Sompolinsky, 1994,Hertz et al., 1991,Kappen and Spanjers,

2000,Gerstner and Kistler, 2002,Meyer and van Vreeswijk, 2002].

Let us assume that each neuron receives input from some subset, Nc, of the total

population of neurons N . If the synaptic strength scales J ∼ 1/Nc with Nc, and assuming

that the population is in the “asynchronous” state, then it is known that the crosscovariance

function between two neurons ∆φij(t, t
′) = Cov[Si(t), Sj(t

′)] scales with 1/Nc for large

Nc [Ginzburg and Sompolinsky, 1994]. This means that the contribution of each network

interaction term is negligible and all the neuron activities are independent in the Nc → ∞

limit. Hence, the calculation of the mean firing intensities and cross-correlations are easy

in this limit.

We will first derive the mean-firing intensity in the limit of Nc → ∞, and then evaluate

the finite size effect of order 1/Nc. Note that this mean-field solution is a good approxima-

tion not only when Nc is very large; equivalently, this is a good approximation when the

synaptic coupling J is small for fixed Nc, where the contribution of an individual synapse

is small.

Now our first key approximation is to appeal to the central limit theorem applied to

the sum of Eq. (6), and to assume that the recurrent input H is roughly Gaussian. Now we

can express the mean firing intensities of the neurons in our network as a function of two

sufficient state variables, the mean recurrent input E[H ] and the variance of the recurrent
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input V ar[H ]:

νi(t) = E[λi(t)]

= E[f(Ii(t) + Hi(t))]

≈ F (Ii(t) + µi(t), σi(t)), (10)

where, in the third line, the distribution of the recurrent input, Hi(t), is assumed to be

Gaussian with mean µi(t) = E[Hi(t)] and variance σ2
i (t) = V ar[Hi(t)], and the expectation

was replaced by a Gaussian integral

F (µ, σ) =

∫

f(u)√
2πσ2

e−
(u−µ)2

2σ2 du. (11)

Note for an exponential nonlinearity f(u) = eu, the Gaussian integral is given by F (µ, σ) =

exp(µ + σ2/2).

Next we calculate the crosscorrelation function

φij(t, t
′) = E[Si(t)Sj(t

′)]

= δijδ(t − t′)E[Si(t)] + Θ(t − t′)E[λi(t)Sj(t
′)] + Θ(t′ − t)E[Si(t)λj(t

′)]

= δijδ(t − t′)νi(t) + Θ(t − t′)νij(t|t′)νj(t
′) + Θ(t′ − t)νji(t

′|t)νi(t), (12)

where in the second line we decomposed the correlation function into the three terms: the

first term shows the simultaneous correlation with its amplitude proportional to the firing

intensity due to the point-process nature of the spike train, the second term shows the

correlation when t > t′ (the spike variable Si(t) is averaged given past spike history to

yield λi(t)), and the third term is the correlation for t′ > t. In the third line we introduced
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conditional firing intensity

νij(t|t′) = E[Si(t)|spike of j at t′] =
E[Si(t)Sj(t

′)]

E[Sj(t′)]
(13)

that describes the probability of neuron i firing at t given the spike of j at t′. We also intro-

duce an abbreviation in the following and write E[.|Sj(t
′)] instead of E[.|spike of j at t′].

Similar to the approximation in Eq. (10), we assume a Gaussian distribution of H given a

spike of neuron j at time t′ to find

νij(t|t′) = E[λi(t)|Sj(t
′)]

= E[f(Ii(t) + Hi(t))|Sj(t
′)]

≈ F (Ii(t) + µij(t|t′), σij(t|t′)) (14)

for t > t′ with conditional mean, µij(t|t′) = E[Hi(t)|Sj(t
′)], and conditional variance,

σ2
ij(t|t′) = V ar[Hi(t)|Sj(t

′)]. Note that Eq. (14) is only valid for t > t′; if t < t′ instead,

we evaluate νji(t
′|t) and use the Bayes theorem to calculate νij(t|t′) = νji(t

′|t)νi(t)/νj(t
′).

The unconditional and conditional mean and variance of H in Eq. (10) and Eq. (14) are

evaluated as

µi(t) =
∑

k

Jk
i αk

i (t),

µij(t|t′) =
∑

k

Jk
i αk

ij(t|t′),

σ2
i (t) =

∑

k,l

Jk
i J l

iA
kl
i (t),

σ2
ij(t|t′) =

∑

k,l

Jk
i J l

iA
kl
ij (t|t′), (15)
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where we defined

αk
i (t) = E[hk

i (t)] =

∫ t

−∞
ds e−(t−s)/τk

i νk(s), (16)

αk
ij(t|t′) = E[hk

i (t)|Sj(t
′)] =

∫ t

−∞
ds e−(t−s)/τk

i νkj(s|t′),

Akl
i (t) = Cov[hk

i (t), h
l
i(t)] =

∫ t

−∞
ds

∫ t

−∞
ds′ e−(t−s)/τk

i −(t−s′)/τ l
i ∆φkl(s, s

′),

Akl
ij (t|t′) = Cov[hk

i (t), h
l
i(t)|Sj(t

′)] =

∫ t

−∞
ds

∫ t

−∞
ds′ e−(t−s)/τk

i −(t−s′)/τ l
i Cov[Sk(s), Sl(s

′)|Sj(t
′)],

with ∆φkl(s, s
′) = φkl(s, s

′) − νk(s)νl(s
′). The evolution of αk

i , α
k
ij, and Akl

i in Eq. (16)

follows simple ODEs and easy to simulate:

d

dt
αk

i (t) = −αk
i (t)

τk
i

+ νk(t), (17)

d

dt
αk

ij(t|t′) = −
αk

ij(t|t′)
τk
i

+ νkj(t|t′),

d

dt
Akl

i (t) = −
(

1

τk
i

+
1

τ l
i

)

Akl
i (t) + lim

ǫ→0

[

∫ t+|ǫ|

−∞
e−(t−s)/τk

i ∆φkl(s, t)ds +

∫ t−|ǫ|

−∞
e−(t−s′)/τ l

i ∆φkl(t, s
′)ds′

]

= −Akl
i (t)

τkl
i

+ lim
ǫ→0

[

∫ t+|ǫ|

−∞
e−(t−s)/τk

i ∆νkl(s|t)νl(t)ds +

∫ t−|ǫ|

−∞
e−(t−s′)/τ l

i ∆νlk(s
′|t)νk(t)ds′

]

= −Akl
i (t)

τkl
i

+ ∆αk
il(t

+|t)νl(t) + ∆αl
ik(t

−|t)νk(t),

where 1/τkl
i = 1/τk

i + 1/τ l
i , ∆νij(t|t′) = νij(t|t′) − νi(t), ∆φkl(s, s

′) = ∆νkl(s|s′)νl(s
′) =

∆νlk(s
′|s)νk(s), ∆αk

ij(t|t′) = αk
ij(t|t′) − αk

i (t) and ∆αk
il(t

±|t) = limǫ→0 ∆αk
il(t ± |ǫ||t). Note

that the differentiation of Akl
i (t) for k = l is a little tricky because ∆φkl(s, s

′) has a delta-

peak at s = s′. While the definition of Akl
i (t) in Eq. (16) is clear, we have to make sure

in the evaluation of
dAkl

i (t)

dt
not to double-count the integration of the delta-peak. Hence,

in the third equation of Eq. (17), we included the delta-peak along the integration over

s (including the peak at s = t) but excluded this peak from the integration along s′
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(excluding the peak at s′ = t).

4.1 Solution in the mean-field limit

In this section we evaluate mean firing intensities, νi, and crosscorrelation functions, φij,

in the mean-field limit of Nc → ∞ (which is also valid in the non-coupled limit J → 0 for

finite Nc), i.e., synaptic strengths are scaled J ∼ 1/Nc so that individual contribution of a

spike is negligible for large Nc; and we also assume, as discussed above, that the network is

in the asynchronous state. Under these conditions, the crosscovariances between neurons

are known to scale as ∆φij ∼ 1/Nc for i 6= j and ∆φij ∼ 1 for i = j [Ginzburg and

Sompolinsky, 1994]. Then, we can easily see σ2
i (t) ∼ 1/Nc because Akl

i ∼ 1 for k = l and

Akl
i ∼ 1/Nc for k 6= l from Eq. (16). Hence, in the limit of Nc → ∞, we obtain from

Eq. (10) and Eq. (17),

νi(t) → f (Ii(t) + µi(t)) ,

µi(t) =
∑

k

Jk
i αk

i (t),

d

dt
αk

i (t) = −αk
i (t)

τk
i

+ νk(t). (18)

This self-consistent update rule corresponds to a well known mean-field dynamics of the

mean-firing intensity [Ginzburg and Sompolinsky, 1994]. Similarly the scaling of crossco-

variance ∆φij ∼ 1/Nc for i 6= j implies ∆αk
ij(t|t′) ∼ 1/Nc for k 6= j and ∆αk

ij(t|t′) ∼ 1 for

k = j from Eq. (16). Moreover the conditional covariance Cov[Sk(s), Sl(s
′)|Sj(t

′)] scales

with 1/Nc for k 6= l 6= j and thus σ2
ij(t|t′) ∼ 1/Nc. Hence, in the limit of Nc → ∞, we find
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νij(t|t′) → νi(t) for t > t′ and, from Eq. (12),

∆φij(t, t
′) → δijδ(t − t′)νi(t). (19)

These equations are very easy to simulate and the approximation of the mean firing inten-

sity is good even for a small Nc if J is small (Fig. 2A). On the other hand, the mean-field

approximation is not good for large J (see Fig. 3 and Fig. 4B). This is because, for fixed Nc,

the fluctuation of the recurrent input increases with J , making the mean-field assumption

(which neglects these fluctuations) invalid. Figure 4 shows the crosscorrelation functions

between two neurons. Because the self interaction term J ∼ 1/Nc vanishes for the large

Nc limit, the autocorrelation function in this limit can only capture the Poisson peak at

t = t′ but does not capture any non trivial correlation caused by the interaction term J

for finite Nc (Fig. 4).

