IEOR 4106, HMWK 1, Professor Sigman

1. An asset price starts off initially at price $\$ 3.00$ at the end of a day (day 0), and at the end of each consecutive day, independent of the past, the price goes up by one dollar (with probability $p=0.7$) or down by one dollar (with probability $q=0.3$).
(a) What is the probability that the stock will reach $\$ 11.00$ before going down to 0 ?
(b) What is the probability that the stock will reach $\$ 10.00$ before going down to a low of $\$ 2.00$?
(c) What is the probability that the stock will (as time goes on) become infinitely valuable without ever hitting 0 ?
(d) (Continuation:) Answer (a)- (c) in the case when the two probabilities 0.7 and 0.3 are reversed.
(e) (Continuation:) Answer (a)- (c) in the case when $p=q=0.5$.
2. An insurance risk business has a reserve of money (in units of millions of dollars). Initially, it has 3 units. Every day, it earns 1 unit (interest), but also (each day) there is a chance of a claim against the business, independent of past days, of size 2 units with probability 0.35 (with probability 0.65 no such claim comes in). (A claim removes the 2 units from the reserve.)
(a) What is the probability that the risk business will get ruined (run out of money)?
(b) What is the smallest value i (units) the business would need to have started with to ensure that the probability of ruin is less than $1 / 2$?
3. A jumping bean moves on the integers according to a simple random walk taking one step per unit time. $R_{n}=$ the position at time $n \geq 0$. Assume that $p=0.35$; the probability that a step takes the bean forward (to the right), and $q=1-p=0.65$ is the probability that a step takes the bean backward (to the left). It starts off initially at position $R_{0}=5$.
(a) Does this random walk have positive drift or negative drift?
(b) What is the probability that the bean will go down to 0 before ever reaching $\$ 6$?
(c) What is the probability that the bean will go below $(<) 0$ before ever reaching $\$ 6$?
(d) What is the probability that the bean will never reach as high as 6.00 ?
4. As a more realistic model for asset pricing, suppose that the price of an asset moves (day by day) as

$$
X_{n}=8 \times 2^{R_{n}}, n \geq 0
$$

where $R_{0}=0$, and $R_{n}=\sum_{k=1}^{n} \Delta_{k}, k \geq 1$, is a simple symmetric random walk; $P(\Delta=1)=1 / 2=P(\Delta=-1)$.
(a) What is the probability that the asset price reaches a high of 32 before a low of $1 / 2$?
(b) What is the probability that the asset price will ever reach as high as 2^{500} ?
5. Let $\left\{Y_{n}: n \geq 0\right\}$ be an i.i.d. sequence of r.v.s. and let $a_{j} \stackrel{\text { def }}{=} P(Y=j),-\infty<j<$ ∞. Define

$$
m_{n} \stackrel{\text { def }}{=} \min \left\{Y_{0}, \ldots, Y_{n}\right\}, n \geq 0
$$

Show that $\left\{m_{n}\right\}$ forms a Markov chain by expressing it as a recursion.
(a) Determine the transition probabilities $P_{i, j}$ in terms of the a_{j}.
(b) Assume that $a_{j}>0,-\infty<j<\infty$. Compute $\lim _{n \rightarrow \infty} m_{n}$.
(c) Suppose instead that $a_{j}=P(Y=j)=1 / 7, j \in\{-3,-2,-1,0,1,2,3\}$; $a_{j}=0$ otherwise. (Thus Y has a discrete uniform distribution over the 7 point set.) Determine the transition probabilities $P_{i, j}$ and find $\lim _{n \rightarrow \infty} m_{n}$.
6. Let $X_{n} \stackrel{\text { def }}{=} Y_{n-1}+Y_{n}, n \geq 1, X_{0} \stackrel{\text { def }}{=} 0$, where $\left\{Y_{n}: n \geq 0\right\}$ is an iid sequence of rvs with a 0.5 Bernoulli distribution: $P(Y=0)=P(Y=1)=0.5$. Is $\left\{X_{n}\right\}$ a Markov chain? Either prove it is or show why it is not.

