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Abstract—Sequential Monte Carlo (“particle filtering”) meth-  the sampler for, therefore leading to a much more reliable
ods provide a powerful set of tools for recursive optimal Bayesia filter. (Related approaches have been discussed more lsecent
filtering in state-space models. However, these methods areby [8] and [9].) The APF is highly effective if we can (1)

based on importance sampling, which is known to be non- t d imati to th inal likelinood
robust in several key scenarios, and therefore standard partie computeé a good approximation 1o theé marginal likelinoo

filtering methods can fail in these settings. We present a fil- S p(yelae)p(aelge-1)dg: = p(yilg:—1), and then (2) efficiently
tering method which solves the key forward recursion using a sample from the conditional distributiop(q:|y:, qi—1). As
reparameterized Gibbs sampling method, thus sidestepping the we will discuss below, in many important cases the sam-
need for importance sampling. In many cases the resulting filter pling step (2) is feasible. However, computation of margina

is much more robust and efficient than standard importance- likelihoods i toriously difficult bl 101 (F
sampling particle filter implementations. We illustrate the method ~ ''K€lINO0OGS IS & Notoriously difncult problem [10] (for sam

with an application to a nonlinear, non-Gaussian model from further discussion, see e.g. [11]); in practice, often intguuce
neuroscience. sampling methods are used to approximatg |¢.—1), and our

goal here is to avoid importance sampling methods entirely.
(Though see the discussion section for a brief consideratio

I. INTRODUCTION AND BACKGROUND hes for i o the i X i X
. . — some approaches for improving the importance sampling ste
Sequential Monte Carlo (“particle filtering”) methods haveqirectly g)p P 9 P pling step

become quite popular over the last two decades [1], large YMarkov chain Monte Carlo (MCMC) methods provide a

because these methods offer a general recipe for (appm'm%atural alternative to the importance sampling approatie T

optimal Bayesian inference on nonlinear, non-Gaussiae t"n*nfluential paper [12] proposes MCMC methods to sample
series data, in a recursive and computationally tractaii®a f from p(qs, qr1 P IR Ve 1,qr1_1), for some
tyYt—1y---Yt— tyJt—1y- - - Yt—Lyqt—L—-1)»

e e e o e e 1. (S (13 r a elte e ht vses mportance
. y ; 'mp ’ P sampling instead of MCMC methods; [14] discuss a different
is that standard particle filters rely fundamentally on impo

tance sampling, which is known to be unreliable in many higﬁ_tepwise MCMC-based approach that replaces the impor-
dimensional settings [2], [3] (though see [4] for an altéivea tance sampling step with a related independence Metrepolis

view) and more generally in cases where it is difficult tHastlngs sampler.) This approach is quite powerful in princ

construct accurate proposal densities [5]. In these cdses le, since it allows us to correct 'mistakes” — i.e., samples
article filter will oftgn (E)hoose article locations thabpide 4" that poorly match the observed dafa, — up to L time
P b P steps in the past, given the new observatjpnin practice, it

a poor T"at"h to the_ data, Iead_mg to rapid particle deplet'.?rr]]ay be difficult to construct a rapidly-mixing MCMC chain to
and a highly suboptimal approximation of the target posteri

dstibutons. As a consequence, parice fters can by v, TRl e S
non-robust with respect to outliers or model misspecifireti f . _
: ) : ocusing on thel = 1 case.

A number of potential solutions to this problem have
been proposed. To discuss these ideas, we need to introdlllﬁe
some notation. The basic filtering problem is to estimate the
conditional probabilityp(q:|Y1..) of the Markovian hidden
state variabley;, given all observed dat&;.; = {yo,...,¥:}
in the time interval(0, t], under the standard hidden Marko
model assumption that each observed data pgirdepends N o ,
directly only on the state variablg at time¢. We assume (g1, Yo:t-1) = Zwﬁﬁ <Qt—1 - QEZ_)1> ; 1)
that the observation probability)(y:|g:), and the transition i=1
probability, p(g|¢:—1), are known. Due to space limitationsere v is the number of particles, and'”, andq'”; denote
we will not review basic particle filtering methodology herethe weight and location, respectively, of tigh particle at
see e.g. [1], [6] for background. time ¢ — 1.

