
1

Robust particle filters via sequential pairwise
reparameterized Gibbs sampling

Liam Paninski, Kamiar Rahnama Rad, and Michael Vidne

Abstract—Sequential Monte Carlo (“particle filtering”) meth-
ods provide a powerful set of tools for recursive optimal Bayesian
filtering in state-space models. However, these methods are
based on importance sampling, which is known to be non-
robust in several key scenarios, and therefore standard particle
filtering methods can fail in these settings. We present a fil-
tering method which solves the key forward recursion using a
reparameterized Gibbs sampling method, thus sidestepping the
need for importance sampling. In many cases the resulting filter
is much more robust and efficient than standard importance-
sampling particle filter implementations. We illustrate the method
with an application to a nonlinear, non-Gaussian model from
neuroscience.

I. I NTRODUCTION AND BACKGROUND

Sequential Monte Carlo (“particle filtering”) methods have
become quite popular over the last two decades [1], largely
because these methods offer a general recipe for (approximate)
optimal Bayesian inference on nonlinear, non-Gaussian time
series data, in a recursive and computationally tractable form.

However, it is well-known that these methods can perform
unreliably in a number of important cases. The basic problem
is that standard particle filters rely fundamentally on impor-
tance sampling, which is known to be unreliable in many high-
dimensional settings [2], [3] (though see [4] for an alternative
view) and more generally in cases where it is difficult to
construct accurate proposal densities [5]. In these cases the
particle filter will often choose particle locations that provide
a poor match to the data, leading to rapid particle depletion
and a highly suboptimal approximation of the target posterior
distributions. As a consequence, particle filters can be very
non-robust with respect to outliers or model misspecifications.

A number of potential solutions to this problem have
been proposed. To discuss these ideas, we need to introduce
some notation. The basic filtering problem is to estimate the
conditional probabilityp(qt|Y1:t) of the Markovian hidden
state variableqt, given all observed dataY1:t = {y0, ..., yt}
in the time interval[0, t], under the standard hidden Markov
model assumption that each observed data pointyt depends
directly only on the state variableqt at time t. We assume
that the observation probability,p(yt|qt), and the transition
probability, p(qt|qt−1), are known. Due to space limitations,
we will not review basic particle filtering methodology here;
see e.g. [1], [6] for background.

The “auxiliary” particle filter (APF) introduced by [7] is
one effective method for incorporating the observationyt into
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the sampler forqt, therefore leading to a much more reliable
filter. (Related approaches have been discussed more recently
by [8] and [9].) The APF is highly effective if we can (1)
compute a good approximation to the marginal likelihood
∫

p(yt|qt)p(qt|qt−1)dqt = p(yt|qt−1), and then (2) efficiently
sample from the conditional distributionp(qt|yt, qt−1). As
we will discuss below, in many important cases the sam-
pling step (2) is feasible. However, computation of marginal
likelihoods is a notoriously difficult problem [10] (for some
further discussion, see e.g. [11]); in practice, often importance
sampling methods are used to approximatep(yt|qt−1), and our
goal here is to avoid importance sampling methods entirely.
(Though see the discussion section for a brief consideration of
some approaches for improving the importance sampling step
directly.)

Markov chain Monte Carlo (MCMC) methods provide a
natural alternative to the importance sampling approach. The
influential paper [12] proposes MCMC methods to sample
from p(qt, qt−1, . . . qt−L|yt, yt−1, . . . yt−L, qt−L−1), for some
time lagL. (See [13] for a related idea that uses importance
sampling instead of MCMC methods; [14] discuss a different
stepwise MCMC-based approach that replaces the impor-
tance sampling step with a related independence Metropolis-
Hastings sampler.) This approach is quite powerful in princi-
ple, since it allows us to correct “mistakes” — i.e., samples
qt−n that poorly match the observed dataY1:t — up toL time
steps in the past, given the new observationyt. In practice, it
may be difficult to construct a rapidly-mixing MCMC chain to
sample from p(qt, qt−1, . . . qt−L|yt, yt−1, . . . yt−L, qt−L−1).
Our main goal here is to develop more efficient MCMC chains,
focusing on theL = 1 case.

