IEOR 4106, HMWK 1, Professor Sigman

1. An asset price starts off initially at price $\$ 3.00$ at the end of a day (day 0), and at the end of each consecutive day, independent of the past, the price goes up by one dollar (with probability $p=0.7$) or down by one dollar (with probability $q=0.3$).
(a) What is the probability that the stock will reach $\$ 11.00$ before going down to 0 ?
SOLUTION: Gambler's Ruin Problem: With $q / p=3 / 7 ; P_{3}(11)=\frac{1-(q / p)^{3}}{1-(q / p)^{11}}=$ 0.921 .
(b) What is the probability that the stock will reach $\$ 10.00$ before going down to a low of $\$ 2.00$?
SOLUTION: Starting initially at 3 and going "up by 7" (to hit 10) before "down by 1 " (to hit 2) is equivalent to starting a random walk initially at $R_{0}=0$, choose $a=7, b=1$, and use the formula for the probability of hitting a before hitting $-b$:

$$
p(a)=\frac{1-(q / p)^{b}}{1-(q / p)^{a+b}}=\frac{1-(3 / 7)^{1}}{1-(3 / 7)^{8}}=0.572 .
$$

(c) What is the probability that the stock will (as time goes on) become infinitely valuable without ever hitting 0 ?
SOLUTION: Gambler's Ruin Problem, where we have $i=3$ and want $P_{i}(\infty)=1-(q / p)^{i}=1-(3 / 7)^{3}=0.921$. (Because we have positive drift, this probability is positive.)
(d) (Continuation:) Answer (a)- (c) in the case when the two probabilities 0.7 and 0.3 are reversed.

SOLUTION:

$q / p=7 / 3$ now, and we have negative drift now.
(a) 0.001
(b) 0.002 (0.00152)
(c) Since we now have negative drift, $P_{i}(\infty)=0$.
(e) (Continuation:) Answer (a)- (c) in the case when $p=q=0.5$.

SOLUTION: Now, $P_{i}(N)=i / N$ for the Gambler's ruin problem, and for the random walk with $R_{0}=0$, we have $P(a)=b /(a+b)$. This yields
(a) $3 / 11$
(b) $1 / 8$
(c) Even when $p=1 / 2$, we have $P_{i}(\infty)=0$.
2. An insurance risk business has a reserve of money (in units of millions of dollars). Initially, it has 3 units. Every day, it earns 1 unit (interest), but also (each day) there is a chance of a claim against the business, independent of past days, of size 2 units with probability 0.35 (with probability 0.65 no such claim comes in). (A claim removes the 2 units from the reserve.)
(a) What is the probability that the risk business will get ruined (run out of money)?

SOLUTION: Recall that the reserve process is exactly a simple random walk with $p=0.65$ starting from $i=3 . \quad(q / p=(.35 / .65=7 / 13)$ Thus we want $1-P_{i}(\infty)$, where $P_{i}(\infty)=\lim _{N \rightarrow \infty} P_{i}(N)=1-(q / p)^{i}$. Thus we want $(q / p)^{i}=(7 / 13)^{3}=0.156$.
(b) What is the smallest value i (units) the business would need to have started with to ensure that the probability of ruin is less than $1 / 2$?
SOLUTION: Noting that $(7 / 13)^{1}=0.538>1 / 2$ and $(7 / 13)^{2}=0.29<1 / 2$, we see that the answer is $i=2$.
3. A jumping bean moves on the integers according to a simple random walk taking one step per unit time. $R_{n}=$ the position at time $n \geq 0$. Assume that $p=0.35$; the probability that a step takes the bean forward (to the right), and $q=1-p=0.65$ is the probability that a step takes the bean backward (to the left). It starts off initially at position $R_{0}=5$.
(a) Does this random walk have positive drift or negative drift?

SOLUTION:

Negative drift (by definition) since $p<1 / 2 ; P\left(\lim _{n \rightarrow \infty} R_{n}=-\infty\right)=1$.
(b) What is the probability that the bean will go down to 0 before ever reaching $\$ 6$?
SOLUTION: With $q / p=13 / 7 ; 1-P_{5}(6)=0.473$, where

$$
P_{5}(6)=\frac{1-(q / p)^{5}}{1-(q / p)^{6}}=0.527 .
$$

(c) What is the probability that the bean will go below $(<) 0$ before ever reaching $\$ 6$?

SOLUTION:

Going below 0 means that it hits -1 since this is a simple random walk, only taking ± 1 size steps. So we want the probability that such a random walk, goes down by $b=6$ before going up by $a=1$.
So we want $1-p(a)$, where (with $a=1, b=6$),

$$
\begin{equation*}
p(a)=\frac{1-\left(\frac{q}{p}\right)^{b}}{1-\left(\frac{q}{p}\right)^{a+b}} . \tag{1}
\end{equation*}
$$

Calculation gives answer 0.468.
(d) What is the probability that the bean will never reach as high as 6.00 ?

SOLUTION: We want the probability that the random walk, starting at 5 never goes up by 1 to 6 . This is equivalent to the random walk, starting initially at the origin, $R_{0}=0$, never reaching as high as 1 , meaning that it never goes above the origin. Letting $M=\max _{n \geq 0} R_{n}$, (with $R_{0}=0$) we know that because the random walk has negative drift (e.g., $p<1 / 2$), M has a geometric distribution, $P(M \geq a)=(p / q)^{a}, a \geq 0$. $(p / q=7 / 13$.) Thus we want $P(M \leq 0)=P(M=0)=1-(p / q)=4 / 13$.
4. As a more realistic model for asset pricing, suppose that the price of an asset moves (day by day) as

$$
X_{n}=8 \times 2^{R_{n}}, n \geq 0
$$

where $R_{0}=0$, and $R_{n}=\sum_{k=1}^{n} \Delta_{k}, k \geq 1$, is a simple symmetric random walk; $P(\Delta=1)=1 / 2=P(\Delta=-1)$.
(a) What is the probability that the asset price reaches a high of 32 before a low of $1 / 2$?
SOLUTION: By taking logarithms in base 2, this is equivalent to the probability that $3+R_{n}$ hits 5 before -1 , or that R_{n} (starting at 0) hits $a=2$ before $-b=-4:($ Recall that $p=1 / 2)$

$$
\begin{equation*}
p(a)=\frac{b}{a+b}=2 / 3 . \tag{2}
\end{equation*}
$$

(b) What is the probability that the asset price will ever reach as high as 2^{500} ?