The “auxiliary” particle filter (APF) introduced by [7] i Now the standard forward recursion for hidden Markov
one effective method for incorporating the observatipinto  models [15] is

OUR APPROACH PAIRWISE REPARAMETERIZEDGIBBS
SAMPLING

Assume that at time¢ — 1 we have a weighted particle
\;epresentation of the forward distribution,
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Plugging in eq. (]_), we have original densities standardized densities

IR/ I

2—‘ S - a

N
p(qt, qt—1, Yo:t) = Zwii)lp(ytht)p(thqﬁ)l)é (qH - q,fﬂ) ;
i=1

, (3) 3
where we have abbreviatqn:(qt|qt(i)1) = p(qtlgi—1 = qt(i)l).
Now the basic idea is that, according to eq. (2), if we ca
draw N samples from the pairwise conditional distribution

p(Qta Qt71|Y0:t) X P(Qu dt—1, Yo:t) (4) /\

via the approximation (3), then we can obtain an (unweighte 1

IR N

particle approximation to the desired conditional forwdrs- a, reparameterized g,
tribution at timet, p(q:|Yo.+), simply by discarding (marginal-
izing) the ¢;—; component of our samples. Fig. 1. A schematic illustration of the standardization ideeft: three

Thus we will focus on developing fast methods for samplinigpothetical densitieﬁ(qt|q§?1, yt), fori = 1,2, 3. Note that these densities

from the pairwise distributio L Ya.). It is helpful to  have nearly disjoint support, and therefore Gibbs jumps i ‘Wertical”
P @)(Qt’ G 1‘ O't) P direction (thei-direction) will be rare.Right: standardized versions of the

rewrite eq. (3) a3’(‘]t7 qt—1, YO:t) ~ densities shown on the left. Note that these standardizesitées have much
more overlap, greatly increasing the Gibbs mixing rate.

N
S wi (el p(aclaty ye)d (qH —q” ) .5
=1

near modes of the target distribution, and the chain is a&tbw

This clarifies ﬂ(]g connection to the APF apprg?ch: if we €38 make jumps between these regions. We will discuss appli-
computep(yila,~1) = [ p(yela)p(a:lgr—1 = @,-1)da: @nd  cations of these methods further below.
then sample from(gilaf”;, v¢) = p(arlai—1 = 4”1, 1), then  The approach we propose here is simple and less generally
we can sample directly from our pairwise target distribatiogpplicable than the tempering method, but in many cases lead
(3) As we mentioned in the introduction, the latter task |ﬁ) a fast, effective, and easy-to_code a|g0rithm' The bdsia
often relatively easy. For example, in many applicationtbo(quite common in the Gibbs sampling literature) is to apply
the observation distributiop(y|¢:) and the transition distri- 5 reparameterization so that the densiti¢g ¢\, ,y,) have
bution p(g:|g;-1) are log-concave densities; we will assum@reater overlap in the rescaled space; see the right panel of
that this is the case throughout this paper. This implies théig. 1 for an illustration. Then we can apply standard Gilss (
the conditional density(q:|¢:—1,4:) is also log-concave; a Metropolis-Hastings-within-Gibbs) sampling in the relsca
number of effective rejection or MCMC methods exist fogpace, and finally map our reparameterized samples back to
sampling from log-concave (and therefore unimodal) d&ssit the original space.
[5]. However, as emphasized above, computifg:|¢;”;) IS What kind of reparameterization should we use? Computa-
more challenging, and we do not attempt to do this directlional efficiency is a key consideration here, so while nosdir
Instead, we will apply a transformed Gibbs method tRsparameterizations could certainly be useful in someieapl
sample from (3). The key feature of our problem is that fons, we will limit our attention to linear (affine) reparater-
is relatively easy to make MCMC moves in the direc- jzations here. In a sense we want to “standardize” each of the
tion (since we have assumed that the conditional diStf'hUtidistributionSp(qt\q@l,yt), recentering and rescaling each of
p(atlge-1,y¢) is log-concave), but moving in thg_, direction  these distributions so that the high-probability regioreath
is typically harder, since in many cases, for any fix@d of these distributions coincides as much as possible. Sirce
platla? ) )p(yelar) may be a sharply-peaked function of are restricting our attention to linear mappings, it is sigfit
(since the densitiep(qt|qt(i)1,yt) may have minimal overlap to define ellipses for each distribution indexedibwhere the
for different values of), implying that the Gibbs chain mixesi-th ellipse corresponds (in some sense) to the high-prbtyabi
slowly (or not at all, if the densitiep(qt|q§i)1,yt) have disjoint region of thei-th distribution (recalling that each of these
support for different indice$). See the left panel of Fig. 1 for distributions is assumed to be unimodal); then our reparame
an illustration. terization consists simply of the standardization mapgagh
Eg. (3) (or equivalently (5)) can be treated as a mixturef the N ellipses onto the unit sphere. (Of course, we must
where each particle indexes a different mixture componentkeep track of the volume of each of the original ellipses, so
The fact that Gibbs sampling often mixes slowly in mixturéghat we can apply the standard determinant change-of-measu
settings (because it can be a challenge to jump efficienflyrmula to each of the transformed distributions.)
between mixture components) is well-known [16], [17], and Before discussing further practical implementation dstai
a number of strategies have been suggested for dealing witls worth noting connections to a couple other ellipseeois
this problem. Some examples include so-called “temperingiethods. First, a very common (and often quite useful) nektho
methods [18], [19], [20], which replace the original chalie for constructing proposal densities in standard impoeanc
ing mixture distribution with a sequence of flatter densitiesampling-based filters is to form a Laplace approximation
which are easier to sample from, or the “darting” approache$ p(qt\qt(’;)l,yt), then use the resulting Gaussian densities
discussed, e.g., in [21]), where “darting” regions are agfin (or heavier-tailed densities with the same location andtesca