4.2 Estimating the finite size effect

In the previous section, we calculated the mean-firing intensity, νi(t), and the crosscovari-

ance function, φij(t, t
′), in the Nc → ∞ limit. Ideally, once provided the true σ2

ij(t|t′) term,

which is of order 1/N2
c different from σ2

i (t), we can iteratively evaluate Eqs. (10)-(17)

starting from the mean-field limit solution of Eq. (18) and Eq. (19) to find the precise

approximation of νi(t) and φij(t, t
′) as long as the Gaussian H assumption is valid. How-

ever, we need the third order correlations to evaluate σ2
ij(t|t′) and the equations are not

closed. Here, we give up evaluating O(1/N2
c ) terms and just evaluate the finite size cor-

rections of νi(t) and φij(t, t
′) up to O(1/Nc) terms. Up to this order it can be argued that
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σ2
ij(t|t′) ≈ σ2

i (t), and under this approximation we obtain a self-consistent expression for

νi(t) and φij(t, t
′). The substitution of the mean-field solution Eq. (18) and Eq. (19) in

Eq. (10) and (14) yields, up to the first order of 1/Nc,

νi(t) = F (Ii(t) + µi(t), σi(t)),

νij(t|t′) = F (Ii(t) + µij(t|t′), σi(t)), (20)

where σ2
ij(t|t′) ≈ σ2

i (t) to the first order of 1/Nc. The above equation can be evaluated

using Eqs. (15)-(17), which we repeat here for convenience:

µi(t) =
∑

k

Jk
i αk

i (t),

µij(t|t′) =
∑

k

Jk
i αk

ij(t|t′),

(σi(t))
2 =

∑

k,l

Jk
i J l

iA
kl
i (t),

d

dt
αk

i (t) = −αk
i (t)

τk
i

+ νk(t),

d

dt
αk

ij(t|t′) = −
αk

ij(t|t′)
τk
i

+ νkj(t|t′),

d

dt
Akl

i (t) = −Akl
i (t)

τkl
i

+ ∆αk
il(t

+|t)νl(t) + ∆αl
ik(t

−|t)νk(t);

note that only Eq. (20) has changed here.

In principle, the above equations are valid even with time dependent input, and several

iteration of the above set of equations yield time dependent crosscorrelation functions.

However, evaluation of the above equations is computationally expensive with time depen-

dent input. If one neuron is connected to Nc surrounding neurons, and time is discretised

in to T time bins, it takes O(N2 ·Nc · T 2) operations and memory to evaluate αk
ij(t|t′). On

the other hand, if the input is constant in time, αk
ij(t|t′) is a function of t− t′ only, and just
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O(N2 · Nc · T ) operations are required to solve the equations. Therefore, we focus on cal-

culating the finite size effect for constant input in this paper1. Generally, several iterations

of the above set of equations are required for the convergence of mean firing intensities and

cross correlations. However, if we initially set those variables to the solution in the limit

of Nc → ∞, we practically found good approximations after a couple of iterations in many

cases.

The mean firing rate and crosscorrelation functions calculated from Eq. (20)-(21) are

precise for small J and large Nc because the recurrent input is close to Gaussian in this case

(Fig. 4A). On the other hand, for large J and small Nc, the Gaussian input approximation

is poor, and therefore the approximation becomes worse (Fig. 4B). One key result here is

that both the autocorrelations and the cross-correlations in these networks depend on the

inputs I(t) in general, as can be seen from Eqs. (15-17); changing just the baseline (mean)

of the input I(t) can significantly change the correlation structure in the network (as seen

in a number of physiological preparations, e.g., [Hatsopoulos et al., 1998,Kohn and Smith,

2005]), even if the coupling terms J and w are unchanged.

1Note that the computational complexity to calculate the finite size effect is not N2 but N2 · Nc

because each synaptic time constant, τk
i , is distinct. Hence, we needed to evaluate each αk

ij = E[hk
i |Sj ]

term separately. However, if all the synaptic constants onto each neuron are constant, i.e., τk
i = τi, we can

directly evaluate µij =
∑

k Jk
i αk

ij without evaluating αk
ij separately, and the computational complexity to

evaluate the finite size effect reduces to O(N2 · T ).
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4.3 Linear input-output filter

The ODE derived in Eq. (18) is general and may be applied given arbitrary time dependent

input {Ii(t)}. In this section, we will exploit these equations to explore the linear response

properties of these spiking networks. A standard physiological technique is “white noise

analysis” [Marmarelis and Marmarelis, 1978,Rieke et al., 1997], in which we inject white

noise input in order to study a network’s input-output filtering properties. Applying this

analysis to our GLM system, the external input is given by Ii(t) =
∫

Ki(t − s)ξi(s)ds,

where Ki is neuron i’s linear stimulus filter and ξi(t) is the white noise stimulus with mean

〈ξ(t)〉 = ξ
(0)
i , and small variance 〈(ξi(t) − ξ

(0)
i )(ξj(t

′) − ξ
(0)
j )〉 = σ2

ξδijδ(t − t′); we keep the

input variance small here in order that we can treat the input as almost constant and

develop a consistent linear response theory. Note that 〈.〉 describes the average over the

fluctuating stimulus ξi(t) here. We use δX = X−〈X〉 for any function X of input stimulus,

and neglect O(δI2) terms in the following calculations.

Let us summarize the calculations in the mean-field (Nc → ∞) limit. The mean firing

intensity of a neuron is given by the following self-consistent equations:

νi(t) = f(Ii(t) + µi(t)),

µi(t) =
∑

k

∫

wk
i (t − s)νk(s)ds. (21)

In particular, for a constant stimulus, ξi(t) = ξ
(0)
i , we obtain

ν
(0)
i = f(I

(0)
i + µ

(0)
i ),

µ
(0)
i =

∑

k

τk
i Jk

i ν
(0)
k (22)
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from Eq. (4). Note that X(0) describes responses at constant stimulus ξ
(0)
i , for example,

I
(0)
i = ξ

(0)
i

∫

K(t)dt. We can solve the zeroth order terms in Eq. (22) self-consistently by

finding the roots of the equations ν
(0)
i = f(I

(0)
i +

∑

k τk
i Jk

i ν
(0)
k ); in Fig. 5, we compared this

self-consistent mean-field solution with numerical simulation of a single neuron as a function

of constant input, I(0), and self-inhibition strength J . We see that the approximation is

good for small values of self-interaction J , but that the error increases with |J | and I(0),

as expected given the analysis in the previous section.

To perform the linear response analysis we require the first-order terms. Differentiation

of Eq. (18) with respect to stimulus perturbation, δξ, yields

δνi(t) = f ′(I
(0)
i + µ

(0)
i )(δIi(t) + δµi(t)) (23)

= f ′(I
(0)
i + µ

(0)
i )

∫

Ki(t − s)δξi(s)ds + f ′(I
(0)
i + µ

(0)
i )
∑

k

∫

wk
i (t − s)δνk(s)ds.

Now, we can rewrite Eq. (23) by introducing vector notation as

δν(t) =

∫

(K(t − s)δξ(s) + w(t − s)δν(s)) ds, (24)

where we defined [K(s)]ij = δijf
′(I

(0)
i + µ

(0)
i )Ki(s) and [w(s)]ij = f ′(I

(0)
i + µ

(0)
i )wj

i (s).

Therefore, the Fourier transformation of Eq. (24) yields

δν̂(ω) = K̂(ω)δξ̂(ω) + ŵ(ω)δν̂(ω)

= Ĝ(ω)δξ̂(ω) (25)

with a gain function G(t) =
∫

dω
2π

eiωt[I − ŵ(ω)]−1K̂(ω). Note that I is an identity matrix

here (not the input vector). We should note that a mathematically identical linear response
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filter was derived for a related model in [Ginzburg and Sompolinsky, 1994]. One difference

is that, in their model, spin-like binary variables flip depending on input level with a

fixed time constant. This corresponds, in our model, to the case that all the synaptic

time constants τ j
i are identical. Hence, the linear response filter in Eq. (25) is a natural

generalization of their result.