II. OUR APPROACH: PAIRWISE REPARAMETERIZEDGIBBS

SAMPLING

Assume that at timet − 1 we have a weighted particle
representation of the forward distribution,

p(qt−1, Y0:t−1) ≈
N

∑

i=1

w
(i)
t−1δ

(

qt−1 − q
(i)
t−1

)

; (1)

hereN is the number of particles, andw(i)
t−1 andq

(i)
t−1 denote

the weight and location, respectively, of thei-th particle at
time t − 1.

Now the standard forward recursion for hidden Markov
models [15] is

p(qt, Y0:t) =

∫

p(qt, qt−1, Y0:t)dqt−1 (2)

=

∫

p(yt|qt)p(qt|qt−1)p(qt−1, Y0:t−1)dqt−1.
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Plugging in eq. (1), we have

p(qt, qt−1, Y0:t) ≈
N

∑

i=1

w
(i)
t−1p(yt|qt)p(qt|q(i)

t−1)δ
(

qt−1 − q
(i)
t−1

)

,

(3)
where we have abbreviatedp(qt|q(i)

t−1) = p(qt|qt−1 = q
(i)
t−1).

Now the basic idea is that, according to eq. (2), if we can
draw N samples from the pairwise conditional distribution

p(qt, qt−1|Y0:t) ∝ p(qt, qt−1, Y0:t) (4)

via the approximation (3), then we can obtain an (unweighted)
particle approximation to the desired conditional forwarddis-
tribution at timet, p(qt|Y0:t), simply by discarding (marginal-
izing) theqt−1 component of our samples.

Thus we will focus on developing fast methods for sampling
from the pairwise distributionp(qt, qt−1|Y0:t). It is helpful to
rewrite eq. (3) asp(qt, qt−1, Y0:t) ≈

N
∑

i=1

w
(i)
t−1p(yt|q(i)

t−1)p(qt|q(i)
t−1, yt)δ

(

qt−1 − q
(i)
t−1

)

. (5)

This clarifies the connection to the APF approach: if we can
computep(yt|q(i)

t−1) =
∫

p(yt|qt)p(qt|qt−1 = q
(i)
t−1)dqt and

then sample fromp(qt|q(i)
t−1, yt) = p(qt|qt−1 = q

(i)
t−1, yt), then

we can sample directly from our pairwise target distribution
(3). As we mentioned in the introduction, the latter task is
often relatively easy. For example, in many applications both
the observation distributionp(yt|qt) and the transition distri-
bution p(qt|qt−1) are log-concave densities; we will assume
that this is the case throughout this paper. This implies that
the conditional densityp(qt|qt−1, yt) is also log-concave; a
number of effective rejection or MCMC methods exist for
sampling from log-concave (and therefore unimodal) densities
[5]. However, as emphasized above, computingp(yt|q(i)

t−1) is
more challenging, and we do not attempt to do this directly.

Instead, we will apply a transformed Gibbs method to
sample from (3). The key feature of our problem is that it
is relatively easy to make MCMC moves in theqt direc-
tion (since we have assumed that the conditional distribution
p(qt|qt−1, yt) is log-concave), but moving in theqt−1 direction
is typically harder, since in many cases, for any fixedqt,
p(qt|q(i)

t−1)p(yt|qt) may be a sharply-peaked function ofi
(since the densitiesp(qt|q(i)

t−1, yt) may have minimal overlap
for different values ofi), implying that the Gibbs chain mixes
slowly (or not at all, if the densitiesp(qt|q(i)

t−1, yt) have disjoint
support for different indicesi). See the left panel of Fig. 1 for
an illustration.