parameters) as proposal densities. The scatter matrieftth indexed by: to define the-th ellipse, e.g., by computing some
proposal density constructed in this manner is clearlytedla robust estimates of the center and scale parameters from the
to the i-th ellipse discussed above. However, we emphasigamples [23], [24]. These sample-based ellipses can be com-
that we will not use this |mportance sampling approach hepeited using an initial run, before the reparameterized &ibb
(since in many cases of mtereﬁ(qf\qt )1,%) may have sharp sampler is started, or we can potentially update our elipse
corners, or may be high-dimensional, and in either case tae the Gibbs sampler produces more samples (though this
resulting proposal densities may not match the target tiessi may be computationally expensive, and makes the conveegenc
closely enough to be useful); we only use the ellipses @malysis of the resulting time-varying Gibbs chain much enor
define a reparameterization that improves the mixing of oapmplicated).

Gibbs sampler. Similarly, the “darting” methods mentioned Computationally, it is helpful to note that the Gibbs ap-
above [21] construct ellipses near each mode of the targebach can be parallelized quite easily, simply by running
distribution to define a “mode-hopping” MCMC algorithm:multiple independent chains. We can also parallelize the nu
once the sampler enters one of these ellipses it is allowestrical construction of théV reparameterizations, if analytic

to jump to one of the other ellipses, under an appropriaselutions are unavailable. It is also worth noting that imgna
Metropolis-Hastings acceptance probability. In our psgzb cases it might be more efficient to use a Metropolis-within-
Gibbs-based algorithm, note again that the ellipses ard us&bbs approach, rather than direct Gibbs. This is becaude ea
only to define the reparameterization, and we do not restr@ibbs step in the;t , direction (holdmg the reparameterlzed

our sampler to jump only within these eI(I|p)>ses — the G|bb,§ fixed) requires us to computet 1p(yt\qt) (qt\q L) for
sampler can potentially jump fronf”, to ¢/’ for anyi and gach of then possible values of”,. In many cases of

J, given any value ofy;. mterest many of these values will be negligible. For exiamp
wt lp(yt\q 1) may be near zero for many values @fthis
Il. I MPLEMENTATION DETAILS is typically the situation when the observatign is highly

To specify our algorithm in any concrete model settingynlikely given the coIIect|on]t 1» Which is one of the major
we need to specify a computationally-efficient method farases that we are interested |n. here. Thus if we have some
constructing the reparameterizations, or equivalentlydp- approximate estimates fqr(yt\qt’ 1) (e.g., via the Laplace
proximating theN high- probablllty ellipses, one for each ofapproximation approach outlined above), it is much more
the conditional d|str|but|onp(qt|qt 1,yt) This step is highly efficient to focus the sampler’s attention on the values of
problem-dependent. for which w(”, p(y:|¢\"”,) is large; for example, we can use

