1. Consider a renewal point process \(\{ t_n \} \) with iid interarrival times \(\{ X_n \} \). We know that for the forward recurrence time process \(A = \{ A(t) : t \geq 0 \} \), wp1,

\[
\lim_{t \to \infty} \frac{1}{t} \int_0^t A(s)ds = \frac{E(X^2)}{2E(X)}.
\]

Notice that \(A \) is a regenerative process with regeneration times simply the \(t_n \) and regenerative cycle lengths \(\{ X_n \} \), and thus this result is just “the long-run average equals the expected value over a cycle divided by the expected cycle length.” Here, over a cycle we have \(R = \int_0^{X_1} A(s)ds = \int_0^{X_1}(X_1 - s) = X_1^2/2 \).

Suppose more generally that a point process \(\{ t_n : n \geq 1 \} \) is defined as follows: Let \(\{ Y_n \} \) be an iid sequence of non-negative rvs, and independently let \(\{ Z_n \} \) be another iid sequence of non-negative rvs. Define \(t_1 = Y_1, t_2 = Y_1 + Z_1, t_3 = Y_1 + Z_1 + Y_2, t_4 = Y_1 + Z_1 + Y_2 + Z_2 \) and so on.

(a) Note that now, unlike the renewal point process case, it is not true that the \(t_n \) are regeneration times (why?). Argue, however, that \(A \) is still a regenerative process and give the regeneration times and cycle lengths.

(b) Find an expression for

\[
\lim_{t \to \infty} \frac{1}{t} \int_0^t A(s)ds.
\]

2. Consider standard Brownian motion (BM) \(\{ B(t) : t \geq 0 \} \). \(B(0) = 0. \) Fix \(x > 0 \) and consider \(T_x = \) the hitting time to state \(x \). Now define \(\tau = \min \{ t > T_x : B(t) = 0 \} \). \(\tau \) is thus the first time that the BM returns back to 0 after hitting \(x \). Argue that BM is thus regenerative with regeneration time \(\tau \). Do the cycle lengths have finite first moment?

3. Recall a semi-Markov process in continuous time \(\{ X(t) : t \geq 0 \} \): It has a discrete state space, and transitions from state to state occur according to a discrete-time Markov chain with a transition matrix \(P = (P_{ij}) \). But when entering state \(i \), the chain remains there for an amount of time \(H_i \) (holding time in state \(i \)) that has a general distribution \(F_i \), independent of the past. (Such a process is not Markovian unless all the \(F_i \) are exponentials.) Suppose that the state space \(S \) is finite, and that each \(F_i \) has finite first moment \(0 < E(H_i) < \infty \). Also suppose that the chain is positive recurrent; there is a unique probability solution \(\pi \) to \(\pi = \pi P \).

(a) Argue that for each initial state \(X(0) = i \), \(\{ X(t) : t \geq 0 \} \) is a (positive recurrent) regenerative process.

(b) Fix a state \(i \). Let \(j \neq i \). Consider the discrete-time chain with transition matrix \(P \). Argue that \(\pi_j/\pi_i \) is the expected number of visits to state \(j \) between visits to state \(i \). In other words if we start the chain off in state \(i \), and then wait until it re-enters state \(i \) again, and count how many times it hit \(j \) along the way, then \(\pi_j/\pi_i \) is the expected number of such times.

(c) Let \(P_i = \lim_{t \to \infty} \frac{1}{t} \int_0^t P(X(s) = i)ds, \ i \in S, \) denote the limiting distribution. Argue that in fact

\[
P_i = \frac{E(H_i)}{\sum_{j \in S} \pi_j E(H_j)}.
\]