Eq. (3) (or equivalently (5)) can be treated as a mixture,
where each particlei indexes a different mixture component.
The fact that Gibbs sampling often mixes slowly in mixture
settings (because it can be a challenge to jump efficiently
between mixture components) is well-known [16], [17], and
a number of strategies have been suggested for dealing with
this problem. Some examples include so-called “tempering”
methods [18], [19], [20], which replace the original challeng-
ing mixture distribution with a sequence of flatter densities
which are easier to sample from, or the “darting” approaches
discussed, e.g., in [21]), where “darting” regions are defined
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Fig. 1. A schematic illustration of the standardization idea. Left : three
hypothetical densitiesp(qt|q

(i)
t−1, yt), for i = 1, 2, 3. Note that these densities

have nearly disjoint support, and therefore Gibbs jumps in the “vertical”
direction (thei-direction) will be rare.Right: standardized versions of the
densities shown on the left. Note that these standardized densities have much
more overlap, greatly increasing the Gibbs mixing rate.

near modes of the target distribution, and the chain is allowed
to make jumps between these regions. We will discuss appli-
cations of these methods further below.

The approach we propose here is simple and less generally
applicable than the tempering method, but in many cases leads
to a fast, effective, and easy-to-code algorithm. The basicidea
(quite common in the Gibbs sampling literature) is to apply
a reparameterization so that the densitiesp(qt|q(i)

t−1, yt) have
greater overlap in the rescaled space; see the right panel of
Fig. 1 for an illustration. Then we can apply standard Gibbs (or
Metropolis-Hastings-within-Gibbs) sampling in the rescaled
space, and finally map our reparameterized samples back to
the original space.

What kind of reparameterization should we use? Computa-
tional efficiency is a key consideration here, so while nonlinear
reparameterizations could certainly be useful in some applica-
tions, we will limit our attention to linear (affine) reparameter-
izations here. In a sense we want to “standardize” each of the
distributionsp(qt|q(i)

t−1, yt), recentering and rescaling each of
these distributions so that the high-probability region ineach
of these distributions coincides as much as possible. Sincewe
are restricting our attention to linear mappings, it is sufficient
to define ellipses for each distribution indexed byi, where the
i-th ellipse corresponds (in some sense) to the high-probability
region of the i-th distribution (recalling that each of these
distributions is assumed to be unimodal); then our reparame-
terization consists simply of the standardization mappingeach
of the N ellipses onto the unit sphere. (Of course, we must
keep track of the volume of each of the original ellipses, so
that we can apply the standard determinant change-of-measure
formula to each of the transformed distributions.)

Before discussing further practical implementation details,
it is worth noting connections to a couple other ellipse-based
methods. First, a very common (and often quite useful) method
for constructing proposal densities in standard importance
sampling-based filters is to form a Laplace approximation
of p(qt|q(i)

t−1, yt), then use the resulting Gaussian densities
(or heavier-tailed densities with the same location and scatter
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parameters) as proposal densities. The scatter matrix of the i-th
proposal density constructed in this manner is clearly related
to the i-th ellipse discussed above. However, we emphasize
that we will not use this importance-sampling approach here
(since in many cases of interest,p(qt|q(i)

t−1, yt) may have sharp
corners, or may be high-dimensional, and in either case the
resulting proposal densities may not match the target densities
closely enough to be useful); we only use the ellipses to
define a reparameterization that improves the mixing of our
Gibbs sampler. Similarly, the “darting” methods mentioned
above [21] construct ellipses near each mode of the target
distribution to define a “mode-hopping” MCMC algorithm:
once the sampler enters one of these ellipses it is allowed
to jump to one of the other ellipses, under an appropriate
Metropolis-Hastings acceptance probability. In our proposed
Gibbs-based algorithm, note again that the ellipses are used
only to define the reparameterization, and we do not restrict
our sampler to jump only within these ellipses — the Gibbs
sampler can potentially jump fromq(i)

t−1 to q
(j)
t−1 for any i and

j, given any value ofqt.

III. I MPLEMENTATION DETAILS

To specify our algorithm in any concrete model setting,
we need to specify a computationally-efficient method for
constructing the reparameterizations, or equivalently for ap-
proximating theN high-probability ellipses, one for each of
the conditional distributionsp(qt|q(i)

t−1, yt). This step is highly
problem-dependent.

In some cases we can define good reparameterizations
analytically. See section IV below for an example in which the
reparameterized densitiesp(qt|q(i)

t−1, yt) turn out to be exactly
equal for a suitably chosen linear reparameterization, leading
to very fast mixing of the Gibbs chain.