In some cases we can define good reparameterizatiems independence Metropolis-Hastings sampler to sample in
analytically. See section IV below for an example in whicé ththe7 direction, using a normalized version of our estimate of
reparameterized denSItI¢$qt|qt 17yt) turn out to be exactly w, )1p(yt\qt >1) as a proposal distribution.
equal for a suitably chosen linear reparameterizatiorditga  In some particularly difficult cases (e.g., if the state ahle
to very fast mixing of the Gibbs chain. q: is high-dimensional, and the transition and/or observatio

More generally, we can apply standard approximation metfensities have many “sharp corners”) |t may not be possible
ods, such as Laplace approximation or expectation projagatto align the conditional distributions(¢:|q";, ) via a linear
[22]. These methods are iterative, but good initializagi@ne transformation. In these cases even the reparameterizeas Gi
often available analytically, and in many cases only a fewhain will mix slowly. This can in principle be diagnosed
iterations will suffice. For example, consider the fairlyoad directly if we are running two or more Gibbs chains in patalle
class of nonlinear state-space models with linear obsenst it we find that two particles end up moving exclusively on

¢ = filgio1)+e ©) different subsets of i.n<.jice‘§ then we know we have a mixing
problent. If poor mixing is encountered it is necessary to
ye = Bia e, @) switch to a more general, more computationally expensive

where thef,(.) are arbitrary (potentially nonlinear) functionsapproach, such aS using linked importance sampling [25]
eachB, is a linear operator, and ands; are stochastic terms. to estimatep(y;|¢\”;) (and then using the APF to generate
The dynamics noise(e;|q;—1) can depend om;_; (andt), samplesy), or simulated tempering methods [18], [19], [20]
but for simplicity assume that the observation nojgg,) is to sample from the pairwise distribution (5) directly.
independent of; (though the ideas here can be easily extendedFinally, note that it will often be unnecessary to apply our
to the case thay, is generated, e.g., by a generalized lineanethod at every time step, since in many cases the standard
model giveng;). By assumption]og p(e;|q;—1) andlogp(n,) particle filtering methods will work well, if the observatisy;
are concave functions @f andr,, respectively; if we further are consistent with the prior distribution of the state ablé
assume that these functions are smooth and not too ngn-Thus a natural approach would be to augment a standard
quadratic, then Laplace appl’OXimationSﬁ@t|q§Z_)1’yt) can particle filter with an outlier check [26], [27] at each time
be initialized analytically.

In the most general settings, these classical approximatio !Note that it is not necessarily a problem if all of the paﬁmlstay on one

may still be inadequate. We have also assumed that we &i§xi, since as discussed above, in many casf$, p(y:q;,) might be
sharply concentrated on just one or a few values.dut if there are two

i)
sample easily from eaqb((h‘qt 1> ¥t). Thus a natural gen_era! such high-probability indices that do not communicate with each other, this
approach is to simply use samples from each distributiamiicates a mixing problem.



step (where “outlier” observationg, can be detected basedfor comparison. (Of course, more generally the PA-APF will
on an estimate of the marginal probability gf, or of the not be easily available analytically, and therefore we have
effective sample size following the incorporation of thg, approximate it using the methods described above.)
only invoking our method at the subset of time points at Second, becausg(w:|¢:—1) has small variance relative to
which an outlier is detected, where we expect standardgartithe variance oﬁyffi_)l in this model (since the latter quantity
filter methods to return an inaccurate estimate of the pesterdepends on the past history@f which has larger conditional
P(qe|Y1:e- variance thanu; see Fig. 4 below for an illustration), we ex-
pect that the conditional distributiorpf{qt|q,fl_)1,yt) will have
IV. APPLICATION small overlap and therefore straightforward Gibbs sangplin
In this section we describe a simple illustrative nonlineagwith no standardization) will mix poorly when applied teeth
nonstationary, non-Gaussian example from neurosciertoe. Pairwise distributionp(g:, ¢:—1]y:) (recall egs. 3 and 5). This
Fitzhugh-Nagumo model [28] is a two-dimensional model d¢ indeed the case, as demonstrated in Figs. 2-3 below.
excitable media, used in computational neuroscience as-a si Finally, in contrast, we expect the reparameterized Gibbs
plified model for action potential generation. While much morapproach to perform quite well here, since it turns out that t
realistic models are available, we chose this two-dimeradio standardized(q:|q:—1, y:) densities turn out to all be equal
model for its ease of visualization. In this context the twates in this case, as can be demonstrated with a direct calcnlatio
variablesq; = (v, w;) are interpreted as a membrane voltagemitted for brevity). This makes the reparameterized &ibb
(v¢) and an auxiliary variablev; that controls the excitability chain mix optimally (since the target mixture distributi¢)
of the neuron. We used the state dynamics can be written as a product distribution as a function of
. the indices: and the reparameterizeg variables), ensuring
dvp = (v —v}/3—w+ 1) dt + Vte} (8)  the method's computational efficiency in this case. Obvipus
dw;, = 0.4 (v, +0.7 = 0.8w,) dt + Vdte, (9) the densitiesp(qt|g:—1,y:) will not overlap so nicely in
eneral; however, we have focused on this special casedere t
emonstrate that this simple reparameterized Gibbs agiproa