We show, in Fig. 6A, a simulated normalized receptive field of a single neuron and

the analytical result of Eq. (25). In this single-neuron case, where K is set to be a single

exponential function with time constant τI , for simplicity, the Fourier transformations of

the synaptic filter and the input filter are ŵ(ω) = τ/(1 + iωτ) and K̂(ω) = τI/(1 + iωτI),

respectively. In this case, we obtain, after a Fourier inverse transformation by a Cauchy

integral,

G(t) =
f ′

1 + Jf ′τ−
e−t/τI +

Jf ′2τ−
1 + Jf ′τ−

e−(1/τ−Jf ′)t, (26)

where τ− = (1/τI − 1/τ)−1 and f ′ = f ′(I(0) + µ(0)). We see that the linear response may

be described as a combination of the stimulus-filter term K along with an additional term

due to the recurrent filter w; of course, in the limit J → 0, we recover G → K. Note

also that the input-output filter changes with the baseline input through f ′; In case of the

exponential nonlinearity, f , and J < 0, the larger the input baseline the sharper the linear

filter. This is because the effective strength of of the spike-history effect is modulated by

the input-output nonlinearity and the baseline input level. See, e.g., [Bryant and Segundo,

1976] for some similar effects in an in vitro physiological preparation.

Next, we calculate how interactions between neurons can change the input-output
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filter. For concreteness, we consider two neurons that receive a spatio-temporal white

noise stimulus ξ(z, t) with unit variance. Input to the neuron i is described by ξi(t) =

∫∞
−∞ dzLi(z)ξ(t, z), where Li(z) = 1√

2π
e−(z−zi)2/2 are spatial filters with means z1 = 1 and

z2 = −1. For simplicity, we assume that two neurons receive the same baseline of input,

I
(0)
1 = I

(0)
2 = I(0) = 2 with an identical temporal stimulus filter, K(t) = e−t/τI Θ(t), and

have symmetric synaptic interactions J12 = J21 = J = −1, J11 = J22 = 0 and τk
i = τI =

τ = 10ms. The derivative of the nonlinear function is described by f ′
i = f(I

(0)
i + µ

(0)
i )

for i = 1, 2. Proceeding as above, we can calculate the spatio-temporal input-output filter

of neuron i as G̃i(t, z) =
∑

j Gij(t)Lj(z). Similar to the previous single neuron case, the

Fourier transformation of the temporal stimulus filter is [K̂(ω)]ij = δij
f ′

i

1/τ+iω
, while the

synaptic filter is [ŵ(ω)]ij =
f ′

iJij

1/τ+iω
, which yield the Fourier transformation of the temporal

input-output filter

Ĝ(ω) = [I − ŵ(ω)]−1K̂(ω)

=
1/(1/τ + iω)

1 − (f ′
1f

′
2J

2)/(1/τ + iω)2









f ′
1 f ′

1f
′
2J/(1/τ + iω)

f ′
1f

′
2J/(1/τ + iω) f ′

2









. (27)

After a Fourier inverse transformation using Cauchy integration, we find

G(t) = e−t/τΘ(t)









f ′
1 cosh(

√

f ′
1f

′
2Jt)

√

f ′
1f

′
2 sinh(

√

f ′
1f

′
2Jt)

√

f ′
1f

′
2 sinh(

√

f ′
1f

′
2Jt) f ′

2 cosh(
√

f ′
1f

′
2Jt)









. (28)

Figure 6B compares the analytically derived input-output filter of Eq. (28) with numerical

simulation for different input baseline I(0) = 2 and I(0) = 4. It is also shown, in Fig. 6B, the

spatio-temporal input-output filter of neuron 1, G̃1(t, z) = G11(t)L1(z) + G12(t)L2(z), for

the two input baselines. Under large input baseline conditions, we see stronger interactions
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between the two neurons and, hence, significant differences in the effective input-output

filtering properties of the neuron in the two conditions. Thus, as emphasized above, the

filtering properties of the network can change in a stimulus-dependent way, without any

changes in the system parameters K, J , or w. See, e.g., [Pillow et al., 2007], for some related

results concerning the effects of interneuronal coupling terms on the filtering properties of

populations of primate retinal ganglion neurons.

5 The generalized linear point process model with

Markov refractoriness

In the last section we saw that we could derive simple approximate expressions for many

important quantities (firing rate, correlations) in the basic generalized linear point process

model, as long as the individual synaptic coupling terms |J | are not so large that the

accuracy of the mean-field expansion is compromised (Fig. 3-4).

In particular, the small |J | condition is likely acceptable for the multineuronal coupling

terms, since in many cases the inferred coupling parameters (in motor cortex [Paninski

et al., 2004,Truccolo et al., 2005] and retina [Pillow et al., 2007], for example) have been

empirically found to be small (though larger network effects are found in hippocampus

[Harris et al., 2003, Okatan et al., 2005]). Similarly, we might expect the “slow” self-

inhibition-terms in the GLM (the terms responsible for adaptation in the firing rate, for

example) to be relatively small as well [Pillow et al., 2005,Truccolo et al., 2005].
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However, it is clear that the generalized linear model with small weights |J | will not be

able to account for the strong refractoriness that is a fundamental feature of neural point-

process dynamics at fine timescales: in the GL model, strong, brief inhibition is produced

by large, negatively weighted and sharply decaying history effects wi
i(t), and these large

wi
i(t) terms spoil our mean-field approximation. Thus it is clear that we need to adapt the

methods introduced above in order to handle strong refractory effects.

One possible solution would be to take a discrete-time approach: instead of modeling

neural responses as point processes in continuous time, we could simply model each cell’s

spike count within a discrete time bin as a Bernoulli random variable whose rate νi(t)

is an increasing function of ui(t), very much as in the continuous-time model described

above [Chornoboy et al., 1988, Okatan et al., 2005]. This discrete-time Bernoulli model

shares much of the ease of fitting (including concavity of the log-likelihood [Escola and

Paninski, 2007]) as the continuous-time model; in fact, the discrete-time model converges

in a natural sense to the continuous-time model as the time binwidth dt becomes small.

The advantage of this discrete-time formalism is that the firing rate νi(t) can never exceed

1/dt (since the Bernoulli probabilities νi(t)dt can not exceed one), and therefore, in a crude

sense, the discrete-time model has a refractory effect of length dt. A mean-field analysis can

be developed for this discrete-time model which exactly mirrors that developed above in

the continuous-time model; we simply need to exchange our ordinary differential equations

for discrete-time difference equations.

Of course, this discrete-time approach is unsatisfactory in at least one respect, since we

would like, if possible, to model the firing behavior of neurons down to a millisecond time
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scale [Berry and Meister, 1998,Keat et al., 2001,Pillow et al., 2005,Paninski et al., 2007],

and the discrete-time approach, by construction, ignores these fine timescales. Thus we

introduce a model that allows us to incorporate strong refractory effects directly. We set

the rates

λi(t) = f(ui(t))I(xi(t) = M), (29)

where f(.) and ui(t) are defined as in section 4 and I(.) is the indicator function which takes

the value 1 if the argument is true. We have introduced an auxiliary refractory variable

xi(t), which takes a discrete state from 1 to M . We assume that this variable xi(t) is itself

Markovian, with transition rates

Wi(t) =

























−1/τr 0 0 0 Si(t)

1/τr −1/τr 0 0 . . . 0

0 1/τr −1/τr 0 0

...
. . . −Si(t)

























; (30)

i.e., when xi(t) is in state M , it will transition to state 1 with each spike, and then

transitions occur from state m to state m + 1 with rate 1/τr, until xi(t) has reached the

spiking state M once again. Refractoriness in this model is enforced because the neuron

is silent whenever xi(t) is in one of the post-spike quiescent states xi(t) < M . It is easy to

see that this is a kind of inhomogeneous renewal model (the delay τd required for the state

variable xi to move from state 1 to first reache the active state M is a sum of (M − 1)

independent and identically distributed exponential random variables of mean τr, and so

τd is an i.i.d. gamma variable with parameters (M − 1, 1/τr)), and may be considered
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a special case of the “inhomogeneous Markov interval” model introduced by [Kass and

Ventura, 2001]. By adjusting the number of states M and the rate 1/τr, we may adjust

the refractory properties of the model: for example, M = 1 implies that we have an

inhomogeneous Poisson model, while M = 2 provides an exponentially-decaying relative

refractory effect, and if we let M be large, with τr scaling like τr ∼ τ/M , we obtain an

absolute refractory effect of length τ .

Finally, it is easy to show that the additional Markov term in the definition of the

rate λi(t) does not negatively impact the estimation of the GL model parameters J given

spiking data; as discussed in [Paninski, 2004], maximizing the likelihood in this model

(or constructing an EM algorithm, as in [Escola and Paninski, 2007]) requires that we

maximize a nonnegatively-weighted version of the standard point-process loglikelihood,

and this weighted loglikelihood retains all of the concavity properties of the original GL

model. Thus this new model requires just a single concave optimization, and is as easy

to fit as the standard GL point process model. The advantage is that a strong relative

refractory effect is intrinsic to the model, and does not need to be enforced by a large, brief,

negative wi
i(t) term. Instead, we may use small adjustments to the J i

i terms to fine-tune

the model to the match the short-time details of the observed inter-spike interval density2.

2In this paper, we mostly use M = 3 (except for Fig. 7B where the effect of abrupt refractoriness is

studied), because this is the smallest value of M that requires the following mean-field formulation (we

do not need a vector formulation for a M = 2 case because there is only one degree of freedom that

corresponds to the probability of being in the active state). It is worth noting that [Escola and Paninski,

2007] discuss methods for additionally estimating an optimal transition matrix Wi(t) via an EM algorithm.

This provides another method for adjusting the short-time details of the model’s responses. In addition,
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As we will see below, this leads to much more accurate mean-field approximations of the

firing rates and correlation functions in these networks.