More generally, we can apply standard approximation meth-
ods, such as Laplace approximation or expectation propagation
[22]. These methods are iterative, but good initializations are
often available analytically, and in many cases only a few
iterations will suffice. For example, consider the fairly broad
class of nonlinear state-space models with linear observations,

qt = ft(qt−1) + ǫt (6)

yt = Btqt + ηt, (7)

where theft(.) are arbitrary (potentially nonlinear) functions,
eachBt is a linear operator, andǫt andηt are stochastic terms.
The dynamics noisep(ǫt|qt−1) can depend onqt−1 (and t),
but for simplicity assume that the observation noisep(ηt) is
independent ofqt (though the ideas here can be easily extended
to the case thatyt is generated, e.g., by a generalized linear
model givenqt). By assumption,log p(ǫt|qt−1) and log p(ηt)
are concave functions ofǫt andηt, respectively; if we further
assume that these functions are smooth and not too non-
quadratic, then Laplace approximations top(qt|q(i)

t−1, yt) can
be initialized analytically.

In the most general settings, these classical approximations
may still be inadequate. We have also assumed that we can
sample easily from eachp(qt|q(i)

t−1, yt). Thus a natural general
approach is to simply use samples from each distribution

indexed byi to define thei-th ellipse, e.g., by computing some
robust estimates of the center and scale parameters from the
samples [23], [24]. These sample-based ellipses can be com-
puted using an initial run, before the reparameterized Gibbs
sampler is started, or we can potentially update our ellipses
as the Gibbs sampler produces more samples (though this
may be computationally expensive, and makes the convergence
analysis of the resulting time-varying Gibbs chain much more
complicated).

Computationally, it is helpful to note that the Gibbs ap-
proach can be parallelized quite easily, simply by running
multiple independent chains. We can also parallelize the nu-
merical construction of theN reparameterizations, if analytic
solutions are unavailable. It is also worth noting that in many
cases it might be more efficient to use a Metropolis-within-
Gibbs approach, rather than direct Gibbs. This is because each
Gibbs step in theq(i)

t−1 direction (holding the reparameterized
qt fixed) requires us to computew(i)

t−1p(yt|qt)p(qt|q(i)
t−1) for

each of theN possible values ofq(i)
t−1. In many cases of

interest, many of these values will be negligible. For example,
w

(i)
t−1p(yt|q(i)

t−1) may be near zero for many values ofi; this
is typically the situation when the observationyt is highly
unlikely given the collectionq(i)

t−1, which is one of the major
cases that we are interested in here. Thus if we have some
approximate estimates forp(yt|q(i)

t−1) (e.g., via the Laplace
approximation approach outlined above), it is much more
efficient to focus the sampler’s attention on the values ofi

for which w
(i)
t−1p(yt|q(i)

t−1) is large; for example, we can use
an independence Metropolis-Hastings sampler to sample in
the i direction, using a normalized version of our estimate of
w

(i)
t−1p(yt|q(i)

t−1) as a proposal distribution.
In some particularly difficult cases (e.g., if the state variable

qt is high-dimensional, and the transition and/or observation
densities have many “sharp corners”) it may not be possible
to align the conditional distributionsp(qt|q(i)

t−1, yt) via a linear
transformation. In these cases even the reparameterized Gibbs
chain will mix slowly. This can in principle be diagnosed
directly if we are running two or more Gibbs chains in parallel:
if we find that two particles end up moving exclusively on
different subsets of indicesi, then we know we have a mixing
problem1. If poor mixing is encountered it is necessary to
switch to a more general, more computationally expensive
approach, such as using linked importance sampling [25]
to estimatep(yt|q(i)

t−1) (and then using the APF to generate
samplesqt), or simulated tempering methods [18], [19], [20]
to sample from the pairwise distribution (5) directly.

Finally, note that it will often be unnecessary to apply our
method at every time step, since in many cases the standard
particle filtering methods will work well, if the observationsyt

are consistent with the prior distribution of the state variable
qt. Thus a natural approach would be to augment a standard
particle filter with an outlier check [26], [27] at each time

1Note that it is not necessarily a problem if all of the particles stay on one
index i, since as discussed above, in many casesw

(i)
t−1p(yt|q

(i)
t−1) might be

sharply concentrated on just one or a few values ofi. But if there are two
such high-probability indicesi that do not communicate with each other, this
indicates a mixing problem.
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step (where “outlier” observationsyt can be detected based
on an estimate of the marginal probability ofyt, or of the
effective sample size following the incorporation of theyt),
only invoking our method at the subset of time points at
which an outlier is detected, where we expect standard particle
filter methods to return an inaccurate estimate of the posterior
p(qt|Y1:t.

