
IEOR 4106, HMWK 2, Professor Sigman

1. Consider the Rat in the Open Maze; 4 rooms, and the outside (state 0), but now
the probabilities are P1,2 = 3/4, P1,3 = 1/4 , P2,1 = 7/8, P2,4 = 1/8; all the other
probabilities are “equally likely” as before. Solve for E(T3,0), the expected number
of moves until the rat escapes given it starts in Room 3.

Solution:

Let Ti = Ti,0 = min{n ≥ 1 : Xn = 0 | X0 = i}, i = 1, 2, 3, 4. Let xi = E(Ti,0) =
E(Ti). We want x3.

Conditioning on the first step X1 = j (given X0 = 1, 2, 3, 4 respectively) yields four
linear equations with four unknowns

E(T1) =
3

4
E(1 + T2) +

1

4
E(1 + T3) = 1 +

3

4
E(T2) +

1

4
E(T3)

E(T2) =
7

8
E(1 + T1) +

1

8
E(1 + T4) = 1 +

7

8
E(T1) +

1

8
E(T4)

E(T3) =
1

2
E(1 + T1) +

1

2
E(1 + T4) = 1 +

1

2
E(T1) +

1

2
E(T4)

E(T4) =
1

3
(1) +

1

3
E(1 + T3) +

1

3
E(1 + T2) = 1 +

1

3
E(T2) +

1

3
E(T3).

In terms of xi:

x1 = 1 +
3

4
x2 +

1

4
x3

x2 = 1 +
7

8
x1 +

1

8
x4

x3 = 1 +
1

2
x1 +

1

2
x4

x4 = 1 +
1

3
x2 +

1

3
x3

Solving yields

x1 =
187

7

x2 =
186

7

x3 =
162

7

x4 =
123

7

2. Continuation: Consider the same maze as in (1), but now there is no escape;
that is, no state 0. Instead, the rat wanders around the 4 rooms forever. Use
the same probabilities as in (1) except from room 4: P4,3 = P4,2 = 1/2. Let
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T1,4 = min{n ≥ 1 : Xn = 4 | X0 = 1}, denote the number of moves until reaching
Room 4 (for the first time) given the rats starts off in Room 1. Compute E(T1,4).

Solution:

Let Ti = min{n ≥ 1 : Xn = 4 | X0 = i}, i = 1, 2, 3. Let xi = E(Ti). We want
x1 = E(T1).

Conditioning on the first step X1 = j (given X0 = 1, 2, 3 respectively) yields three
linear equations with three unknowns

E(T1) =
3

4
E(1 + T2) +

1

4
E(1 + T3) = 1 +

3

4
E(T2) +

1

4
E(T3)

E(T2) =
7

8
E(1 + T1) +

1

8
(1) = 1 +

7

8
E(T1)

E(T3) =
1

2
E(1 + T1) +

1

2
(1) = 1 +

1

2
E(T1)

In terms of xi:

x1 = 1 +
3

4
x2 +

1

4
x3

x2 = 1 +
7

8
x1

x3 = 1 +
1

2
x1

Solving yields

x1 =
64

7
x2 = 9

x3 =
39

7

3. Consider the Gambler’s ruin problem Markov chain with S = {0, 1, 2, . . . , N}, but
for which the value of p depends upon i, 1 ≤ i ≤ N − 1. That is, if Xn = i,
then (independent of the past) the probability that the Gambler wins $1 is pi, the
probability the Gambler loses $1 is qi = 1− pi. (As before P0,0 = PN,N = 1.) Each
pi satisfies 0 < pi < 1. Let Pi(N) denote the probability that the Gambler, starting
with X0 = i, will reach N before 0.

(a) For N = 3, explicitly solve for the Pi = Pi(N), 1 ≤ i ≤ 2. (Recall the
boundary conditions P0 = 0, PN = 1.)
SOLUTION:
Given X0 = 1, we condition on the first gamble to obtain

P1 = p1P2 + q1P0 = p1P2.