Let us define the probability pi(t) = (P (xi(t) = 1), . . . , P (xi(t) = M))T that the

neuron i is in state xi(t) = 1, . . . , M . Note that the bold face characters denote vectors.

The dynamics of pi is described by

dpi(t)

dt
= W i(t)pi(t), (31)

where W i(t) has the same elements as Wi(t) of Eq. (30) except for

[W i(t)]1M = −[W i(t)]MM = E[Si(t)|xi(t) = M ]

=
E[Si(t)I(xi(t) = M)]

E[I(xi(t) = M)]

=
νi(t)

pi(t)
, (32)

which describes the probability of neuron i firing at time t given xi(t) = M . Note that

we used νi(t) = E[Si(t)] = E[Si(t)I(xi(t) = M)] and wrote the last component of pi(t) as

[pi(t)]M = pi(t).

We also define [pij(t|t′)]m = E[I(xi(t) = m)|Sj(t
′)] as the probability of neuron i being

in state m given a spike of neuron j at time t′. In particular, the last component is written

as pij(t|t′) = [pij(t|t′)]M . The evolution of pij(t|t′) is described by a similar equation

dpij(t|t′)
dt

= W ij(t|t′)pij(t|t′), (33)

we may extend many of the mean-field methods developed below to the case of more general rate matrices

Wi(t). However, for simplicity, we will not pursue these extensions here.
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where the transition matrix W ij(t|t′) has the same elements as Wi(t) of Eq. (30) except for

[W ij(t|t′)]1M = −[W ij(t|t′)]MM = E[Si(t)|xi(t) = M, Sj(t
′)]

=
E[Si(t)I(xi(t) = M)|Sj(t

′)]

E[I(xi(t) = M)|Sj(t′)]

=
νij(t|t′)
pij(t|t′)

. (34)

Before turning to “mean-field” approximation, it is worth noting that we may solve

for the firing rates and correlations exactly in the special case of no synaptic couplings,

J = 0. (The analogous case in the standard GL model is the inhomogeneous Poisson case,

which is of course trivial.) We can proceed by exploiting either the renewal nature of the

model [Gerstner and Kistler, 2002], which leads to convolution or infinite-sum formulae

for the firing rate, or the Markovian structure, which leads to somewhat more intuitive

ordinary differential equations. We pursue the second approach here.

In this case the mean firing intensity is given by

νi(t) = E[f(Ii(t))I(xi(t) = M)] = f(Ii(t))pi(t). (35)

This, in turn gives together with Eq. (32), [W i(t)]1M = −[W i(t)]MM = f(Ii(t)). Hence, we

can find the dynamics of mean firing intensity by solving Eq. (31). In the special case of

constant input Ii, it is easy to solve the fixed point of pi(t); we find for the last component

pi = [1 + (M − 1)τrf(Ii)]
−1.

The autocorrelation function in this case is similarly easy to derive. (Note that the

cross-covariance functions are zero in this J = 0 case, since the cross-coupling terms are
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set to zero.) In case of no couplings, J = 0, the conditional firing intensity is given by

νij(t|t′) = E[f(Ii(t))I(xi(t) = M)|Sj(t
′)] = f(Ii(t))pij(t|t′) (36)

for t > t′. We find those conner elements of W ij(t|t′) as

[W ij(t|t′)]1M = −[W ij(t|t′)]MM = f(Ii(t)) (37)

for t > t′. This means that W ij(t|t′) = W i(t) for t > t′. Hence, pij(t|t′) follows the same

differential equation as pi(t) in this J = 0 case but starting from the initial condition

pij(t|t−) = lim
ǫ→0

pij(t|t − |ǫ|)

= δij(1, 0, . . . , 0)T + (1 − δij)pi(t) (38)

because the state xi is reset to state 1 just after a given spike of neuron i.

In the following sections we will apply mean-field approximations for the firing rates

and correlations in the nonzero J case.

5.1 Mean-field approximation of the GL model with Markov re-

fractoriness

Let us approximate the mean firing intensity and the crosscorrelations of GL model with

Markov refractoriness assuming that the contribution of individual synaptic coupling is

small. Similar to the calculation without the Markov refractoriness, we assume a Gaussian
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distribution of recurrent input Hi(t) given xi(t) = M to find

νi(t) = E[f(ui(t))I(xi(t) = M)]

= E[f(ui(t))|xi(t) = M)]pi(t)

≈ F (Ii(t) + µi(t), σi(t))pi(t) (39)

with conditional mean µi(t) = E[Hi(t)|xi(t) = M ] and conditional variance σ2
i (t) =

V ar[Hi(t)|xi(t) = M ]. Also, assuming a Gaussian distribution of recurrent input Hi(t)

given xi(t) = M and a spike of neuron j at time t′, we find

νij(t|t′) = E[f(ui(t))I(xi(t) = M)|Sj(t
′)]

= E[f(ui(t))|xi(t) = M, Sj(t
′)]E[I(xi(t) = M)|Sj(t

′)]

≈ F (Ii(t) + µij(t|t′), σij(t|t′))pij(t|t′) (40)

for t > t′ with conditional mean µij(t|t′) = E[Hi(t)|xi(t) = M, Sj(t
′)] and σ2

ij(t|t′) =

V ar[Hi(t)|xi(t) = M, Sj(t
′)]. The dynamics of pi(t) and pij(t|t′) are described by Eq. (31)

and Eq. (33), respectively.

Next we calculate the conditional means and variances of the recurrent input. We find

µi(t) =
∑

k

Jk
i

βk
i (t)

pi(t)
,

µij(t|t′) =
∑

k

Jk
i

βk
ij(t|t′)

pij(t|t′)
,

σ2
i (t) =

∑

k,l

Jk
i J l

i

Bkl
i (t)

pi(t)
,

σ2
ij(t|t′) =

∑

k,l

Jk
i J l

i

Bkl
ij (t|t′)

pij(t|t′)
(41)
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with auxiliary variables defined as

[

βk
i (t)
]

m
= E[hk

i (t)|xi(t) = m] · [pi(t)]m, (42)

[

βk
ij(t|t′)

]

m
= E[hk

i (t)|xi(t) = m, Sj(t
′)] · [pij(t|t′)]m,

[

Bkl
i (t)

]

m
= Cov[hk

i (t), h
l
i(t)|xi(t) = m] · [pi(t)]m,

[

Bkl
ij (t|t′)

]

m
= Cov[hk

i (t), h
l
i(t)|xi(t) = m, Sj(t

′)] · [pij(t|t′)]m.

Note that we use the final component of the above quantities without an index (for example,

βk
i (t) =

[

βk
i (t)
]

M
). After some calculation (see Appendix), we obtain

βk
i (t) =

∫ t

−∞
ds e−(t−s)/τk

i pik(t|s)νk(s), (43)

βk
ij(t|t′) =

∫ t

−∞
ds e−(t−s)/τk

i pikj(t|s, t′)νkj(s|t′),

[

Bkl
i (t)

]

m
=

∫ t

−∞
ds

∫ t

−∞
ds′ e−(t−s)/τk

i −(t−s′)/τ l
i

{

[pikl(t|s, s′)]mφkl(s, s
′) − [pik(t|s)]m[pil(t|s′)]m

[pi(t)]m
νk(s)νl(s

′)

}

,

where [pikl(t|s, s′)]m = E[I(xi(t) = m)|Sk(s), Sl(s
′)] and, particularly, the last component

is written as pikl(t|s, s′) = [pikl(t|s, s′)]M .

5.2 Solution in the mean-field limit

Similar to the case without Markov refractoriness we first derive a self-consistent equation

for the mean-firing intensity and crosscovariances in the mean-field limit Nc → ∞, where

J ∼ 1/Nc and assuming an asynchronous state so that ∆φij ∼ 1/Nc. Because all the

crosscovariance functions vanishes and σ2
i (t) → 0 in the limit, we find, from Eq. (39)-(41)
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for t > t′,

νi(t) → f(Ii(t) + µi(t))pi(t), (44)

νij(t|t′) → f(Ii(t) + µi(t))pij(t|t′),

µi(t) =
∑

k

Jk
i

βk
i (t)

pi(t)
,

while the crosscorrelation function is given by Eq. (12). For the corner terms of the

transition matrices, we find [W i(t)]1M → f(Ii(t)+µi(t)) from Eq. (32) and [W ij(t|t′)]1M →

f(Ii(t) + µi(t)) for t > t′ from Eq. (34). Hence the evolution of pi(t) and pij(t|t′) are

described by

dpi(t)

dt
= W i(t)pi(t),

dpij(t|t′)
dt

= W i(t)pij(t|t′)

(45)

for t > t′, where the initial condition of pij(t|t′) is given by Eq. (38). Finally, from Eq. (43),

the evolution of βi(t) is written as an ODE

d

dt
βk

i (t) =

(

− 1

τk
i

+ W i(t)

)

βk
i (t) + pik(t|t−)νk(t), (46)

where we can apply Eq. (38) to evaluate pik(t|t−) in this limit. Figure 7 plots the mean-

firing intensity calculated from the above equations for various input, and the mean-field

approximation provides good approximation of the time dependent firing intensities. Fig-

ure 8 compares the above approximation (Nc → ∞ limit) with the mean-field approx-

imation including the finite size effect that we will discuss in the next section. In the
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mean-field limit, all the cross-correlations vanish and the autocorrelation functions are ap-

proximated by including the Markov refractory effect but not the self-interaction terms

J i
i . We can also calculate the linar input-output filter discussed in section 4.3 with this

Markov refractoriness (see Appendix).