SOLUTION: We want the probability that $3+R_{n}$ ever hits 500, that is, the probability that R_{n} ever hits 497. Recall that for the simple symmetric random walk $R_{n}, P(M=\infty)=1$ (and $P(m=-\infty)=1$ meaning that it will hit any integer, however large (or however small), with certainty if we wait long enough. Thus the answer is 1 .
5. Let $\left\{Y_{n}: n \geq 0\right\}$ be an i.i.d. sequence of r.v.s. and let $a_{j} \stackrel{\text { def }}{=} P(Y=j),-\infty<j<$ ∞. Define

$$
m_{n} \stackrel{\text { def }}{=} \min \left\{Y_{0}, \ldots, Y_{n}\right\}, n \geq 0
$$

Show that $\left\{m_{n}\right\}$ forms a Markov chain by expressing it as a recursion.
SOLUTION: $m_{n+1}=\min \left\{m_{n}, Y_{n+1}\right\}, n \geq 0$.
(a) The transition probablitities for m_{n} are computed as $P(\min (i, Y)=j)$ while considering the 3 cases:
$P_{i, j}=P(Y=j)=a_{j}$ for $j<i$;
$P_{i, i}=P(Y \geq i)=\sum_{k \geq i} a_{k}$;
$P_{i, j}=0$ for $i<j$ (because m_{n} can never increase)
(b) With probability 1 (wp1), $m_{n} \rightarrow-\infty$ as $n \rightarrow \infty$ because of the assumption that $a_{j}>0$ for all $j<0$: for every $j<0$, no matter how small $a_{j}>0$ is, there will always appear (wp1, for n large enough) a Y_{n} for which $Y_{n}=j$. This is a direct consequence of the strong law of large numbers: $w p 1$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} I\left\{Y_{n}=j\right\}=P(Y=j)=a_{j}>0
$$

This implies that $Y_{n}=j$ for infinitely many values of n (otherwise the limit would be 0).
(c) In this case $a_{j}=0, j<-3$ so $m_{n} \rightarrow-3$ as $n \rightarrow \infty . P_{i, j}=P(Y=j)=a_{j}=$ $1 / 7$ for $-3<j<i \leq 3$;
$P_{i, i}=P(Y \geq i)=\sum_{k=i}^{3} a_{k}=(3-i+1) / 7$ for $-3 \leq i \leq 3$; $P_{i, j}=0$ for $i<j$ (because m_{n} can never increase)

In matrix form,

$P=$| | (-3) | (-2) | (-1) | (0) | (1) | (2) | (3) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (-3) | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| (-2) | $1 / 7$ | $6 / 7$ | 0 | 0 | 0 | 0 | 0 |
| (-1) | $1 / 7$ | $1 / 7$ | $5 / 7$ | 0 | 0 | 0 | 0 |
| (0) | $1 / 7$ | $1 / 7$ | $1 / 7$ | $4 / 7$ | 0 | 0 | 0 |
| (1) | $1 / 7$ | $1 / 7$ | $1 / 7$ | $1 / 7$ | $3 / 7$ | 0 | 0 |
| (2) | $1 / 7$ | $1 / 7$ | $1 / 7$ | $1 / 7$ | $1 / 7$ | $2 / 7$ | 0 |
| (3) | $1 / 7$ | $1 / 7$ | $1 / 7$ | $1 / 7$ | $1 / 7$ | $1 / 7$ | $1 / 7$ |

6. Let $X_{n} \stackrel{\text { def }}{=} Y_{n-1}+Y_{n}, n \geq 1, X_{0} \stackrel{\text { def }}{=} 0$, where $\left\{Y_{n}: n \geq 0\right\}$ is an iid sequence of rvs with a 0.5 Bernoulli distribution: $P(Y=0)=P(Y=1)=0.5$. Is $\left\{X_{n}\right\}$ a Markov chain? Either prove it is or show why it is not.
SOLUTION: Not a MC. For suppose that $X_{n}=Y_{n-1}+Y_{n}=1$. Then either $Y_{n}=1$ and $Y_{n-1}=0$, or $Y_{n}=0$ and $Y_{n-1}=1$. To predict the value of $X_{n+1}=Y_{n+1}+Y_{n}$, we would need to know which of the two cases ocurred; this we could only determine by also knowing past values such as those of X_{n-1}. For example, if $X_{n-1}=0$, then $Y_{n-1}=0$, where as if $X_{n-1}=2$, then $Y_{n-1}=1$:
$P\left(X_{n+1}=0 \mid X_{n}=1, X_{n-1}=0\right)=P\left(Y_{n+1}+Y_{n}=0 \mid Y_{n}=1\right)=P\left(Y_{n+1}=-1\right)=0$ $P\left(X_{n+1}=0 X_{n}=1, X_{n-1}=2\right)=P\left(Y_{n+1}+Y_{n}=0 \mid Y_{n}=0\right)=P\left(Y_{n+1}=0\right)=0.5$ Hence, given X_{n}, X_{n+1} is not independent of X_{n-1}; the Markov property is not satisfied.