respectively:T, was a 3 Hz sinusoidal input of amplitudes, can often perform quite well, even in strongly non-Gaussian

anddt = 0.1. (We used the Laplacian distribution rather thaexamples where methods based on importance sampling can

the more common Gaussian here to explore a slightly heavi%F-e?k dowA.

. . o Figs. 2 and 3 compare the performance of several of the
tailed noise distribution.) These parameters put the mo‘ﬁ?'ers we have discussed above. The perfectly adapted APF
neuron in a weakly stochastically resonant regime: when t é ' P y P

noisee ande? is set to zero, the neuron does not emit ans labeled “PA-APF”; the reparameterized Gibbs method we

action potentials, but in the presence of noise the neured ﬁrgresen_ted above is “Standardized lebs ;_and Glbps sefer
. . : - to straightforward, non-reparameterized Gibbs applieth&
action potentials roughly synchronized to the periodicuinp

signalI;. The results described below do not depend stron%{?w'se distributionp(q;, g:—1|y:). Finally, “Weare” refers to

where ¢}’ and e; were chosen as independent Laplaciagn
(double-exponential) variables, with scal¢5 and 1/1000,

on the model parameters, as long as the firing frequency of method |_ntrodqced by [3], Wh'c.h can be seen as a version
neuron is fairly small (but nonzero) and the scale of theagsit °© the(i)APF in whichp(g:|g:—1,3) is sampled exactly, but
noise ¢! was significantly greater than that of the auxiliar)P(y_tmt—l) IS est|ma'[(e)cj via a simple importance sampling
noisee. (We will discuss the relevance of these condition@stimate (where(q:|¢;",) is used as a proposal density). The
at more length below.) number of particlesV = 20 in each case.

We examined the performance of the filter given some very The performance of each of the four filters was similar for
simple simulated observed dal& no action potentials are ¢ < 0.5 (data not shown), where all of the observatignsvere
observed for the first.5 second of the experiment, and therget to be zero and the prior density specified by the dynamics
a single action potential is observedtat 0.5. Observations Provided a good match to the conditional density given the
were considered to be binary variables, indicating thegmes data (recall that the model dynamics chosen here lead to a
or absence of an action potential. We use a very bag@all probability of a voltage threshold crossing, comsist

deterministic voltage threshold-crossing observatiomaiio ~ With y. = 0). Therefore, to enable a fair comparison, we used
the PA-APF to generate the particle trajectories tfer 0.5,

pye =1q) = 1 if v >1 (10)  for all four methods. This is indicated in black in Fig. 2.
0 otherwise. (112) On the other hand, the observatign= 1 att = 0.5 is

Note.q;t is nqt observed directly; ie, observatiofig; } are 2More generally, we can guarantee that the proposed methbgevfbrm
conditionally independent ofw; } given {v;}. After ¢ = 0.5, well if the ¥ and e random variables are independent, dngp(e?) is
we allowed the state variablg to evolve according to its concave and smoothly decaying. In this case, it is easy to shewthe

: : : conditional distribution given an unlikely; = 1 observation can be well-
dynamics, with no further observations taken far 0.5. approximated by a product gf(e}’) and an exponential distribution e}

Our choice of models here has several important implicgset so that the left edge of its support coincides exasity the voltage
tions. First, the “perfectly-adapted" APF (in the termio@y threshold, exactly as in the case considered here. (Thi®zippation becomes
of [7]) can be Computed eXplICItly — j.e.. we can analytiya” exact in the limit that the voltage threshold is very high.)n&mlizations of

