
IEOR 4106, Midterm Exam, Spring 2018. 75 Minutes.
100 Points Total. Professor K. Sigman

Open Notes (anything on the course website plus your notes from class), but no books and
no electronic devices of any kind.

Make sure to show/justify your work, don’t just write down an answer with
no explanation!

1. (30 points, 10 each) A gambler George starts with i = 1 (dollar), and plays according to the
Gamber’s ruin problem, with p = 2/3, but with N a random variable: P (N = 2) = P (N = 3) =
1/2. The idea is that just before George starts, he first flips a fair coin (once) to decide the value of
N (Heads = 2, Tails = 3). Then he plays until reaching that value of N or going broke, whichever
happens first, then he stops and goes home. He starts with i = 1 (dollar).

(a) Given that N = 2, what is the probability that the gambler goes home broke? (Exact
numerical answer must be given.)

SOLUTION: Probability = 1/3 as is clear: When N = 2 with i = 1, the game is over after
the first gamble (either 1 → 2 or 1 → 0), and with probability q = 1/3 that gamble will end
the game with the gambler broke (1→ 0).

Formally (but not needed here for credit, the above argument is fine):
We want 1− Pi(N), where

Pi(N) =
1− (q/p)i

1− (q/p)N
.

And we would use i = 1, q/p = 1/2, N = 2:

P1(2)) =
1− (1/2)

1− (1/2)2
= 2/3;

1− P1(2) = 1/3.

If N = 3 (we need this computation for (b) below), then we do need to use the more general
formula given above and we want

P1(3) =
1− (1/2)

1− (1/2)3
= 4/7;

Answer = 1− P1(3) = 3/7.

(b) Compute the probability (exact numerical answer) that the gambler will go home broke.

SOLUTION: By conditioning on N = 2 and N = 3 (using what we computed in (a) for
both cases), our answer will be a 50 − 50 weighted average of using N = 2, 3 because each
case will ocurr with probability 1/2 by the fair coin assumption:
(1/2)(1− P1(2))) + (1/2)(1− P1(3))) = (1/2)(1/3 + 3/7) = 8/21

(c) Explain (but you do not need to carry out the computation) how to compute the probability
that George will go home after at most (≤) 7 gambles.

SOLUTION:

If N = 2, then the game is over in 1 gamble with certainty, hence over after at most 7
gambles with certainty. But if N = 3, then we must consider the transition matrix P for the
Gambler’s ruin problem Markov chain on {0, 1, 2, 3}, and compute P (7) = P 7 and use as our

answer P
(7)
1,0 + P

(7)
1,3 ; both 0 and 3 are absorbing states. When N = 3, P is given by
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P =


1 0 0 0

1/3 0 2/3 0
0 1/3 0 2/3
0 0 0 1.


Then one must compute P 7 (not required here on the exam; just let P 7 = (P

(7)
i,j )) and express

the answer in terms of this.) Thus our answer is the 50− 50 weighted average:

(1/2)(1 + (P
(7)
1,0 + P

(7)
1,3 ))

2. (10 points) A certain stochastic process {Xn : n ≥ 0} is believed by a researcher to be a Markov
chain with state space S = {1, 2} and transition matrix of the form

P =

(
0.5 0.5
p 1− p

)
,

for some 0 < p < 1 unknown. By looking at the values {X0, . . . , Xn} for a very very large time
n, the researcher estimated that the process visits state 1 approximately 40% of the time, and
visits state 2 approximately 60% of the time. From this, give a very reasonable choice of what the
numerical value of p should be.

SOLUTION:

For any 0 < p < 1, the chain is irreducible and since it has a finite state space it must have a
unique limiting distribution π = (π1, π2) satisfying π = πP . From the information they told us:
We can assume that (as a very precise approximation) π1 = 0.40 and π2 = 0.60, since indeed the
πi are (by definition) the long run proportions of time the chain visits states 1 and 2 respectively.
Then we plug that into π = πP to solve for p:

π1 = (0.5)π1 + pπ2 (1)

π2 = (0.5)π1 + (1− p)π2. (2)

The first equation becomes 0.40 = (0.5)(0.40) + p(0.60), from which we easily solve; p = 1/3. (The
second equation yields the same solution if you wish to use that instead.)