5.3 Estimating the finite size effect

Similarly to the case without Markov refractoriness, we evaluate the mean-firing intensity

and crosscovariance functions up to 1/Nc terms. We find, as in the case without Markov

refractoriness, ∆φij(t, t
′) ∼ 1/Nc for i 6= j, ∆pik(t|s) ∼ 1/Nc for i 6= k, and the third

order covariances, such as ∆pikl(t|s, s′), are of order 1/N2
c under asynchronous state if the

contributions of individual synaptic weights are small, J ∼ 1/Nc. This implies σ2
ij(t|t′) −

σ2
i (t) ∼ 1/N2

c .

The dynamics of pi(t) and pij(t|t′) are described by Eq. (31) and Eq. (33), respectively.

We now want to calculate µi(t), µij(t|t′), and σ2
i (t) to the first order of 1/Nc. First, direct

differentiation of βk
i (t) in Eq. (43) yields an ODE update equation (see Appendix):

d

dt
βk

i (t) =

(

− 1

τk
i

+ W i(t)

)

βk
i (t) + pik(t|t−)νk(t) − m

[

βk
i (t) − αk

ii(t
−|t)pi(t)

] νi(t)

pi(t)
,

(47)

with m = (1, 0, . . . , 0,−1)T . The origin of the second term in the right hand side of

Eq. (47) is due to the correlation of spike variable Sk(s) and the refractory variable xi(t).

Next, we need to evaluate βk
ij(t|t′) to the zeroth order of 1/Nc for k = i or k = j because

J ∼ 1/Nc makes the contribution of them ∼ 1/Nc, and we need to evaluate βk
ij(t|t′) to the
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first order of 1/Nc for k 6= i and k 6= j case. Except for the case i = j = k, we find (see

Appendix)

βk
ij(t|t′) ≈ βk

i (t) + αk
ij(t|t′)pij(t|t′) − αk

i (t)pi(t) (48)

to the order described above. The precise evaluation of this term for i = j = k is much

harder but, to a good approximation, Eq. (48) holds (see Appendix). Note that the approx-

imation of the i = j = k term affects the order 1/Nc term of the autocovariance function,

∆φii(t, t
′), but only affects O(1/N2

c ) terms of the mean-firing intensities and crosscovarance

functions.

Finally, dropping higher order tems that result as O(1/N2
c ) on the quantities in Eq. (41),

we find (see Appendix)

Bkl
i (t) ≈ pi(t)A

kl
i (t). (49)

Altogether, using Eq. (21), we obtain the following update equations to evaluate the
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finite size effect up to order 1/Nc:

νi(t) = F (Ii(t) + µi(t), σi(t))pi(t), (50)

νij(t|t′) = F (Ii(t) + µij(t|t′), σi(t))pij(t|t′),

µi(t) =
∑

k

Jk
i

βk
i (t)

pi(t)
,

µij(t|t′) =
∑

k

Jk
i

[

αk
ij(t|t′) +

βk
i (t) − αk

i (t)pi(t)

pij(t|t′)

]

,

σ2
i (t) =

∑

k,l

Jk
i J l

iA
kl
i (t),

d

dt
αk

i (t) = −αk
i (t)

τk
i

+ νk(t),

d

dt
αk

ij(t|t′) = −
αk

ij(t|t′)
τk
i

+ νkj(t|t′),

d

dt
Akl

i (t) = −Akl
i (t)

τkl
i

+ ∆αk
il(t

+|t)νl(t) + ∆αl
ik(t

−|t)νk(t),

d

dt
βk

i (t) =

(

− 1

τk
i

+ W i(t)

)

βk
i (t) + pik(t|t−)νk(t) − m

[

βk
i (t) − αk

ii(t
−|t)pi(t)

] νi(t)

pi(t)
,

and the dynamics of pi(t) and pij(t|t′) follows Eq. (31) and Eq. (33). As is the case without

the Markov refractoriness, calculating this finite size effect is computationally expensive

for time dependent input, although in principle this equations should work under that case

as well. We plot the mean-firing intensities of two neurons and crosscorrelations in Fig. 8.

The finite size effect well captures the crosscorrelation functions. The finite size effect also

successfully captures a peak in the cross-correlation function if two neurons are not directly

connected but receive a common input from a third neuron (Fig. 8). Again, if the values

of the above equations are initially set to the solution in the limit of Nc → ∞ given by

Eq. (44)-(46), practically only a couple of iterations of the above equations is sufficient for

the evaluation of crosscorrelation functions.
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6 Discussion

We have introduced mean-field methods for analyzing the dynamics of a coupled popula-

tion of neurons whose activity may be well-approximated as the output of a generalized

linear point process model. Our approximations for the mean time-varying firing rate and

correlations in the population are exact in the mean-field limit (Nc → ∞ under J ∼ 1/Nc

scaling), though we have found numerically that the finite size correction to the mean-field

equations is useful even for physiologically relevant connectivity strengths. The approxi-

mations may be computed by solving a set of coupled ordinary differential equations; this

approach is much more computationally tractable than direct Monte Carlo sampling and

may lead to greater analytical insight into the behavior of the network. In addition, we

have introduced a new model, the generalized linear point process model with Markovian

refractoriness, which captures strong refractoriness, retains all of the easy fitting properties

of the standard generalized linear model, and whose firing rate dynamics are much more

amenable to mean field analysis than the standard model. Note that most of our illustra-

tions involved the simulation of only a couple mutually connected neurons; this small-Nc

case can be considered a kind of worst-case analysis, since with more asynchronous neurons

(larger Nc) the central limit theorem becomes progressively applicable, the distribution of

recurrent input approaches the assumed Gaussian distribution, and our approximations

become more accurate.

This kind of mean-field analysis — or more generally, approaches for reducing the

complexity of the dynamics of networks of noisy, nonlinear neurons — has a long history in
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computational neuroscience, as reviewed, e.g., in the books [Hertz et al., 1991,Gerstner and

Kistler, 2002], or the chapter [Renart et al., 2003]. While the point-process models we have

discussed here are somewhat distinct from the noisy integrate-and-fire-type models that

have been analyzed most extensively in this literature (e.g., [Mattia and Del Giudice, 2002,

Shriki et al., 2003,Moreno-Bote and Parga, 2004,Moreno-Bote and Parga, 2006,Fourcaud-

Trocme et al., 2003,Chizhov and Graham, 2007,Doiron et al., 2004,Lindner et al., 2005]), it

is more important to stress the differences in the motivation of this work and this previous

literature. Our main goal here was to provide analytical tools that an experimentalist

who has fit a point process model to his or her data (as in, e.g., [Paninski, 2004,Truccolo

et al., 2005,Okatan et al., 2005,Pillow et al., 2007]) may use to understand the behavior

of the network or single-cell models which have just been inferred. In particular, we were

interested in predicting, for example, the mean firing rate of a specific GLM network to

a novel arbitrary dynamic input stimulus. This contrasts with the literature cited above,

which has for the most part focused on the mean firing rates, first-order response, and fixed-

point stability properties behavior of idealized, infinitely-large populations ( [Mattia and

Del Giudice, 2002] is an exception here) with homogeneous membrane and connectivity

properties. In addition, most analytical studies of the input-output property of model

neurons with dynamical input start from a Fokker-Planck formalism and rely on a direct

numerical simulation of the partial differential equation [Nykamp and Tranchina, 2000,

Knight et al., 2000,Chizhov and Graham, 2007] (this direct approach is feasible only in the

case that the system dynamics may be reduced to a state space of dimension at most two or

so, and therefore does not apply in the networks studied here), or on linear response theory
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that assumes a small time dependent component relative to the baseline component [Shriki

et al., 2003, Fourcaud-Trocme et al., 2003, Doiron et al., 2004, Lindner et al., 2005], or

on some quasi-stationary assumption [Knight et al., 2000,Mattia and Del Giudice, 2002,

Fourcaud-Trocme and Brunel, 2005,Moreno-Bote and Parga, 2004,Moreno-Bote and Parga,

2006] restricting the applicable input stimulus to slowly changing one or to simple step

stimuli with sufficiently long gaps between steps that the network may reach equilibrium.

Thus it is difficult to apply the insights developed in these previous analyses directly to

obtain a quantitative prediction of the dynamic firing rates of a specific non-homogeneous,

non-symmetric network.

We derived, in this paper, the finite size correction to the mean-field equation that

captures cross-correlation functions between neurons. This finite size effect originates from

the Jij ∼ 1/Nc scaling of synaptic strengths that guarantees O(1/
√

Nc) fluctuation of

inputs under asynchronous states. Hence, the finite size effect described in this paper is

the contribution of small fluctuation in the input around the mean. However, another

kind of finite size effect has also been discussed in the literature. In a sparsely connected

network, correlations between two neurons disappear if Nc is sufficiently smaller than

the total number of neurons, N [Derrida et al., 1987]. The finite Nc effect has been

evaluated using stochastic Fokker-Planck equations [Brunel and Hakim, 1999,Mattia and

Del Giudice, 2002]. One should note, however, that the evaluation of this finite size effect for

an experimentally estimated network structure is generally not straight forward because the

evaluation of a Fokker-Planck equation with many state space variables is computationally

hard. Finally, Jij ∼ 1/Nc is not the unique way to scale synapses. Under the balanced
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input assumption, Jij ∼ 1/
√

Nc yields order one fluctuation of input even in the limit of

Nc → ∞ [Sompolinksy et al., 1988,van Vreeswijk and Sompolinsky, 1996,van Vreeswijk and

Sompolinsky, 1998]. However, non-trivial cross-correlation functions cannot be captured

under the standard asynchronous assumption of mean-field analysis in the Nc → ∞ limit.