IV. A PPLICATION

In this section we describe a simple illustrative nonlinear,
nonstationary, non-Gaussian example from neuroscience. The
Fitzhugh-Nagumo model [28] is a two-dimensional model of
excitable media, used in computational neuroscience as a sim-
plified model for action potential generation. While much more
realistic models are available, we chose this two-dimensional
model for its ease of visualization. In this context the two state
variablesqt = (vt, wt) are interpreted as a membrane voltage
(vt) and an auxiliary variablewt that controls the excitability
of the neuron. We used the state dynamics

dvt =
(

vt − v3
t /3 − wt + It

)

dt +
√

dtev
t (8)

dwt = 0.4 (vt + 0.7 − 0.8wt) dt +
√

dtew
t , (9)

where ew
t and ev

t were chosen as independent Laplacian
(double-exponential) variables, with scale1/5 and 1/1000,
respectively;It was a 3 Hz sinusoidal input of amplitude0.3,
anddt = 0.1. (We used the Laplacian distribution rather than
the more common Gaussian here to explore a slightly heavier-
tailed noise distribution.) These parameters put the model
neuron in a weakly stochastically resonant regime: when the
noiseew

t and ev
t is set to zero, the neuron does not emit any

action potentials, but in the presence of noise the neuron fired
action potentials roughly synchronized to the periodic input
signalIt. The results described below do not depend strongly
on the model parameters, as long as the firing frequency of the
neuron is fairly small (but nonzero) and the scale of the voltage
noise ev

t was significantly greater than that of the auxiliary
noiseew

t . (We will discuss the relevance of these conditions
at more length below.)

We examined the performance of the filter given some very
simple simulated observed dataY : no action potentials are
observed for the first0.5 second of the experiment, and then
a single action potential is observed att = 0.5. Observations
were considered to be binary variables, indicating the presence
or absence of an action potential. We use a very basic
deterministic voltage threshold-crossing observation model:

p(yt = 1|qt) = 1 if vt > 1 (10)

= 0 otherwise. (11)

Note wt is not observed directly; i.e., observations{yt} are
conditionally independent of{wt} given {vt}. After t = 0.5,
we allowed the state variableqt to evolve according to its
dynamics, with no further observations taken fort > 0.5.

Our choice of models here has several important implica-
tions. First, the “perfectly-adapted” APF (in the terminology
of [7]) can be computed explicitly — i.e., we can analytically
computep(yt|qt−1) and sample directly fromp(qt|qt−1, yt)
— and we use this analytical filter as a “gold standard”

for comparison. (Of course, more generally the PA-APF will
not be easily available analytically, and therefore we haveto
approximate it using the methods described above.)

Second, becausep(wt|qt−1) has small variance relative to
the variance ofw(i)

t−1 in this model (since the latter quantity
depends on the past history ofvt, which has larger conditional
variance thanwt; see Fig. 4 below for an illustration), we ex-
pect that the conditional distributionsp(qt|q(i)

t−1, yt) will have
small overlap and therefore straightforward Gibbs sampling
(with no standardization) will mix poorly when applied to the
pairwise distributionp(qt, qt−1|yt) (recall eqs. 3 and 5). This
is indeed the case, as demonstrated in Figs. 2-3 below.

Finally, in contrast, we expect the reparameterized Gibbs
approach to perform quite well here, since it turns out that the
standardizedp(qt|qt−1, yt) densities turn out to all be equal
in this case, as can be demonstrated with a direct calculation
(omitted for brevity). This makes the reparameterized Gibbs
chain mix optimally (since the target mixture distribution(5)
can be written as a product distribution as a function of
the indicesi and the reparameterizedqt variables), ensuring
the method’s computational efficiency in this case. Obviously
the densitiesp(qt|qt−1, yt) will not overlap so nicely in
general; however, we have focused on this special case here to
demonstrate that this simple reparameterized Gibbs approach
can often perform quite well, even in strongly non-Gaussian
examples where methods based on importance sampling can
break down2.