Similarly for X0 = 2,

P2 = p1P3 + q2P1 = p2 + q2P1.
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Thus we have 2 equations with 2 unknowns:

P1 = p1P2 (1)
P2 = p2 + q2P1. (2)

Solving yields:

P2 =
p2

1− q2p1
(3)

P1 =
p1p2

1− q2p1
. (4)

(b) Show that if p1 = p2 = 1/2 in (a), then you get the same answer (e.g., plug in
and see) as for the regular Gambler’s ruin problem.
SOLUTION:
It is immediate that plugging in p1 = p2 = 1/2 into the solution in (a) that
we get P1 = 1/3, P2 = 2/3 as should be.

4. Consider from class lecture, the weather Markov chain Xn = (Wn−1,Wn) where
Wn ∈ {0, 1} (1 = rain, 0 = no rain), and the labeling is given by

0 = (0, 0)
1 = (0, 1)
2 = (1, 0)
3 = (1, 1);

the state space is thus S = {0, 1, 2, 3}. We had given probabilities leading to the
1-step transition matrix

P =


0.8 0.2 0 0
0 0 0.5 0.5

0.6 0.4 0 0
0 0 0.3 0.7

 .

Compute the probability that it does not rain 2 days from now, given that it rained
today but not yesterday. (Think of now as Monday, yesterday as Sunday, and 2
days from now as Wednesday if you so wish.)

SOLUTION:

We want
P (X2 = (0, 0) = 0 or (1, 0) = 2 | X0 = (0, 1) = 1).

Equivalently, we want

P
(2)
1,0 + P

(2)
1,2 .

Computing P (2) = P 2 yields:
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P 2 =


.64 .16 .1 .1
.3 .2 .15 .35
.48 .12 .20 .20
.18 .12 .21 .49

 .

P
(2)
1,0 + P

(2)
1,2 = .3 + .15 = .45

5. Consider modeling the weather where we now assume that the weather today de-
pends (at most) on the previous three days weather instead of 2 as we did in Problem
3 above. Letting Wn denote weather on the nth day (0 = no rain, 1 = rain), let
Xn = (Wn−2,Wn−1,Wn). There are 8 states, and we will relabel them 0—7 as:
(0, 0, 0) = 0, (1, 0, 0) = 1, (0, 1, 0) = 2, (0, 0, 1) = 3, (1, 1, 0) = 4, (1, 0, 1) =
5, (0, 1, 1) = 6, (1, 1, 1) = 7. We will assume it forms a Markov chain. Assume
that if it has rained for the past 3 days, then it will rain today with probability 0.8;
if it did not rain on any of the past three days, then it will rain today with proba-
bility 0.10. In any other case assume that the weather today will with probability
0.7 be the same as the weather yesterday. Derive the transition matrix.

SOLUTION: A state is in order (left to right) of “two days ago” “yesterday”,
“today”. For instance, (110) means that it rained the day before yesterday, and it
rained yesterday but it did not rain today. Moving ahead in time by one day (n to
n + 1) the state (110) becomes of the form (1, 0, x), where x = 0, 1; so it becomes
either (1, 0, 0) or (1, 0, 1). So there are only two possibilities for each transition.
This means that each row of the transition matrix will have only two non-zero
elements.
We re-label the states 0− 7. The info given, for example, “if it has rained for the
past 3 days, then it will rain today with probability 0.8” means that P (Xn+1 =
(1, 1, 1) | Xn = (1, 1, 1)) = 0.8 and P (Xn+1 = (1, 1, 0) | Xn = (1, 1, 1)) = 0.2. In
our re-labeling this becomes P (Xn+1 = 7 | Xn = 7) = 0.8 and P (Xn+1 = 4 | Xn =
7) = 0.2, yielding the last row of the matrix below. Similarly, “if it did not rain
on any of the past three days, then it will rain today with probability 0.10” yields
P (Xn+1 = (0, 0, 1) | Xn = (0, 0, 0)) = 0.1 and P (Xn+1 = (0, 0, 0) | Xn = (0, 0, 0)) =
0.9, or P (Xn+1 = 3 | Xn = 0) = 0.1 and P (Xn+1 = 0 | Xn = 0) = 0.9; yielding the
initial row of the matrix. The others rows are derived in a similar way, each with
a .7 and a .3 element.