The calculation of the finite size effect of a network with Jij ∼ 1/
√

Nc is not the scope of

this paper.

Two works that bear a stronger mathematical resemblance to ours are [Ginzburg and

Sompolinsky, 1994] and [Meyer and van Vreeswijk, 2002]; these authors applied mean-field

approximations to coupled model neurons to study the mean firing rates and autocorrela-

tion and cross-correlation functions in the network. However, the two-state neuron model

discussed in [Ginzburg and Sompolinsky, 1994] (where the neurons flip between “active”

and “inactive” firing states according to a Markov process with some finite rate constant) is

somewhat distinct from the point-process models we have treated here (where the neuron

remains in the “active” state for negligible time — i.e., the neuron spikes instantaneously),

and we have not been able to translate these earlier results to the problems of interest

in this paper. On the other hand renewal point spiking neuorns are analyzed in [Meyer

and van Vreeswijk, 2002] and their results are closer to ours. However, according to their

refractory model, one has to consider infinitely many refractory states in the continuous

time limit, where as our spiking neuron model has M refractory state; M can be as small

as 2 while keeping the order 1 strong refractory effect. Accordingly, their cross-correlations

should be evaluated by integral equations which are computationally (and conceptually)

somewhat more involved, while the methods developed here require us to evaluate just a
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couple differential equations.

Finally, the effect of common input on the cross-correlation function was previously

studied in a related model [Nykamp, 2007a], using an expansion of the output f(.) nonlin-

earity arround J = 0. One major difference between the analysis we have presented here

and this previous work is that a simple expansion around J = 0 does not lead to a good

approximation of the firing rate, even in the mean-field limit of Nc → ∞, because the

recurrent input changes the baseline firing rate (c.f. Fig. 5); thus it is much more accurate

to expand around the zeroth order firing rate given by the roots of Eq. (21), as discussed

in section 4.3 above. (On the other hand, our mean-field approach does require a Gaussian

approximation that is known to be inaccurate in the case of large J terms.) It would be in-

teresting to explore whether the methods developed here could help lead to more accurate

inference of the common-input effects discussed in [Nykamp, 2007a].

There are many possible applications of this mean-field method for problems that re-

quire fast evaluation of mean-firing rates and cross-correlation functions. One example is

to evaluate the information coded by spiking of a recurrently connected network about

the input stimulus. This kind of information calculation usually requires averaging over

recent spike history [Toyoizumi et al., 2006], but the Gaussian approximation of the input

described here could greatly ease the computational complexity to evaluate the information

of stimulus coded by the network. We hope to pursue this direction in future work.
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Appendix A: Mathematical details

In this appendix we collect the details of the expansion analyses summarized in the main

text.

A.1 Calculation of βk
i , βk

ij, and Bkl
i

In this appendix, we use Dk
i s = e−(t−s)/τk

i ds to simplify some expressions. Direct evaluation

of Eq. (42) yields

[

βk
i (t)
]

m
= E[hk

i (t)|xi(t) = m] · [pi(t)]m

= E[hk
i (t)I(xi(t) = m)] (51)

=

∫ t

−∞
Dk

i s E[Sk(s)I(xi(t) = m)]

=

∫ t

−∞
Dk

i s [pik(t|s)]mνk(s),

[

βk
ij(t|t′)

]

m
= E[hk

i (t)|xi(t) = m, Sj(t
′)] · [pij(t|t′)]m

= E[hk
i (t)I(xi(t) = m)|Sj(t

′)],

=

∫ t

−∞
Dk

i s E[Sk(s)I(xi(t) = m)|Sj(t
′)],

=

∫ t

−∞
Dk

i s [pikj(t|s, t′)]mνkj(s|t′),
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where [pik(t|s)]m = E[I(xi(t) = m)|Sk(s)] and [pikj(t|s, t′)]m = E[I(xi(t) = m)|Sk(s), Sj(t
′)].

Similarly, we find

[

Bkl
i (t)

]

m
= Cov[hk

i (t), h
l
i(t)|xi(t) = m] · [pi(t)]m (52)

= {E[hk
i (t)h

l
i(t)|xi(t) = m] − E[hk

i (t)|xi(t) = m]E[hl
i(t)|xi(t) = m]} · [pi(t)]m

= E[hk
i (t)h

l
i(t)I(xi(t) = m)] − [βk

i (t)]m[βl
i(t

′)]m
[pi(t)]m

=

∫ t

−∞
Dk

i s

∫ t

−∞
Dl

is
′
{

E[Sk(s)Sl(s
′)I(xi(t) = m)] − [pik(t|s)]m[pil(t|s′)]m

[pi(t)]m
νk(s)νl(s

′)

}

=

∫ t

−∞
Dk

i s

∫ t

−∞
Dl

is
′
{

[pikl(t|s, s′)]mφkl(s, s
′) − [pik(t|s)]m[pil(t|s′)]m

[pi(t)]m
νk(s)νl(s

′)

}

.

A.2 Approximation of βk
i (t), βk

ij(t|t′) and Bkl
i (t)

In order to evaluate the finite size effect, i.e., order 1/Nc terms of the mean firing intensity

and crosscovariance functions, we need to evaluate µi(t)pi(t) =
∑

k Jk
i βk

i (t), µij(t|t′)pij(t|t′) =

∑

k Jk
i βk

ij(t|t′), and σ2
i (t)pi(t) =

∑

k,l J
k
i J l

iB
kl
i (t) to the first order of 1/Nc. Assuming that

the synaptic strengths scale as J ∼ 1/Nc, we need to evaluate

βk
i (t) =

∫ t

−∞
Dk

i s pik(t|s)νk(s)

to the first order of 1/Nc,

βk
ij(t|t′) =

∫ t

−∞
Dk

i s pikj(t|s, t′)νkj(s|t′)

to the zeroth order of 1/Nc if k = i or k = j because J ∼ 1/Nc but to the first order of 1/Nc

otherwise (in the following we divide in to five cases and consider each case separately),

and

[

Bkl
i (t)

]

m
=

∫ t

−∞
Dk

i s

∫ t

−∞
Dl

is
′
{

[pikl(t|s, s′)]mφkl(s, s
′) − [pik(t|s)]m[pil(t|s′)]m

[pi(t)]m
νk(s)νl(s

′)

}
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to the first order of 1/Nc if i, j, k are all different, and to the zeroth order of 1/Nc if k = l,

k = i, or l = i.

First, direct differentiation of βk
i (t) yields

d

dt
βk

i (t) = −βk
i (t)

τk
i

+ pik(t|t−)νk(t) +

∫ t

−∞
Dk

i s W ik(t|s)pik(t|s)νk(s) (53)

=

(

− 1

τk
i

+ W i(t)

)

βk
i (t) + pik(t|t−)νk(t) +

∫ t

−∞
Dk

i s ∆W ik(t|s)pik(t|s)νk(s)

=

(

− 1

τk
i

+ W i(t)

)

βk
i (t) + pik(t|t−)νk(t) + m

∫ t

−∞
Dk

i s

(

νik(t|s) −
νi(t)

pi(t)
pik(t|s)

)

νk(s)

=

(

− 1

τk
i

+ W i(t)

)

βk
i (t) + pik(t|t−)νk(t) + m

∫ t

−∞
Dk

i s

(

νki(s|t) −
νk(s)

pi(t)
pik(t|s)

)

νi(t)

=

(

− 1

τk
i

+ W i(t)

)

βk
i (t) + pik(t|t−)νk(t) + m

(

αk
ii(t

−|t) − βk
i (t)

pi(t)

)

νi(t),

where m = (1, 0, . . . , 0,−1)T and we used in the above calculation, from Eq. (32) and

Eq. (34),

∆W ik(t|s)pik(t|s) = [W ik(t|s) − W i(t)]pi(t|s)

= m

(

νik(t|s)
pik(t|s)

− νi(t)

pi(t)

)

pik(t|s). (54)

Next to evaluate βk
ij(t|t′), we use ∆pikl(t|s, s′) = [pikl(t|s, s′) − pi(t) − ∆pik(t|s) −

∆pil(t|s′)] ∼ 1/N2
c if i, k, l are all different; ∆pik(t|s) = pik(t|s) − pi(t) ∼ 1/Nc for i 6= k.