Figs. 2 and 3 compare the performance of several of the
filters we have discussed above. The perfectly adapted APF
is labeled “PA-APF”; the reparameterized Gibbs method we
presented above is “Standardized Gibbs”; and “Gibbs” refers
to straightforward, non-reparameterized Gibbs applied tothe
pairwise distributionp(qt, qt−1|yt). Finally, “Weare” refers to
the method introduced by [9], which can be seen as a version
of the APF in whichp(qt|qt−1, yt) is sampled exactly, but
p(yt|q(i)

t−1) is estimated via a simple importance sampling
estimate (wherep(qt|q(i)

t−1) is used as a proposal density). The
number of particlesN = 20 in each case.

The performance of each of the four filters was similar for
t < 0.5 (data not shown), where all of the observationsyt were
set to be zero and the prior density specified by the dynamics
provided a good match to the conditional density given the
data (recall that the model dynamics chosen here lead to a
small probability of a voltage threshold crossing, consistent
with yt = 0). Therefore, to enable a fair comparison, we used
the PA-APF to generate the particle trajectories fort < 0.5,
for all four methods. This is indicated in black in Fig. 2.

On the other hand, the observationyt = 1 at t = 0.5 is

2More generally, we can guarantee that the proposed method will perform
well if the ev

t
and ew

t
random variables are independent, andlog p(ev

t
) is

concave and smoothly decaying. In this case, it is easy to showthat the
conditional distribution given an unlikelyyt = 1 observation can be well-
approximated by a product ofp(ew

t
) and an exponential distribution inev

t

offset so that the left edge of its support coincides exactlywith the voltage
threshold, exactly as in the case considered here. (This approximation becomes
exact in the limit that the voltage threshold is very high.) Generalizations of
this example are easy to construct. Thus it is clear that thereis a wider range of
cases for which the conditional distributionsp(qt|q

(i)
t−1, yt) are well-alignable

in the sense required here.
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Fig. 2. Comparing four particle filters applied to thresholded voltage obser-
vations from a Fitzhugh-Nagumo model. Each row shows the performance of
one filter (described in the text), where the filtered voltages vt are displayed
in the left column and the filtered auxiliary variablewt are shown in the
right column. Each dot corresponds to one particle locationq

(i)
t

; each of the
methods shown here produce equally-weighted particles at all time points,
i.e., w

(i)
t

= 1/N for all i and t. Line at v = 1 indicates voltage threshold;
particles crossing the threshold prematurely (fort < 0.5) are killed. Note
the discontinuity att = 0.5, whereyt switches from0 to 1. Colorscheme
chosen to emphasize that the same filter is used for all four rowsfor t < 0.5,
and then the indicated filters are used att = 0.5, with the particles allowed
to evolve according to the prior dynamics fort > 0.5 (see main text). Note
that the reparameterized Gibbs method (red) matches the outputof the “gold
standard” perfectly adapted APF (black), while significanterrors are evident
for the other two filters. See Fig. 3 for summary statistics.

quite unlikely given all of the precedingq(i)
t−1 particles that

happen to have been chosen here. Both the APF and the
reparameterized Gibbs method are able to handle thisa priori
unlikely observation well; in fact, we find that the performance
of these two filters is indistinguishable here.

However, both of the other approaches fail. The nonstan-
dardized Gibbs filter (third panel of Fig. 2; blue traces) breaks
down because the mixing rate of the Gibbs chain in this
case is extremely slow, because of the small overlaps of the
conditional distributionsp(qt|q(i)

t−1, yt), as discussed above; see
Fig. 4 for further details. Empirically, this means that theGibbs
chain gets stuck on whatever value ofq