3. (20 points, 10 each)

Let ψ = {tn : n ≥ 1} be a Poisson process at rate λ, with counting process {N(t) : t ≥ 0}. For a
fixed t > 0, let T = N(t) + 1.

(a) Compute E(T )

SOLUTION:

N(t) is Poisson distributed with mean λt , so E(T ) = E(N(t)) + 1 = λt+ 1.

(b) Compute E(tT ); the expected time that the T th point occurs.

SOLUTION:

There are 2 Methods:

METHOD I (Wald’s Equation): Letting {Xi} denote the iid interarrival times; they are
distributed as exponential with rate λ ( hence E(X) = 1/λ). tn = X1 + · · ·+Xn =

∑n
i=1Xi,

and hence

tT =

T∑
i=1

Xi,
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tT = tN(t) + 1 is the first point strictly after time t; T = N(t) + 1 = min{n ≥ 1 : tn > t}
is a stopping time with respect to {tn : n ≥ 1}, equivalently with respect to {Xn : n ≥ 1},
and E(T ) = λt + 1 < ∞, and E(X) = 1/λ < ∞. Thus by Wald’s equation we have
E(tT ) = E(T )E(X) = (λt+ 1)/λ = t+ 1/λ.

NOTE: N(t) is not a stopping time; N(t) = max{n : tn ≤ t}.
tN(t) is the last point before or at time t:

tN(t) ≤ t < tN(t)+1. But N(t) + 1 is a stopping time.

METHOD II: Memoryless property of the exponential distribution:

tT = tN(t)+1 = t+A(t), where A(t) = tN(t+1)− t is the remaining interarrival time from time
t onwards. By the memoryless property of the exponential distribution, A(t) is exponential
at rate λ (and independent of the past), hence E(tT ) = t+ E(A(t) = t+ 1/λ.

4. (40 points, 10 each) Consider an M/G/∞ queue, with arrival rate λ = 2 and iid service times
distributed as (CDF) G(x) = P (S ≤ x) = 1− 1

(1+x)2 , x ≥ 0, but at time t = 0, two initial customers

C0(1), C0(2) enter service with iid independent service times Y1, Y2 distributed as exponential at
rate 1.

(a) Let X(t), X(0) = 0 denote the number of busy servers at time t not including the 2 initial
customers. Compute E(X(1)).

SOLUTION:

X(t) has a Poisson distribution with mean

α(t) = λ

∫ t

0

P (S > u)du = 2

∫ t

0

1

(1 + u)2
du = 2(1− 1

1 + t
).

E(X(1)) = α(1) = 1.

Also, E(S) =
∫∞
0

1
(1+u)2 du = 1; ρ = λE(S) = 2(1) = 2.

(b) Continuation:

Compute E(X(∞)) = limt→∞E(X(t)).

SOLUTION: limt→∞E(X(t)) = limt→∞ α(t) = ρ = λE(S) = α(∞) = 2(1) = 2.

(c) Let Z(t), Z(0) = 2 denote the number of busy servers at time t including the 2 initial
customers. Compute E(Z(1)).

SOLUTION: The 2 initial customers will depart at times Y1 and Y2 respectively; hence each
is still in the system at time t if and only if Y1 > t and Y2 > t respectively. Thus

Z(t) = X(t) + I{Y1 > t}+ I{Y2 > t}, and E(I{Y1 > t}) = E(I{Y2 > t}) = P (Y1 > t) = e−t.
Thus
E(Z(t)) = E(X(t)) + 2P (Y1 > t) = α(t) + 2e−t.
E(Z(1)) = α(1) + 2e−1 = 1 + 2e−1.

(d) Continuation: Compute E(Z(∞)) = limt→∞E(Z(t)).

SOLUTION: From (c), E(Z(t)) = α(t) + 2e−t, and e−t → 0 as t→∞ hence the answer is
the same as in (b); ρ = 2.
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