As we discussed at the beginning of this section, in order to evaluate µij(t|t′) to the first

order of 1/Nc, we have to consider the number of combination of indexes. For example,

there are Nc terms of βi
ii and there are N2

c terms of βi
ij . Hence, we consider the following

five possibilities for the combination of indexes:
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• Case 1 (i 6= j, i 6= k); evaluated up to the first order of 1/Nc:

βk
ij(t|t′) ≈

∫ t

−∞
Dk

i s [pi(t) + ∆pik(t|s) + ∆pij(t|t′)]νkj(s|t′)

=

∫ t

−∞
Dk

i s [pi(t)νkj(s|t′) + ∆pik(t|s)(νk(s) + ∆νkj(s|t′)) + ∆pij(t|t′)(νk(s) + ∆νkj(s|t′))]

≈
∫ t

−∞
Dk

i s [pi(t)νkj(s|t′) + ∆pik(t|s)νk(s) + ∆pij(t|t′)νk(s)]

=

∫ t

−∞
Dk

i s [pi(t)νkj(s|t′) + (pik(t|s) − pi(t))νk(s) + ∆pij(t|t′)νk(s)]

= pi(t)α
k
ij(t|t′) + (βk

i (t) − pi(t)α
k
i (t)) + ∆pij(t|t′)αk

i (s)

= βk
i (t) + pi(t)∆αk

ij(t|t′) + ∆pij(t|t′)αk
i (s)

≈ βk
i (t) + pij(t|t′)αk

ij(t|t′) + pi(t)α
k
i (s). (55)

Note that, in the second line, we used ∆pik ∼ 1/Nc and ∆νij ∼ 1/Nc, for example,

and neglected higher order terms such as ∆pik∆νkj.

• Case 2 (i = j, k 6= i); evaluated up to the first order of 1/Nc:

βk
ii(t|t′) ≈

∫ t

−∞
Dk

i s [pii(t|t′) + ∆pik(t|s)]νki(s|t′)

=

∫ t

−∞
Dk

i s [pii(t|t′)νki(s|t′) + (pik(t|s) − pi(t))νk(s)]

= pii(t|t′)αk
ii(t|t′) + (βk

i (t) − pi(t)α
k
i (t))

= βk
i (t) + pii(t|t′)αk

ii(t|t′) − pi(t)α
k
i (t). (56)

• Case 3 (i = k, i 6= j); evaluated up to the zeroth order of 1/Nc:

βi
ij(t|t′) ≈

∫ t

−∞
Di

is pii(t|s)νi(s)

= βi
i(t)

≈ βi
i(t) + pij(t|t′)αi

ij(t|t′) − pi(t)α
i
i(s). (57)
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• Case 4 (j = k, i 6= j); evaluated up to the zeroth order of 1/Nc:

β
j
ij(t|t′) ≈

∫ t

−∞
Dj

i s [pi(t) + ∆pij(t|s) + ∆pij(t|t′)]νjj(s|t′) (58)

≈
∫ t

−∞
Dj

i s pi(t)νjj(s|t′)

= pi(t)α
j
ij(t|t′)

≈ β
j
i (t) + pi(t)α

j
ij(t|t′) − pi(t)α

j
i (t).

• Case 5 (i = j = k); evaluated up to the first order of 1/Nc:

βi
ii(t|t′) =

∫ t

−∞
Di

is piii(t|s, t′)νii(s|t′). (59)

This is a difficult situation to analyze precisely. However, unless the neuron i receives

extremely strong input, the conditional firing intensity νii(s|t′) is almost zero if s

and t′ are as close as the refractory time constant of the neuron (M − 1)τr; so the

contribution of this interval on the integral is small. On the other hand, if s and t′

are separated more than the refractory time constant, the interaction between the

spike at s and t′ becomes small, i.e., piii(t|s, t′) ≈ pi(t) + ∆pii(t|s) + ∆pii(t|t′) and

∆νii(s|t′) = νii(s|t′) − νi(s) becomes small. Hence, to a good approximation,

βi
ii(t|t′) ≈

∫ t

−∞
Di

is [pii(t|t′) + ∆pii(t|s)]νii(s|t′)

=

∫ t

−∞
Di

is [pii(t|t′)νii(s|t′) + ∆pii(t|s)νi(s) + ∆pii(t|s)∆νii(s|t′)]

≈
∫ t

−∞
Di

is [pii(t|t′)νii(s|t′) + ∆pii(t|s)νi(s)]

= βi
i(t) + pii(t|t′)αi

ii(t|t′) − pi(t)α
i
i(t). (60)
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The validity of this intuitive approximation should be examined by numerical simu-

lations. Note that βi
ii(t|t′) contributes to the order 1/Nc term of the autocovariance

function ∆φii(t, t
′) but only contributes to order 1/N2

c terms of the mean firing in-

tensity νi(t) and crosscovariance functions ∆φij(t, t
′) with i 6= j.

Finally, we can rewrite Bkl
i as

[

Bkl
i (t)

]

m
=

∫ t

−∞
Dk

i s

∫ t

−∞
Dl

is
′
{

[pikl(t|s, s′)]mφkl(s, s
′) − [pik(t|s)]m[pil(t|s′)]m

[pi(t)]m
νk(s)νl(s

′)

}

(61)

=

∫ t

−∞
Dk

i s

∫ t

−∞
Dl

is
′
{

[pikl(t|s, s′)]m∆φkl(s, s
′) +

(

[pikl(t|s, s′)]m − [pik(t|s)]m[pil(t|s′)]m
[pi(t)]m

)

νk(s)νl(s
′)

}

=

∫ t

−∞
Dk

i s

∫ t

−∞
Dl

is
′
{

[pikl(t|s, s′)]m∆φkl(s, s
′) +

(

[∆pikl(t|s, s′)]m − [∆pik(t|s)]m[∆pil(t|s′)]m
[pi(t)]m

)

νk(s)νl(s
′)

}

,

where we used ∆pik(t|s) = pik(t|s) − pi(t) and ∆pikl(t|s, s′) = pikl(t|s, s′) − pi(t) −

∆pik(t|s) − ∆pil(t|s′). We need to evaluate Bkl
i up to the first order of 1/Nc if i, k, l

are all different, and up to the zeroth order of 1/Nc if k = l, k = i, or l = i. Up to these

orders, Bkl
i can be approximated as

Bkl
i (t) ≈

∫ t

−∞
Dk

i s

∫ t

−∞
Dl

is
′pi(t)∆φkl(s, s

′)

= pi(t)A
kl
i (t). (62)

Note that ∆pik ∼ 1/Nc for i 6= k, ∆pikl(t|s, s′) ∼ 1/N2
c if i, k, l are different, and

∆piik(t|s, s′) ∼ 1/Nc for i 6= k.
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A.3 Calculation of the linear filter in the generalized linear model

with Markov refractoriness

We assume that the input is given by

Ii(t) =

∫

Ki(t − s)ξi(s)ds (63)

with stimulus ξi = ξ
(0)
i + δξi(t), and calculate the linearized input output filter for small

stimulus fluctuation δξi(t) about a constiant baseline ξ
(0)
i .

In the limit of Nc → ∞, the mean-field equation is given by

νi(t) = f(Ii(t) + µi(t))pi(t), (64)

µi(t) =
∑

k

Jk
i

βk
i (t)

pi(t)
,

d

dt
pi(t) = W i(t)pi(t),

d

dt
βk

i (t) =

(

− 1

τk
i

+ W i(t)

)

βk
i (t) + pi(t)νk(t).

First, for a constant input I
(0)
i , we obtain

ν
(0)
i = f

(0)
i p

(0)
i , (65)

µ
(0)
i =

∑

k

Jk
i

βk
i

(0)

p0
i

,

0 = W
(0)

i p
(0)
i ,

βk
i

(0)
=

[

1

τk
i

− W
(0)

i

]−1

p
(0)
i ν

(0)
k , (66)

where f
(0)
i = f(I

(0)
i + µ

(0)
i ) and the last equation is easily solvable with respect to p

(0)
i ; we
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find

[

p
(0)
i

]

m
=















τrf
(0)
i

1+(M−1)τrf
(0)
i

(m = 1, . . . , M − 1)

1

1+(M−1)τrf
(0)
i

(m = M).

(67)

Next, the linear response to a small perturbation δIi(t) =
∫

Ki(t − s)δξi(s)ds is given

by

δνi(t) = f ′
i
(0)

(δIi(t) + δµi(t))p
(0)
i + f

(0)
i δpi(t), (68)

δµi(t) =
∑

k

Jk
i

[

δβk
i (t)

p
(0)
i

− βk
i

(0)
δpi(t)

(p
(0)
i )2

]

,

d

dt
δpi(t) = δW i(t)p

(0)
i + W

(0)

i δpi(t),

d

dt
δβk

i (t) =

(

− 1

τk
i

+ W
(0)

i

)

δβk
i (t) + δW i(t)β

k
i

(0)
+ δpi(t)ν

(0)
k + p

(0)
i δνk(t),

where f ′
i
(0) = f ′(I0

i + µ
(0)
i ) and δW i(t) = meT

M [δνi(t)/p
(0)
i − ν

(0)
i δpi(t)/(p

(0)
i )2]. Rememer

that m = (1, 0, . . . , 0,−1)T and eM = (0, . . . , 0, 1)T . Fourier transformation of the above

equations give

δν̂i(ω) = f ′
i
(0)

(δÎi(ω) + δµ̂i(ω))p
(0)
i + f

(0)
i δp̂i(ω), (69)

δµ̂i(ω) =
∑

k

Jk
i

[

δβ̂k
i (ω)

p
(0)
i

− βk
i

(0)
δp̂i(ω)

(p
(0)
i )2

]

,

δp̂i(ω) = L̂i(ω)mδν̂i(ω),

δβ̂
k

i (ω) = q̂k
i (ω)δν̂i(ω) + R̂

k

i (ω)δν̂k(ω),

where L̂i(ω) = [iω + meT
Mν

(0)
i /p

(0)
i −W

(0)

i ]−1, q̂k
i (ω) = [iω + 1/τk

i −W
(0)

i ]−1[mβk
i

(0)
/p

(0)
i −

meT
ML̂i(ω)mβk

i
(0)

ν
(0)
i /(p

(0)
i )2 + L̂i(ω)mν

(0)
k ], and R̂

k

i (ω) = [iω + 1/τk
i −W

(0)

i ]−1p
(0)
i . Note

that i is the imaginary unit.
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The above equation is still very complicated. So, it is worth thinking about the special

case Jk
i = 0. In this case, the linear response is described by

δν̂i(ω) =
f ′

i
(0)p

(0)
i

1 − f
(0)
i eT

ML̂i(ω)m
δÎi(ω). (70)

The calculation of Li(ω) is straight forward thanks to the bidiagonal nature of [iω +

meT
Mν

(0)
i /p

(0)
i − W

(0)

i ]. After direct matrix inversion, we find

L̂i(ω) = τrρ









































1 0 0 · · · 0

ρ 1 0
...