P =

(000) (100) (010) (001) (110) (101) (011) (111)
(000) .9 0 0 .1 0 0 0 0
(100) .7 0 0 .3 0 0 0 0
(010) 0 .7 0 0 0 .3 0 0
(001) 0 0 .3 0 0 0 .7 0
(110) 0 .7 0 0 0 .3 0 0
(101) 0 0 .3 0 0 0 .7 0
(011) 0 0 0 0 .3 0 0 .7
(111) 0 0 0 0 .2 0 0 .8

6. Continuation:
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Given that it rained today, rained yesterday and rained the day before yesterday,
compute the probability that it does not rain 2 days from now.

SOLUTION: We want

P (X2 = (1, 0, 0) = 1 or (1, 1, 0) = 4 | X0 = (1, 1, 1) = 7).

Equivalently, we want

P
(2)
7,1 + P

(2)
7,4 .

Recall that

P =

(000) (100) (010) (001) (110) (101) (011) (111)
(000) .9 0 0 .1 0 0 0 0
(100) .7 0 0 .3 0 0 0 0
(010) 0 .7 0 0 0 .3 0 0
(001) 0 0 .3 0 0 0 .7 0
(110) 0 .7 0 0 0 .3 0 0
(101) 0 0 .3 0 0 0 .7 0
(011) 0 0 0 0 .3 0 0 .7
(111) 0 0 0 0 .2 0 0 .8

Computing P (2) = P 2 yields:

P 2 =

(000) (100) (010) (001) (110) (101) (011) (111)
(000) .81 0 .03 .09 0 0 .07 0
(100) .63 0 .09 .07 0 0 .21 0
(010) .49 0 .09 .21 0 0 .21 0
(001) 0 .21 0 0 .21 .09 0 .49
(110) 0 .21 0 0 .14 .09 0 .56
(101) 0 .14 0 0 .16 .06 0 .64
(011) 0 0 0 0 .3 0 0 .7
(111) 0 .14 0 0 .16 .06 0 .64

P
(2)
7,1 + P

(2)
7,4 = .14 + .16 = 0.3

7. For the Gambler’s ruin problem, with N = 3 and p = 0.3: Suppose X0 = 1.
Compute the probability that the Gambler stops gambling by (≤) time 5. (Recall
the Markov chain for this model, in which P0,0 = PN,N = 1.)

SOLUTION: We must first compute P 5 = (P
(5)
i,j ) for the 4× 4 transition matrix

P , and then we want P
(5)
1,0 + P

(5)
1,3 .
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P =


1 0 0 0

0.7 0 0.3 0
0 0.7 0 0.3
0 0 0 1

 .

P 5 =


1 0 0 0

0.8779 0 0.0132 0.1089
0.5929 0.0309 0 0.3762

0 0 0 1

 .

P
(5)
1,0 + P

(5)
1,3 = 0.8779 + 0.1089 = 0.9868.

8. Consider the Binomial Lattice Model (BLM), Sn = S0Y1 · · ·Yn, where S0 = 50.

Suppose that p = 0.5, and u = 1.8 and d = 0.5. Show that E(Sn)→∞ as n→∞,
but in fact Sn → 0 as n→∞ with probability 1.

In other words: You will become infinitely rich on average, but with certainty will
go broke!! (Interesting , yes?) HINT: To show that Sn → 0, take natural logarithms
of Sn first.........

SOLUTION: E(Sn) = 50E(Y )n = 50(1.15)n → ∞, (E(Y ) = pu + (1 − p)d =
1.15 > 1). Let

Rn = ln (Sn) = ln (50) +
n∑

i=1

ln (Yi).

A random walk with iid increments distributed as ∆ = ln (Y ). It suffices to show
negative drift, E(∆) < 0, for then Rn → −∞ wp1, and hence Sn = eRn → 0. To
this end: E(ln (Y )) = (0.5) ln (1.8) + (0.5) ln (0.5) = (0.5) ln (0.9) < 0.
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