(i)
t−1 we happen to

initialize the chain, and is never able to sample other values;
this obviously sharply reduces the particle diversity (since all
N selected values ofq(i)

t−1 are identical, with high probability),
and leads to a bias due to the fact that the chain depends so
strongly on its initial conditions. The approach of [9] (fourth
panel of Fig. 2; green traces), on the other hand, fails because
with high probability none of the importance samples from
the prior proposalp(qt|q(i)

t−1) are consistent with the observed
datayt = 1 (see Fig. 4), which means that the estimates for
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Fig. 3. Summary and zoom-in of the filtering results shown in Fig.2:
median (solid)± median absolute deviation from the median (dashed) for
each of the four filters presented in Fig. 2. Again, note that the reparameterized
Gibbs method (red) matches the PA-APF output (black), while large errors
are evident in both thevt andwt output for the other two filters.
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Fig. 4. The effective support of the densitiesp(qt|q
(i)
t−1) (left) and

p(qt|q
(i)
t−1, yt) (right), evaluated att = 0.5, for the particles shown in

Fig. 2. Each horizontal errorbar shows the conditional standard deviation
of p(vt|q

(i)
t−1); vertical errorbars corresponding to the conditional standard

deviation of p(wt|q
(i)
t−1) are shown as well, but are too small to see here

(recall that the conditional scale ofwt given qt−1 is much smaller than that
of vt in these simulations). The vertical line indicates the voltage threshold
at v = 1. Note thatp(vt ≥ 1|q

(i)
t−1) is very small for all values ofi here;

this explains why the approach of [9] breaks down in this case(c.f. Fig. 3;
see main text for additional discussion). Additionally, note that almost all of
the conditional densitiesp(qt|q

(i)
t−1, yt) (right panel) have negligible overlap,

leading to a very slow mixing rate of the non-reparameterized Gibbs chain,
and the failure of the corresponding non-reparameterized Gibbs filter (Fig. 3).

p(yt|qt−1) are all set to zero. (To prevent catastrophic failure
of the code in this case, we setp(yt|qt−1) ∝ 1/N , which leads
to the bias and overestimate of the variance fort > 0.5 shown
in the green traces of Figs. 2-3.)
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V. CONCLUSION

We have presented a sequential pairwise reparameterized
Gibbs sampling approach that can significantly improve the
robustness of particle filtering methods. Our approach is most
effective when it is easy to draw samples from the conditional
distributionp(qt|qt−1, yt) (e.g., via MCMC methods), and ad-
ditionally these distributions can be easily linearly aligned, i.e.,
the high-probability regions of the distributionsp(qt|qt−1, yt)
and p(qt|q′t−1, yt) can be made to overlap via a linear trans-
formation for any pair(qt−1, q

′

t−1). We provide an example
application to a classical model from neuroscience in section
IV, where the improved performance of the reparameterized
Gibbs approach is especially clear — in particular, in this case
we can sample and reparameterize the necessary conditional
distributions exactly — but as noted above we expect similar
performance gains even in many cases for which such simple
analytical approaches are not available.

As we emphasized in the introduction, a number of ap-
proaches for improving the robustness of particle filtering
methods have been introduced over the last two decades. We
have already discussed a number of these, in the process of
developing and explaining our approach. In addition, the recent
papers [26], [27] discuss particle filtering methods which reject
(or at least attenuate the effect of) outliers. It is worth noting
that this is slightly distinct from our approach: we are not
assuming that the observations are necessarily departuresfrom
our underlying state-space model, and therefore we do not
wish to reject or attenuate the observed datayt. Indeed, our
goal is to compute the optimal filterp(qt|Y1:t) accurately,
assimilating all of the observed dataY1:t, given the state-
space model parameters (a task that the standard importance-
sampling methods are unable to accomplish in many cases, as
emphasized here).

Finally, it is natural to ask if our methods extend beyond the
pairwise case to the problem of sampling from theL-lag condi-
tional distributionsp(qt, qt−1, . . . , qt−L|Y1:t), as considered in
[12], [13]. In some cases a similar reparameterization approach
will be effective, but in much less generality than in the
pairwise setting, since typically theL-lag conditional densities
are not log-concave in theq variables, even ifp(qt|yt, qt−1)
is log-concave inqt. This makes theL-lag distributions much
harder to sample in general, since local optima can trap the
sampler, leading to slow mixing.
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