ρ2 ρ 1

...
. . .

ρM−2 · · · ρ 1 0

ρM−1η · · · ρ2η ρη η









































(71)

with ρ = 1/(1 + iωτr) and η = 1 + 1/(iωτr). Hence, the linear response is simplified as

δν̂i(ω) =
f ′

i
(0)p

(0)
i

1 − f
(0)
i τrρη(ρM−1 − 1)

δÎi(ω). (72)

In particular, if M = 2, we find that the Fourier inverse transformation of the gain function

Ĝ(ω) = δν̂i(ω)/δÎi(ω) =
f ′

i
(0)p

(0)
i

1+f
(0)
i τr/(1+iωτr)

has an analytical form, i.e, using p
(0)
i = 1/(1 +

τrf
(0)
i ), we find

G(t) =
f ′

i
(0)

1 + τrf
(0)
i

[

δ(t) − f
(0)
i e−(fi

(0)+1/τr)tΘ(t)
]

. (73)

Note that in the limit of τr → 0, the trivial gain function is G(t) → f ′
i
(0)δ(t). Hence, we

can see that the suppressive kernel is added to this instantaneous gain function due to the
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Markov refractoriness. This linear response for Jk
i = 0 case is a special case of a more

general linear response for a renewal neuron [Gerstner and Kistler, 2002]. Note that, in

Eq. (69), we discussed a more general case and considered the interaction between the

refractory effect and spike-interaction effect of network of recurrently connected neurons.
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A B

Figure 2: Direct solution of the master equation in the one-dimensional case. (A) Top: A

single neuron is simulated with a pulse input I(t) shown. Bottom: Comparison of the firing

rates computed via: direct Monte Carlo sampling (simulation); the inhomogeneous Poisson case,

with no history dependence, i.e., w = 0 (noH); the master equation of Eq. (8) (exact); and the

mean-field approximation methods in the limit of Nc → ∞ introduced in section 4. the mean-field

approximation gives good approximations of the output firing intensity. (B) Top: The probability

distribution P (h, t); color axis indicates the height of the probability density. The self-history

term h(t) was the convolution of the output spike train and a single exponential filter with time

constant τ = 10 ms and weight J = −1; thus the neuron was inhibited for a brief period following

each spike. Note the discontinuous behavior visible at stimulus onset, where probability mass

jumps significantly towards h = 1, then decays back down towards zero, according to equation

(8). (C) The mean of h calculated from the probability distribution P (h, t). This E[h] also

increases following the input pulse, which has the effect of slowing down the firing rate: since the

weight J is negative, the history term is inhibitory here.
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A B

Figure 3: Comparison of the direct Monte Carlo simulation of a single neuron (solid),

the firing intensity without recurrent input H (dotted), and the mean-field approximation

(dashed). (A) Low step input (baseline I = 2, peak I = 4) is applied. The self inhibition

term is set to J = −5 and τ = 2 ms. (B) High step input (baseline I = 2, peak I = 8)

is applied. The self inhibition terms is set to J = −5 and τ = 2 ms. Because of the large

non-Gaussian fluctuations of input caused by the strong self-inhibition, the mean-field

approximation loses accuracy here.
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A B

Figure 4: Comparison of cross-correlation functions of two neurons calculated by direct

simulation (solid), calculated from the mean-field approximation (Eqs. (18-19); dashed),

and the mean-field approximation with finite size correction (Eqs. (15-17 and 20); dot-

dashed). (A) Weak self-interaction: parameters are set to J11 = −1, J22 = −1, J21 =

1, J12 = −0.5, τ11 = 10ms, τ22 = 10ms, τ21 = 10ms, τ12 = 20ms, and I1 = 2, I2 = 4.

The result is after 5 iterations of mean-field equations. The calculation in the mean-field

limit only captures the steady state firing intensity but not any temporal cross correlation

function. Cross correlation functions are well approximated with the finite size correction

terms. (B) Strong self-interaction: parameters are set to J11 = −5, J22 = −5, J21 = 1, J12 =

−0.5, τ11 = 2ms, τ22 = 2ms, τ21 = 10ms, τ12 = 20ms, and I1 = 2, I2 = 4. Because of the

large non-Gaussian fluctuation of the input caused by the strong self-inhibition term, the

mean-field approximations does not work very well. In this case the mean-field solution

converges rather slowly. Hence, the result is after 10 iterations of mean-field equations.
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A B C

Figure 5: Comparison of (A) a simulated firing rates of a single neuron and (B) the self-

consistent solutions of Eq. (21) for different input levels, I(0), and self-inhibition strengths,

J . (C) The percentage errors of the mean-field approximation are shown with respect to

the simulated firing intensity. We set τ = 10 ms.
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A B

Figure 6: Comparison of the analytically derived and simulated input-output filters. (A)

A simulated normalized linear input-output filter for I(0) = 2 (thin-dotted) and I(0) = 4

(thick-dotted) are compared with analytical results at I(0) = 2 (thin-solid) and I(0) = 4

(thick-solid) of Eq. (26). Because the strength of the self-inhibition component changes

with the baseline input through f ′(I(0)+µ(0)), the input-filter is sharpened for high baseline

input. Other parameters are set to J = 1, τ = 10 ms, K(t) = e−t/τI Θ(t) with τI = 20

ms and σξ = 1 Hz. All filter amplitudes are normalized by their maximum amplitudes.

(B) Left panels show the comparison of analytically derived input-output filters G11(t) and

G12(t) of Eq. (28) (solid lines) and simulated input-output filters (dotted lines) for I(0) = 2

(thin lines) and I(0) = 4 (thick lines). Right panels show neuron 1’s spatio-temporal input-

output filter G̃1(t, z) for I(0) = 2 (top) and I(0) = 4 (bottom). See text for parameter

values.
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A B

C D

Figure 7: Comparison of the mean firing intensity obtained from direct simulation of a single

neuron (solid), without recurrent input H and no Markov refractory effect (dotted), and the

mean-field equation in the limit of Nc → ∞ (dashed). In all the cases, the markov refractory

effect with τr = 2ms/(M−1) was included. (A) Weak step input (baseline I = 2, peak I = 4) and

refractoriness M = 3; J = −1, τ = 10 ms. Although the model includes strong Markov refractory

effect, the mean-field approximation is not abolished. (B) Strong step input (baseline I = 2,

peak I = 8) and refractoriness M = 10; J = −1, τ = 10ms. The mean-field approximation also

approximates very well the transient oscillation caused by the the strong refractory effect and steep

current. (C) The mean-field approximation works for colored noise input: τI
dI(t)

dt = −I(t) + ξ(t)

with E[ξ(t)] = 4, Cov[ξ(t), ξ(t′)] = 0.1δ(t − t′), and τI = 20 ms; M = 3, J = −1, τ = 10ms. The

initial error is due to the preset initial values deviates from the true ones. (D) Sinusoidal input

input: I(t) = 2 + sin(2π · 10Hz · t); M = 3, J = −1, τ = 10ms. The mean-field results give good

approximations. 62
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Figure 8: Comparison of spike cross-correlation functions of two neurons obtained by direct

numerical simulation (solid), mean-field approximation in the limit of Nc → ∞ (dashed),

and with finite size correction terms (dot-dashed). While the approximation in the limit

of Nc → ∞ only capture the strong Markov refractory effect, the weaker refractory effect

caused by the self-interaction terms is well captured with the finite size correction. Note

that, although the Markov refractory effect is very strong, the mean-field approximation

is as well as without the strong refractoriness. Mean-field equations are iteratively solved

over 5 iterations. (A) Two neurons are directly coupled: parameters are set to J11 =

−1, J22 = −1, J12 = −0.5, J21 = 1, τ11 = 10ms, τ22 = 10ms, τ12 = 20ms, τ21 = 10ms,

M = 3, I1 = 2, I2 = 4. (B) Two neurons are not directly connected but receive common

input from a third neuron: parameters are set to J13 = J23 = 2, τ13 = τ23 = 10ms, M = 3,

I1 = I2 = I3 = 2.
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