. e this example are easy to construct. Thus it is clear that iserevider range of
computep(y;|g:—1) and sample directly fromv(g:|g:—1,91)  cases for which the conditional distributiopgg;|g " |, y+) are well-alignable
— and we use this analytical filter as a “gold standardh the sense required here.
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Fig. 3.  Summary and zoom-in of the filtering results shown in Fg.
median (solid)+ median absolute deviation from the median (dashed) for
Fig. 2. Comparing four particle filters applied to thresholdeltage obser- each of the four filters presented in Fig. 2. Again, note thatreparameterized
vations from a Fitzhugh-Nagumo model. Each row shows the paeioce of  Gibbs method (red) matches the PA-APF output (black), whitgeleerrors
one filter (described in the text), where the filtered voltageare displayed are evident in both the; andw; output for the other two filters.

in the left column and the filtered auxiliary variable; are shown in the

right column. Each dot corresponds to one particle Ioca@ﬁdh each of the

methods shown here produce equally-weighted particles| ained points,

ie., wt(” = 1/N for all s andt. Line atv = 1 indicates voltage threshold; p(a,la,_,) p(a,la, ;. Y,)

particles crossing the threshold prematurely (fox 0.5) are killed. Note 1
the discontinuity at = 0.5, wherey; switches from0 to 1. Colorscheme

chosen to emphasize that the same filter is used for all four foms< 0.5, o
and then the indicated filters are used:at 0.5, with the particles allowed -
to evolve according to the prior dynamics for> 0.5 (see main text). Note 0.5
that the reparameterized Gibbs method (red) matches the mftphe “gold
standard” perfectly adapted APF (black), while significartors are evident 2=
for the other two filters. See Fig. 3 for summary statistics.
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quite unlikely given all of the precedingt(’_)1 particles that 0508 m \
happen to have been chosen here. Both the APF and -1 0 1 -1 0
reparameterized Gibbs method are able to handleathisori v v
unlikely obser\_/auon.w'eII;_m.factz we find that the performea Fig. 4. The effective support of the densitiggrlq(”,) (eft) and
of these two filters is indistinguishable here. (i) . . .
. p(qtlq; 4, ye) (right), evaluated at = 0.5, for the particles shown in
However, both of the other approaches fail. The nonstagg. 2. Each horizontal errorbar shows the conditional daae deviation
dardized Gibbs filter (third panel of Fig. 2; blue traces)ai® of p(v:|q!”,); vertical errorbars corresponding to the conditional déad
down because the mixing rate of the Gibbs chain in thigviation Ofp(wt\qii)l) are shown as well, but are too small to see here
case is extremely slow. because of the small overlaps of tlfeeall that the conditional scale af; given g;—1 is much smaller than that
diti | distributi ' (i) di d ab . of v in these simulations). The vertical line indicates the \gstahreshold
C(_)n rional distribu Io_n$'(Qt|qt_—_1’yt)’ as_ IScussed a OYe* s€ tv = 1. Note thatp(v: > 1|q£7‘_)1) is very small for all values of here;
Fig. 4 for further details. Empirically, this means that Bi®bs  this explains why the approach of [9] breaks down in this dase Fig. 3;
chain gets stuck on whatever value apﬁ’jl we happen to see main text for additional discussion). Additionally, exthat almost all of

initialize the chain, and is never able to sample other glud"® conditional densitiep(q:|;"), z) (right panel) have negligible overiap,
! eading to a very slow mixing rate of the non-reparameterizéazb&chain,

this obviously sharply reduces the particle diversity ¢sill  ang the failure of the corresponding non-reparameterizetiilter (Fig. 3).

N selected values ca;ft“_)1 are identical, with high probability),

and leads to a bias due to the fact that the chain depends so

strongly on its initial conditions. The approach of [9] (fthu

panel of Fig. 2; green traces), on the other hand, fails kscaw(y;|q;_1) are all set to zero. (To prevent catastrophic failure
with high probability none of the importance samples frorof the code in this case, we s&fy:|q:—1) < 1/N, which leads
the prior proposab(qt|q£7;)1) are consistent with the observedo the bias and overestimate of the variancetfor 0.5 shown
datay; = 1 (see Fig. 4), which means that the estimates fam the green traces of Figs. 2-3.)
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